Espaços de configurações e aplicações

Roger Picken

Dep. Matemática, IST, 28 de outubro de 2020

Um espaço de configurações é um espaço em que cada ponto representa uma configuração, por exemplo

1) uma configuração de dois segmentos articulados,

Um espaço de configurações é um espaço em que cada ponto representa uma configuração, por exemplo

- 1) uma configuração de dois segmentos articulados,
- 2) uma configuração de n pontos distintos num grafo Γ .

Um espaço de configurações é um espaço em que cada ponto representa uma configuração, por exemplo

- 1) uma configuração de dois segmentos articulados,
- 2) uma configuração de n pontos distintos num grafo Γ .

Um grafo é um conjunto constituido por vértices (pontos) e arestas (linhas) ligando os vértices.

Um espaço de configurações é um espaço em que cada ponto representa uma configuração, por exemplo

- 1) uma configuração de dois segmentos articulados,
- 2) uma configuração de n pontos distintos num grafo Γ .

Um grafo é um conjunto constituido por vértices (pontos) e arestas (linhas) ligando os vértices.

Vamos focar-nos no caso 2), onde escrevemos o espaço de configurações $\mathcal{C}^n(\Gamma) = \Gamma^n \setminus \Delta$. O subconjunto Δ corresponde aos pontos não-distintos.

Um espaço de configurações é um espaço em que cada ponto representa uma configuração, por exemplo

- 1) uma configuração de dois segmentos articulados,
- 2) uma configuração de n pontos distintos num grafo Γ .

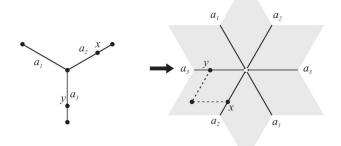
Um grafo é um conjunto constituido por vértices (pontos) e arestas (linhas) ligando os vértices.

Vamos focar-nos no caso 2), onde escrevemos o espaço de configurações $\mathcal{C}^n(\Gamma) = \Gamma^n \setminus \Delta$. O subconjunto Δ corresponde aos pontos não-distintos.

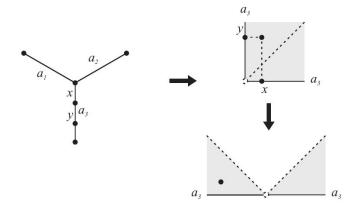
O objetivo é usar este espaço numa aplicação que é a coordenação de robôs. Para perceber a necessidade de coordenar robôs, vamos ver um filme ...

AGV Port of Rotterdam: https://youtu.be/RdNb5vi_23Y

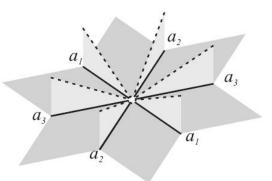
$\mathcal{C}^2(\Gamma)$ para $\Gamma = Y_3$



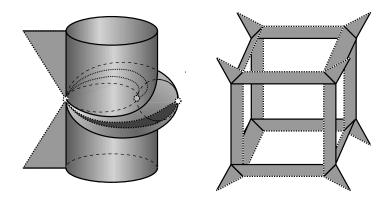
$\mathcal{C}^2(\Gamma)$ para $\Gamma=Y_3$



$\mathcal{C}^2(\Gamma)$ para $\Gamma = Y_3$



$\mathcal{C}^2(\Gamma)$ para dois outros grafos Γ



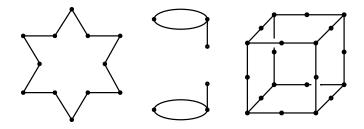
O espaço de configurações discretizado $\mathcal{D}^n(\Gamma)$

Para entender melhor a estrutura dos espaços de configurações, vamos trabalhar com o espaço de configurações discretizado de n pontos no grafo Γ :

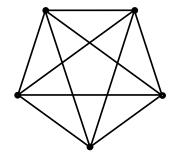
$$\mathcal{D}^n(\Gamma)$$

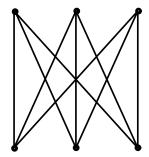
cujos elementos são as configurações com pontos separados por pelo menos uma aresta, ou seja qualquer caminho entre quaisquer dois pontos contém pelo menos uma aresta completa.

$\mathcal{D}^2(\Gamma)$ para os três grafos Γ

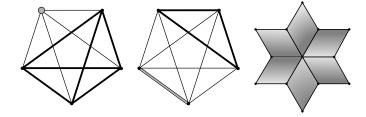


Os grafos K_5 e $K_{3,3}$





Contagem das células para K_5



$$0 - cells$$
 5×4 20
 $1 - cells$ $6 \times 5 \times 2$ 60
 $2 - cells$ 10×3 30

$$0 - cells$$
 5×4 20
 $1 - cells$ $6 \times 5 \times 2$ 60
 $2 - cells$ 10×3 30

 $\mathcal{D}^2(K_5)$ é variedade (admite-se orientável), porque cada 1-célula tem exatamente duas 2-células adjacentes.

Qual é o aspeto de $\mathcal{D}^2(K_5)$?

$$0 - cells$$
 5×4 20
 $1 - cells$ $6 \times 5 \times 2$ 60
 $2 - cells$ 10×3 30

 $\mathcal{D}^2(\textit{K}_5)$ é variedade (admite-se orientável), porque cada 1-célula tem exatamente duas 2-células adjacentes.

Qual é o aspeto de $\mathcal{D}^2(K_5)$?

caracteristica de Euler de $\mathcal{D}^2(K_5)$

$$\chi = 20 - 60 + 30 = -10$$

$$0 - cells$$
 5×4 20
 $1 - cells$ $6 \times 5 \times 2$ 60
 $2 - cells$ 10×3 30

 $\mathcal{D}^2(\textit{K}_5)$ é variedade (admite-se orientável), porque cada 1-célula tem exatamente duas 2-células adjacentes.

Qual é o aspeto de $\mathcal{D}^2(K_5)$?

caracteristica de Euler de $\mathcal{D}^2(K_5)$

$$\chi = 20 - 60 + 30 = -10$$

género (genus) de $\mathcal{D}^2(K_5)$:

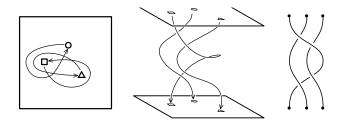
$$1 - \chi/2 = 6$$

Representação de $\mathcal{D}^2(K_5)$

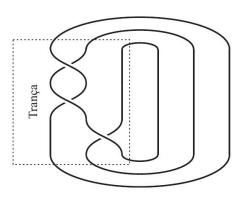
Representação de $\mathcal{D}^2(K_5)$

Exercicio: Mostre que o género de $\mathcal{D}^2(K_{3,3})$ é 4.

Tranças



Fecho de uma trança



É deformável em

As figuras nas danças escocesas correspondem a tranças coloridas.

As figuras nas danças escocesas correspondem a tranças coloridas.

Dança escocesa - animação da dança De'il Amang the Tailors https://youtu.be/6nUd-oOQUd4

As figuras nas danças escocesas correspondem a tranças coloridas.

Dança escocesa - animação da dança De'il Amang the Tailors https://youtu.be/6nUd-oOQUd4

A mesma dança ao vivo em Lyon https://youtu.be/cIO-dF02q1M

As figuras nas danças escocesas correspondem a tranças coloridas.

Dança escocesa - animação da dança De'il Amang the Tailors https://youtu.be/6nUd-oOQUd4

A mesma dança ao vivo em Lyon https://youtu.be/cIO-dF02q1M

Projeto (alguém interessado?):
estudo topológico das figuras nas danças escocesas
(o estudo dinâmico já foi realizado por Maria Eusébio da LMAC)

o estudo dinamico ja foi realizado por Maria Eusebio da LiMAC,

As figuras nas danças escocesas correspondem a tranças coloridas.

Dança escocesa - animação da dança De'il Amang the Tailors https://youtu.be/6nUd-oOQUd4

A mesma dança ao vivo em Lyon https://youtu.be/cIO-dF02q1M

Projeto (alguém interessado?):
estudo topológico das figuras nas danças escocesas
(o estudo dinâmico já foi realizado por Maria Eusébio da LMAC)
definição de invariantes que captam entrelaçamentos superiores
como em "reels de 3"

Sistemas dinâmicos e linkages

Há ligações com os sistemas dinâmicos. Para o problema dos três corpos existem soluções estáveis que executam um "reel de 3"

Solução periódica estável do problema dos três corpos https://youtu.be/jKvnn1r-9Iw

Sistemas dinâmicos e linkages

Há ligações com os sistemas dinâmicos. Para o problema dos três corpos existem soluções estáveis que executam um "reel de 3"

Solução periódica estável do problema dos três corpos https://youtu.be/jKvnn1r-9Iw

Watt's linkage: https://youtu.be/Ef5Hshg_D2Y

Workshop: Aplicações da Topologia, IST 2015

http://cmup.fc.up.pt/cmup/omgtp/2015/

Mini-cursos no encontro e outros temas atuais

Minicursos sobre aplicações da topologia em

- robótica, linkages
- ciência da computação
- biomoléculas
- análise de dados

Temas atuais:

 as estruturas topológicas no cérebro - analisando o grafo das interligações dos neurónios através de persistent homology etc.

Mini-cursos no encontro e outros temas atuais

Minicursos sobre aplicações da topologia em

- robótica, linkages
- ciência da computação
- biomoléculas
- análise de dados

Temas atuais:

- ▶ as estruturas topológicas no cérebro analisando o grafo das interligações dos neurónios através de persistent homology etc.
- Computação quântica topológica usando particulas exóticas anyons em superficies e tranças/danças feitas por elas

Referências

A. Abrams and R. Ghrist, Finding topology in a factory: Configuration spaces, American Mathematical Monthly 109 (2) 140-150 (2002). https://arxiv.org/pdf/math/0009118.pdf

Daniela Pontes Será possivel encontrar topologia numa fábrica? Programa Novos Talentos em Matemática, 2006 http://www.math.tecnico.ulisboa.pt/~rpicken/students/daniela-pontes.pdf

W. Basener Topology and its Applications, Wiley 2006.

OBRIGADO!