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Abstract. We address the problem of computing the fundamental group of
a symplectic S1-manifold for non-Hamiltonian actions on compact manifolds,
and for Hamiltonian actions on non-compact manifolds with a proper moment
map. We generalize known results for compact manifolds equipped with a
Hamiltonian S1-action. Several examples are presented to illustrate our main
results.

1. Introduction

In this paper we address the problem of computing the fundamental group of
a symplectic S1-manifold. For a compact manifold equipped with a Hamiltonian
circle action, a result in [Li] states that this group is equal to the fundamental group
of any of its reduced spaces (as topological spaces) and to the fundamental group
of its minimum and maximum level sets. We will consider here non-Hamiltonian
actions on compact manifolds (Theorem 2.1) and Hamiltonian actions on non-
compact manifolds with a proper moment map (Theorem 3.1).

When the action is non-Hamiltonian, one can consider a generalized moment
map1 introduced by McDuff in [MD1] as follows: first, the symplectic form is de-
formed to a rational invariant symplectic form making the non-zero class [ι(ξM )ω]
rational, where ξM denotes the vector field generating the action; then, for a mul-
tiple of this symplectic form, there is a map φ : M−→S1 such that

ι(ξM )ω = φ∗(dθ),

called generalized moment map (or circle-valued moment map). This map has many
of the properties of an ordinary moment map and can even be used to reduce M . In
particular, choosing an invariant pair of a Riemannian metric g and a compatible
almost complex structure J on M and identifying S1 with R/Z in the usual way,
one may define the gradient of φ with respect to g and see that it is equal to JξM .
Its flow has all the nice properties of the gradient flow of an ordinary moment map.
In particular, its critical set is a disjoint union of symplectic submanifolds of M
(each of codimension at least 4 since φ has no local maxima or minima).

Using the gradient flow of φ we prove (Theorem 2.1) that, if M is a connected
compact symplectic manifold equipped with a non-Hamiltonian circle action and P
is a connected component of an arbitrary level set of the generalized moment map
φ then, as fundamental groups of topological spaces, π1(M) is a semidirect product

π1(M) = π1(P ) ⋊ Z,

Both authors were partially supported by FCT through program POCTI/FEDER; the first
author was partially supported by FCT through grant POCTI/MAT/57888/2004 and by Fundação
Calouste Gulbenkian.

1This generalized moment map is a special case of a Lie group-valued moment map (see [OR]
and the references therein).
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when the action has no critical points, or

π1(M) = π1(Mred) ⋊ Z,

where Mred := P/S1 is a connected component of the symplectic quotient

φ−1(a0)/S1,

where a0 = φ(P ).
Note that the proof for the Hamiltonian case presented in [Li] relies heavily, at

each step, on the existence of a minimum and so it cannot be adapted to the
non-Hamiltonian case. Nevertheless, since we have a generalized moment map, we
can still use (circle-valued) Morse-Bott theory to prove the above result.

When the action is Hamiltonian but M is not compact one can again use
Morse-Bott theory, provided that the moment map is proper (i.e. the inverse im-
age of a compact set is compact). In this case, we obtain that, if (M, ω) is a
connected symplectic manifold (not necessarily compact) with proper moment map
φ : M−→R, and P is an arbitrary (compact) level set of φ then, as fundamental
groups of topological spaces, π1(M) is either, π1(M) = π1(P ), when the action has
no critical points, or π1(M) = π1(Mred), where Mred is the symplectic quotient at
any value of φ. Moreover, if φ has a minimum (or a maximum), we recover the
referred result for the compact case in [Li]:

π1(M) = π1(Mred) = π1(Fmin) (or equal to π1(Fmax)),

where Fmin and Fmax are the sets of minimal and maximal points respectively.
Although properness of the moment map is a strong condition which is not

verified in many problems in classical mechanics with a global S1-action, our results
may still be relevant when, for instance, one can perform a preliminary reduction
or symplectic cutting (cf. [L]) making the induced S1-moment map proper. Let
us remark, however, that the requirement of a proper moment map is essential to
our results as can be seen in Examples 6 and 7. Indeed, even the statement in
Proposition 2.1 that all reduced spaces have the same fundamental group may fail
to hold when the moment map is not proper.

Finally, in Section 4, we present several other examples illustrating our results.

2. Non-Hamiltonian circle actions

In this section we prove our result for non-Hamiltonian actions on compact man-
ifolds:

Theorem 2.1. Let M be a connected, compact symplectic manifold equipped with
a non-Hamiltonian circle action and φ : M−→S1 be the corresponding generalized
moment map. Let P be a connected component of an arbitrary level set of φ. Then,
as fundamental groups of topological spaces, π1(M) is a semidirect product

π1(M) = π1(P ) ⋊ Z,

when the action has no critical points, or

π1(M) = π1(Mred) ⋊ Z,

where Mred := P/S1 is a connected component of the (arbitrary) symplectic quotient
φ−1(a0)/S1, for a0 = φ(P ).
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Throughout, we shall choose an S1-invariant compatible pair, (J, g), of an almost
complex structure and a Riemannian metric and we identify S1 with R/Z in the
usual way to define the gradient of φ with respect to g. This gradient is equal to
JξM , where ξM is the vector field generating the action.

In order to prove Theorem 2.1 we will need a series of preliminary results. The
first one is proved in [O] but we include a sketch of its proof for the sake of com-
pletion.

Lemma 1. (Ono [O]) Let M be a symplectic compact connected manifold equipped
with a non-Hamiltonian circle action and φ : M−→S1 the corresponding generalized
moment map. Then, given any point y0 ∈ M , there exists a homologically non-
trivial loop γ : S1−→M passing through y0.

Proof. Since the generalized moment map is locally a function, one can define its
Hessian at critical points, their indices and the gradient flow of φ. Moreover, since
the action is non-Hamiltonian, the critical points cannot have index 0 nor 2n, where
2n is the dimension of M . Let us consider the quotient space

X = M/∼,

where x ∼ y iff x and y are in the same connected component of a level set of φ. As
the indices of the critical points of φ are even, X has no branch point. Moreover, X
has no boundary and is homeomorphic to a circle (cf. [O] for details). Therefore,
one can deform the trajectory of the gradient flow of φ passing through y0 to a
homologically non-trivial loop γ : S1−→M through y0. �

Lemma 2. Let M be a compact symplectic manifold equipped with a non-Hamiltonian
circle action and φ : M−→S1 be its generalized moment map. Then, for any regu-
lar value a0 and a point y0 ∈ φ−1(a0), the inclusion j : φ−1(a0)−→M induces the
following exact sequence of fundamental groups

π1(φ
−1(a0), y0)

j∗
−→ π1(M, y0)

φ∗

−→ π1(S
1, a0).

Proof. Clearly im(j∗) ⊂ ker(φ∗), so we just need to show that ker(φ∗) ⊂ im(j∗).
Let [γ] ∈ ker(φ∗). Then, identifying S1 with R/Z, we may assume without loss of
generality that there are regular values of φ, say a and b, with 0 ≤ a ≤ a0 ≤ b < 1,
for which γ is homotopic to a loop contained in

M [a,b] := {x ∈ M : a ≤ φ(x) ≤ b}.

Let M
[a,b]
y0

be the connected component of M [a,b] containing y0.

If there are no critical points in M
[a,b]
y0

then

π1

(

M [a,b], y0

)

= π1(φ
−1(a0), y0)

(cf. [Mi]) and so [γ] ∈ im(j∗).
If there is just one critical value c in (a, b) let us assume for simplicity that there

is just one component F of the critical set inside M
[a,b]
y0

where φ assumes the value c
(if there is more than one component we argue similarly for each one2). The normal
bundle of F has a complex structure induced by the almost complex structure J
and splits as a sum ν−⊕ν+, where ν− is tangent to the incoming flow lines of JξM

2 Alternatively, by a slight perturbation of the restriction of φ to M [a,b], we could assume that
no two critical components assume the same critical value and proceed as in the case where there
is more than one critical value in (a, b) which is described at the end of the proof.
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(that is, tangent to the stable manifold). Let D−

F be the negative disk bundle of

ν− and S(D−

F ) its sphere bundle. By Morse-Bott theory (see [B]) we have

M [a,b]
y0

= M [a,ã]
y0

∪S(D−

F
) D−

F ,

for any regular value ã in (a, c). Hence, by the Van-Kampen theorem, π1

(

M
[a,b]
y0

)

is the free product with amalgamation3

(2.1)

π1

(

M
[a,b]
y0

)

= π1

(

M
[a,ã]
y0

)

∗π1(S(D−

F
)) π1(D

−

F )

= π1(φ
−1(ã), ỹ) ∗π1(S(D−

F
)) π1(F ),

where ỹ is a point in the appropriate component of φ−1(ã).
If index(F ) > 2, then π1(S(D−

F )) is isomorphic to π1(F ) and so, since we also

have π1(D
−

F ) = π1(F ), we get

π1

(

M [a,b]
y0

)

= π1(φ
−1(ã), ỹ).

If index(F ) = 2, we consider the principal circle bundle

S1 ĩ
→֒ S(D−

F )
p̃S
−→ F

and its homotopy exact sequence

· · · −→π1(S
1)

ĩ∗−→ π1(S(D−

F ))
(p̃S)∗
−→ π1(F )−→{1}.

Note that S(D−

F ) can be identified with the restriction of the circle bundle

φ−1(ã)−→Mã

to F , where Mã is the reduced space φ−1(ã)/S1 (there is an embedding of F in Mã

as it is shown in [Li]), and so we also have an inclusion

S(D−

F )
κ
→֒ φ−1(ã).

In the amalgamation (2.1), the elements of

(p̃S)∗(π1(S(D−

F ))) = π1(F )

(the map (p̃S)∗ is surjective) are identified with the corresponding elements in

κ∗(π1(S(D−

F ))) ⊂ π1(φ
−1(ã), ỹ),

implying that π1

(

M
[a,b]
y0

)

can be identified with the quotient

π1(φ
−1(ã), ỹ)/N,

where N is the normal subgroup generated by all the elements of κ∗(ker ((p̃S)∗)).
Repeating this argument using −φ instead of φ (corresponding to reversing the

direction of the circle action), we can substitute ã by any value â ∈ (c, b] in the
above argument. However, the relevant critical points will no longer be the index-2
critical points but the ones with index equal to 2n − 2, where 2n is the dimension
of M .

3The term amalgamation in G1 ∗A G2 is usually used for the quotient group of the free product
of G1 by G2 obtained by identifying the two subgroups that correspond to A under two monomor-
phisms A−→Gi (see for example [CGKZ]). Here we slightly abuse this notation since we do not
require these maps to be one-to-one.
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If [a, b] has more than one critical value or if there is more than one component
of the critical set assuming the value c, let n1 be the number of index-2 components

of the critical set inside M
[a,b]
y0

assuming values in (a0, b]. Similarly, let n2 be the

number of index-(2n−2) components of the critical set inside M
[a,b]
y0

assuming values
in [a, a0). By induction on n1 and n2 and by using the Van-Kampen Theorem as in
(2.1), possibly more than once each time we cross one of the corresponding critical

levels (using φ or −φ accordingly), we see that π1

(

M
[a,b]
y0

, y0

)

can be obtained from

π1(φ
−1(a0), y0) by taking a sequence of n1 + n2 quotients as explained above, and

the result follows.
Indeed, if a < c1 < · · · < cm < b are the critical values of φ in (a, b), we first

prove by induction that, for a0 ∈ (a, c1), the fundamental group of M
[a,b]
y0

can be
obtained from π1(φ

−1(a0), y0) by a sequence of n1 quotients as above where n1 is the

number of index-2 critical components of φ inside M
[a,b]
y0

. Similarly, if a0 ∈ (cm, b)

we prove by induction that the fundamental group of M
[a,b]
y0

can be obtained from
π1(φ

−1(a0), y0) by a sequence of n2 quotients as above where n2 is now the number

of index-(2n− 2) critical components of φ inside M
[a,b]
y0

. Finally, if we consider any
other regular value a0 ∈ (c1, cm), the Van-Kampen theorem yields

π1

(

M [a,b]
y0

)

= π1

(

M [a,a0]
y0

)

∗π1(φ−1(a0),y0) π1

(

M [a0,b]
y0

)

.

Here we know that π1

(

M
[a0,b]
y0

)

can be obtained from π1(φ
−1(a0), y0) by a sequence

of n1 quotients, where n1 is the number of index-2 critical components of φ inside

M
[a0,b]
y0

and π1

(

M
[a,a0]
y0

)

is obtained from π1(φ
−1(a0), y0) by a sequence of n2 quo-

tients, where n2 is the number of index-(2n − 2) critical components of φ inside

M
[a,a0]
y0

. Then, since the map

π1(φ
−1(a0), y0)−→π1

(

M [a0,b]
y0

)

induced by the composition of the n1 quotient maps is surjective, we conclude that

π1

(

M
[a,b]
y0

)

can be obtained from π1(φ
−1(a0), y0) by taking a sequence of n1 + n2

quotients. �

Note that the level sets of the generalized moment map φ may not be connected
leading to non-connected reduced spaces (cf. Example 1). Nevertheless, we will
show that all their connected components have the same fundamental group. For
that, we first consider the equivalence relation ∼ defined in the proof of Lemma 1
and take

M/∼∼= S1.

The map φ descends to the quotient M/∼ (since y ∼ x implies φ(x) = φ(y)) giving
us a finite covering of S1,

φ̃ : M/∼∼= S1−→S1

(i.e. φ̃(z) = zk for z ∈ S1 and some k ∈ Z). Hence, we have the following
decomposition of φ

(2.2) M
φc

//

φ
77

M/∼∼= S1
φ̃

// S1,
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where the map φc : M−→S1 is surjective and has connected level sets. Moreover,
considering the gradient flow of φc with respect to the metric g, it is easy to check
that it has the same critical set as φ, as well as all the nice properties of its gradient
flow. In particular, the indices of the critical submanifolds are all even. Moreover,
the k connected components of the reduced space Ma := φ−1(a)/S1 are the reduced
spaces

M c
aj

:= (φc)−1(aj)/S1

of φc, where the aj ’s (j = 1, . . . , k) are such that φ̃(aj) = a, that is, Ma is the
disjoint union

Ma =
k
⊔

j=1

(φc)−1(aj)/S1.

Proposition 2.1. Let M be a manifold satisfying the hypotheses of Lemma 1.
Then, the fundamental group of all connected components of all reduced spaces
Ma := φ−1(a)/S1 is always the same, even for critical values of the generalized
moment map.

Proof. Let us consider the map φc : M−→S1 defined above. If the action has no
fixed points then all “reduced spaces” (φc)−1(a)/S1 are diffeomorphic and we are
done. If that is not the case, let us again identify S1 with R/Z and assume that 0 is
a regular value of φc (if not, we just break up the circle at another point). Let c1 be
the smallest critical value of φc in [0, 1] and let us again assume that there is only
one connected component F of the critical set assuming this value (see Footnote 2).
Let D−

F be the negative disk bundle of ν− and S(D−

F ) its sphere bundle. Then, by
Morse-Bott theory, (φc)−1(c1) has the same homotopy type as

(φc)−1(a) ∪S(D−

F
) D−

F ,

where a is any regular value in [0, c1). This implies that M c
c1

:= (φc)−1(c1)/S1 has
the same homotopy type as

(

(φc)−1(a)/S1
)

∪S(D−

F
)/S1

(

D−

F /S1
)

= M c
a ∪S(D−

F
)/S1

(

D−

F /S1
)

,

and so π1(M
c
c1

) is the free product with amalgamation

π1(M
c
c1

) = π1(M
c
a) ∗π1(S(D−

F
)/S1) π1(D

−

F /S1).

However, the local normal form for φ (and consequently for φc) on a neighborhood
of F is the same as the local normal form of a neighborhood of a critical set of an
ordinary moment map, implying that S(D−

F )/S1 is a weighted projectivized bundle

over F and so, since we also have that D−

F is homotopy equivalent to F , we conclude
that

π1(S(D−

F )/S1) = π1(D
−

F /S1)

and so

π1(M
c
c1

) = π1(M
c
a).

Using −φ instead of φ (corresponding to reversing the direction of the circle action)
we obtain that

π1(M
c
c1

) = π1(M
c
b )

for b ∈ (c1, c2) where c2 is a critical value of φc (if it exists) and the interval (c1, c2)
contains only regular values. Repeating this for every critical component of φc we
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conclude that all connected components of all reduced spaces (even critical ones)
have the same fundamental group. �

Note that an alternative proof of this Proposition could be done using the fact
that, for circle actions, when passing a critical value of the moment map the reduced
spaces change by a weighted blow-down followed by a weighted blow-up (cf. [G]
and [BP]) and so, by [MD2], their fundamental group does not change.

Lemma 3. Let M be a manifold satisfying the hypotheses of Lemma 1 equipped
with a circle action with a non-empty fixed point set. Let a0 ∈ S1 be a regular value
of the generalized moment map φ, and consider the principal circle bundle

S1 i
→֒ φ−1(a0)

p
−→ Ma0

,

where Ma0
:= φ−1(a0)/S1 is the reduced space at a0. Then, for y0 ∈ φ−1(a0), the

kernel of the map p∗ : π1(φ
−1(a0), y0)−→π1(Ma0

, p(y0)) is equal to the kernel of
the map

j∗ : π1(φ
−1(a0), y0)−→π1(M, y0),

defined in Lemma 2.

Proof. Clearly ker (p∗) ⊂ ker (j∗). Indeed, if [γ] ∈ ker (p∗) then, the gradient flow
of φ gives us a homotopy between γ and a constant path contained in some critical
level set and so [γ] = 1 in π1(M).

Let us now see that ker (j∗) ⊂ ker (p∗). Take [γ] ∈ ker (j∗). Then, γ is homotopic

to a nullhomotopic loop in M
[a,b]
y0

for some regular values a, b with 0 ≤ a ≤ a0 ≤
b < 1. Indeed, if that were not the case, there would exist a homotopy

H : [0, 1] × [0, 1]−→M

between γ and the constant path based at y0 for which φ restricted to D := im(H)
would be surjective. Hence, there would exist a loop α : S1−→D in D such that
(φ ◦ α)(S1) = S1 and then, since π1(D) = {1}, we would have [α] = 1 in π1(D)
while φ∗[α] = [φ ◦ α] 6= 1, which is impossible.

If the critical points in M
[a,b]
y0

have index greater than 2 and smaller than 2n− 2
(where 2n is the dimension of M), or if there are no critical points at all in this set,
then, as we saw in the proof of Lemma 2,

π1

(

M [a,b]
y0

, y0

)

= π1(φ
−1(a0), y0),

implying that γ is nullhomotopic in φ−1(a0) and so p∗([γ]) = 1.

If there are components of the critical set inside M
[a,b]
y0

with index equal to 2 or

equal to 2n − 2 then, again like in the proof of Lemma 2, π1

(

M
[a,b]
y0

, y0

)

can be

obtained from π1(φ
−1(a0), y0) by taking a sequence of quotients. Indeed, for each

index-2 component F with φ(F ) = ci > a0, we consider the maps

κi : S(D−

F )−→φ−1(a0), pSi
: S(D−

F )−→F and p : φ−1(a0)−→Ma0

defined as in the proof of Lemma 2; then we take a sequence of quotients of
π1(φ

−1(a0), y0) by Ni, the normal subgroups generated by all the elements of

(κi)∗(ker (pSi
)∗);
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we repeat this procedure for each index-(2n−2) component F with φ(F ) < a0, this

time using −φ instead of φ. We conclude that, if [γ] = 1 in π1

(

M
[a,b]
y0

, y0

)

, then

[γ] ∈ Ni for one of the groups Ni considered above. However,

(κi)∗(ker (pSi
)∗) ⊂ ker (p∗)

and so, since ker (p∗) is normal, we conclude that [γ] ∈ Ni ⊂ ker (p∗) and the result
follows. �

With these results we can now prove Theorem 2.1.

Proof. (of Theorem 2.1) First, let us assume that the action has no fixed points
that is, the generalized moment map φ has no critical points. In this case, since
M is connected, all the level sets of φ are equivariantly diffeomorphic, since we can
use the flow of JξM to identify the level sets. Moreover, since we are assuming that
there are no fixed points, the map φc defined in (2.2) is a fibration with connected
fiber

P := (φc)−1(a)

(a fixed level set of φc) which is a connected component of the level set φ−1(ak) for
some k ∈ Z. Hence, the long exact homotopy sequence for P−→M−→S1 gives us
that the sequence

(2.3) {1}−→π1(P )
j∗
−→ π1(M)

(φc)∗
−→ π1(S

1)−→{1}

is exact, implying that j∗ is injective. Moreover, the homologically non-trivial loop
γ : S1−→M given by Lemma 1 is a section of the above fibration, and so φc

∗
◦γ∗ = id.

Hence, π1(M) is a semidirect product π1(M) = G1 ⋊ G2 where G1 is the kernel of
φc
∗

and G2 := im(γ∗). Moreover, we have

G1 = im(j∗) ∼= π1((φ
c)−1(a))/ ker (j∗) = π1((φ

c)−1(a))

(since j∗ is injective), and so, as (φc)∗ maps G2 isomorphically onto π1(S
1) = Z,

the result follows.
If the action has fixed points they cannot be local maxima nor minima. Taking a

fixed point F , we consider the homologically non-trivial loop γ : S1−→M through
F given by Lemma 1. By Lemmas 2 and 3, we have the following exact sequence,
where a is a regular value of φc:

(2.4) π1(S
1)

i∗
// π1

(

(φc)−1 (a)
)

j∗
// π1(M)

(φ)c
∗

// π1(S
1)

γ∗

hh

with (φ)c
∗
◦γ∗ = id. Hence, taking G1 := ker ((φc)∗) and G2 := im(γ∗) we have that

π1(M) is a semidirect product of G1 and G2. Moreover, considering the map

p : (φc)−1(a)−→(φc)−1(a)/S1 =: M c
a,

we have, by Lemma 3, that ker (j∗) = ker (p∗), and so

G1 = im(j∗) = π1((φ
c)−1(a))/ ker (p∗) = π1(M

c
a),

where the “reduced space” M c
a is a connected component of the reduced space

φ−1(ak)/S1 of φ. On the other hand, φc
∗

maps G2 isomorphically onto π1(S
1) = Z.

Hence, π1(M) contains two subgroups G1 and G2 such that G1 is normal and
isomorphic to π1(M

c
a) and G2 is isomorphic to Z. Moreover, each element of π1(M)

is uniquely represented as the product of an element of G1 by an element of G2.
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Indeed, π1(M) is a semidirect product of π1(M
c
a) by Z and then, by Proposition 2.1,

the result follows. �

Remark 1. To be able to completely determine the semidirect product above one
must know how the elements of Z act by conjugation on the fundamental group
of a connected component P of a level set of the moment map (when the action
has no fixed points) or on the fundamental group of a connected component of a
reduced space, Mred = P/S1. Indeed, one needs to establish the homomorphism

Ψ : Z−→Aut(π1(P )) or Ψ : Z−→Aut(π1(Mred))

given by Ψ(j)(g) = jgj−1, where j ∈ Z (since Z is cyclic it suffices to know the image
of the generator). This will of course depend on the manifold M . Nevertheless,
this action of Z is independent of the choice of the level set P .

3. Non-Compact Manifolds

We consider in this section Hamiltonian circle actions with a proper moment
map on non-compact manifolds M . The proof that the fundamental group of M is
equal to the fundamental group of its reduced spaces does not follow from the proof
for the compact case presented in [Li] since, in this case, we do not necessarily have
a maximum or a minimum.

Just as in the compact case, the image of the proper moment map is an interval
I ⊂ R but now not necessarily compact. However, the level sets of φ are still
connected [LMTW]. Moreover, note that the indices of the critical submanifolds
are all even. In particular, there are no critical submanifolds of index 1 or 2n − 1.
As noted by Atiyah in [A] this implies that the number of connected components of
the level sets of φ can only change when passing a local maximum or a minimum.
Since, in this case, the level sets of φ are connected it follows that φ has at most
a unique local maximal manifold and a unique local minimal manifold. The values
of φ at these critical manifolds (if they exist) cannot be points in the interior of I
and so they are in fact global extrema. Our result is then the following.

Theorem 3.1. Let S1 act on a connected symplectic manifold (M, ω) (not neces-
sarily compact) with proper moment map φ : M−→R, and let P be an arbitrary
(compact) level set of φ. Then, as fundamental groups of topological spaces, the
fundamental group of M is either π1(M) = π1(P ), when the action has no critical
points, or π1(M) = π1(Mred), where Mred is the symplectic quotient at any value
of φ.

Moreover, if φ has a minimum (or a maximum), then

π1(M) = π1(Mred) = π1(Fmin) (or = π1(Fmax)),

where Fmin and Fmax are the sets of minimal and maximal points respectively.

Proof. Recall that like in the compact case the image of the moment map φ is
an interval I ⊂ R (not necessarily compact) and that the level sets of φ are still
connected [LMTW]. If φ has no critical points, then, as in classical Morse-Bott
theory, M is diffeomorphic to φ−1(a) × I for any value a of φ, and so

π1(M) = π1(φ
−1(a)).

If the action has fixed points, then, considering a regular value of φ, say a0, we
can adapt the proof of Lemma 2 to show that the sequence
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π1(φ
−1(a0))

j∗
→֒ π1(M)

φ∗

−→ {1}

is exact (i.e. j∗ is surjective). Indeed, if [γ] ∈ π1(M), then γ is homotopic to some
loop contained in a compact set (φ is proper)

M [a,b] := {x ∈ M : a ≤ φ(x) ≤ b}

for some values a, b ∈ R with a ≤ b.
The proof of Proposition 2.1 can also be adapted to show that all reduced spaces

(even critical ones) have the same fundamental group. Similarly, we can use the
proof of Lemma 3 to show that the kernel of the map

p∗ : π1(φ
−1(a0))−→π1(Ma0

)

is equal to the kernel of the map

j∗ : π1(φ
−1(a0))−→π1(M),

induced respectively by the quotient and the inclusion maps (here Ma0
denotes the

reduced space φ−1(a0)/S1). Consequently, since j∗ and p∗ are surjective,

π1(Ma0
) = π1(φ

−1(a0))/ ker (p∗) = π1(φ
−1(a0))/ ker (j∗) = π1(M).

Hence, to finish our proof, we just need to show that, when φ has either a minimum
at Fmin, or a maximum at Fmax, we have

π1(Ma0
) = π1(Fmin) or π1(Ma0

) = π1(Fmax).

Let us consider the case where φ has a minimum (the other case is similar). Here
we can use the following argument used in [Li] for the compact case: let m be the
minimum value of φ and consider an interval (m, b) formed by regular values of φ.
For a ∈ (m, b) we have, by the equivariant symplectic embedding theorem, that
φ−1(a) is a sphere bundle over Fmin. Let S2l+1 be its fiber, where

dim(Fmin) = 2(n − l − 1).

Then, the reduced space Ma is diffeomorphic to an orbibundle over Fmin with fiber
a weighted projective space CP l

w := S2l+1/S1, and we have the exact sequence

π1(CP l
w)−→π1(Ma) → π1(Fmin)−→{1}.

Since CP l
w is simply connected (cf. Remark 2), we have

π1(Fmin) = π1(Ma)

and the result follows. �

Remark 2. We have used above the fact that the fundamental group of a weighted
projective space (as a topological space) is trivial. Indeed, weighted projective
spaces CP l

w are compact symplectic toric orbifolds [LT] and can be given the struc-
ture of an algebraic toric variety with fan equal to the fan defined by the moment
map image which is a simple rational nonsmooth polytope in (Rl)∗ (see for instance
[Au] for details). This fan, which is spanned by the faces of the dual polytope, is
complete meaning that the union of all its cones is the whole space Rl. Then we
know by [F] that the fundamental group of the associated toric variety (the weighted
projective space) is trivial.

Alternatively, we can see CP l
w as a quotient of S2l+1 ⊂ Cl+1 by a diagonal circle

action acting with different weights on each factor. The corresponding quotient
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map S2l+1−→CP l
w induces a surjection in π1 since the fibers are connected and so

we conclude that weighted projective spaces are simply connected.

4. Examples

4.1. Non-Hamiltonian actions on compact manifolds.

Example 1. Let us begin with a very simple example of a non-Hamiltonian circle
action with an empty fixed point set. Let M be the 2-torus T

2 = S1 × S1 (and so
π1(M) = Z2) with symplectic form σ = dθ1 ∧dθ2, and consider the S1-action given
by

eiβ · (eiθ1 , eiθ2) = (ei(2β+θ1), eiθ2).

The generalized moment map φ : M−→S1 is just

φ(eiθ1 , eiθ2) = e2iθ2 .

All the level sets of φ are equal to two disjoint copies of S1. We can decompose
φ = φ̃ ◦ φc in the following way:

M
φc

−→ S1 φ̃
−→ S1

(eiθ1 , eiθ2) 7→ eiθ2 7→ e2iθ2 ,

where the level sets of φc are the connected components of the level sets of φ (they
are all equal to S1), and we get the result in Theorem 2.1. That is, π1(T

2) is a
semidirect product of

π1((φ
c)−1(a), y0)

by Z. Indeed, for a point y0 ∈ M and a = φc(y0), the two subgroups of π1(M, y0)
isomorphic to

π1((φ
c)−1(a), y0) = Z

and to π1(S
1) = Z are both normal, implying that their semidirect product is just

the regular direct product of the two groups.

Example 2. Let us consider the example of a 6-manifold M with a free symplec-
tic circle action with contractible orbits constructed in [K]. Here, we take Y ,
the smooth oriented simply-connected 4-manifold underlying a K3 surface (see for
example [BHPV]), and consider the mapping torus4 X of an orientation-preserving
diffeomorphism Φ : Y −→Y obtained as follows. First, knowing that the intersection
form of Y is

Q = 3H ⊕ 2E8,

where

H =

(

0 1
1 0

)

is the so-called (rank-2) hyperbolic plane quadratic form and E8 is the unique
unimodular even and positive definite quadratic form of rank 8 (see [BHPV] for
details), we consider an automorphism f of H⊕H , such that f(x) = x+c and f(c) =
c, where x and c are two non-zero primitive classes in H2(Y, Z). Then, we extend
f to all of Q, preserving the orientation of a maximal positive-definite subspace
and find, by a result of Matumoto [M], an orientation-preserving diffeomorphism
Φ : Y −→Y with Φ∗ = f .

4The mapping torus of a map h : Y −→Y is the identification space T (h) = Y × [0, 1]/{(x, 0) =
(h(x), 1)) | x ∈ Y } (cf. [R]).
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Finally, from X , we obtain M as the total space of the circle bundle π : M−→X
with Euler class c (since Φ∗c = c, we can choose a lift to a cohomology class on the
mapping torus which we also denote by c). Since this bundle has contractible fibers,
its homotopy long exact sequence gives us that π1(M) = π1(X). Moreover, since X
is a mapping torus and Y is simply connected (implying that Φ∗ : π1(Y )−→π1(Y )
is trivially an isomorphism), we have that π1(X), a semidirect product π1(Y ) ⋊ Z

(see [R]), is equal to Z.
Let us now obtain the same result using Theorem 2.1. Let ω be the S1-invariant

symplectic form in M (we omit its construction for simplicity but the details can be
found in [K]) and let ξM be the vector field generating the action. Since the closed
1-form ι(ξM )ω vanishes on the tangents to the S1-action, it can be written as π∗α
where α is a closed 1-form on the quotient X . Moreover, it is shown in [FGM] that
there is a map ν : X−→S1 for which α = ν∗(dθ). Hence

ι(ξM )ω = π∗ν∗(dθ)

and so φ := ν ◦ π is the generalized moment map for this action. However, X
is a mapping torus implying that there is a natural map νc from X to S1 with
(connected) level sets equal to Y and, as is shown in [FGM], ν = ν̃ ◦ νc where the
map

ν̃ : S1−→S1

is a finite covering of the circle. Hence, the connected components of the level sets
of ν are equal to Y and so, denoting by P a connected component of an arbitrary
level set of φ, we get π1(P ) = π1(Y ) = {1} since both the orbits of the circle action
and Y are contractible. Therefore, Theorem 2.1 also gives

π1(M, y0) = π1(P, y0) ⋊ Z = Z,

where y0 ∈ P .

Example 3. The only known example of a manifold M equipped with a non-
Hamiltonian circle action with fixed points was constructed by McDuff in [MD1].
Theorem 2.1 will allow us to compute its fundamental group. This 6-dimensional
manifold, M , is obtained by first considering a special manifold with boundary, X ,
equipped with a Hamiltonian circle action with moment map

ν : X−→[0, 7],

having two boundary components (lying over the endpoints 0 and 7), and then
gluing them together.

This manifold X , which has 4 critical levels at s = 1, 2, 5 and 6 with zero sets
of codimension 4, is constructed as follows (for simplicity we will not keep track of
symplectic forms). Considering coordinates θ1, . . . , θ4 on T 4 and letting σij be the
form dθi ∧ dθj , we construct five regular pieces ν−1(I), where

• ν−1(I) = T 4 × S1 × I, for I = (0, 1) and I = (6, 7),
• ν−1(I) = PI × I, with PI a principal circle bundle over T 4 of Chern class

cI , where
i) cI := −[σ42] for I = (1, 2);
ii) cI := −[σ31 + σ42] for I = (2, 5);
iii) cI := −[σ31] for I = (5, 6).

Then, we construct four additional pieces Qλ (λ = 1, 2, 5, 6), lying over the intervals

[λ − ε, λ + ε],
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which are then glued to the already defined parts. The singularity as s increases
through 1 is diffeomorphic to the singularity as s decreases through 6, and similarly
for 2 and 5, so X will be completely determined with the description of Q1 and Q2.

The piece Q1 is of the form T 2 × Y , where Y is a 4-manifold obtained from
S2×S2 with symplectic form 2ρ⊕ρ (where ρ is a symplectic form on S2 with total
area 1) and eqipped with the standard diagonal circle action in the following way.
considering the moment map for this action H = 2µ1 + µ2 where µi is the moment
map for the i-th factor with respect to ρ (note that µi(S

2) = [0, 1]) we take

V := H−1([2 − ε, 2 + ε]),

which fibers over S2. Then we cut the inverse image of a disc avoiding the unique
critical value of this projection (which is an S1-invariant set diffeomorphic to D2 ×
S1 × [−ε, ε]) and glue back a copy of

(T 2 − Int(D2)) × S1 × [−ε, ε]

(cf. Figure 1).
The piece Q2 is of the form S ×S1 Y where S is the total space of the circle

bundle

S1 →֒ S−→T 2

with Euler characteristic −1, so that Q2 fibers over T 2 with fiber Y .

H(M)

0

1

2

3

Figure 1. Obtaining Y from S2 × S2 in Example 3.

The manifold M is then obtained from X by gluing ν−1(0) to ν−1(7) by the
diffeomorphism of T 4 that interchanges θ1 with θ3 and θ2 with θ4.

Any reduced space Ma at a regular value a of the generalized moment map
is diffeomorphic to T 4, implying that π1(Ma) = Z4, and so, by Proposition 2.1
π1(Mc) = Z4, for every reduced space at a critical value c. We conclude from
Theorem 2.1 that

π1(M) = Z
4

⋊ Z.

The action of Z on Z4 is determined by the diffeomorphism of T 4 used to glue the
boundary components of X .

4.2. Hamiltonian actions on non-compact manifolds.

The first two examples below satisfy the hypotheses of Theorem 3.1. On Exam-
ple 4, the proper moment map has no minima nor maxima while, on Example 5,
such type of critical points do exist. The last two examples (6 and 7) illustrate that
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the properness of the moment map is essential to our results on the fundamental
group. In particular, in Example 6, there are no critical points and

π1(M) 6= π1(φ
−1(a))

for some values a of the moment map φ and, in Example 7, there is a critical point
(a minimum) and π1(Mred) is not always the same for all values of the moment
map.

Example 4. We can construct a non-compact symplectic manifold X with a Hamil-
tonian S1-action with no minima or maxima from Example 3 above in the following
way. Taking the manifold X from McDuff’s example we attach two pieces to its
boundary of the form T 4 × S1 × I where I = (−∞, 0] and [7,∞), extending its
symplectic form and moment map ν in the natural way. The resulting moment
map is proper and has no minimum nor maximum. Then, since the fundamental
group of its reduced spaces is Z4, so is π1(X).

Example 5. Consider M = S2 × R2 with symplectic form ω = ρ0 ⊕ ω0 (where
ρ0 and ω0 are the standard symplectic forms on S2 and on R2), and the following
S1-action: take the S1-action on S2 by rotations about the vertical z-axis and the
standard S1-action on R2 by rotations around the origin. The moment map on M
is just the sum of the height function z with the map

ν(u, v) =
u2 + v2

2
.

Physically, we have a classical spin and a harmonic oscillator ν.
This moment map φ = ν + z is proper, has a minimum at S ×{0} and a critical

point of index 2 at N × {0}, where S and N are respectively the south and north
poles of the sphere. This circle action extends to a Hamiltonian T2 = S1×S1 torus
action, where the action of the second circle on the sphere is by clockwise rotations
and on R2 is the standard one. The moment map for this extended T2-action is
(ν + z, ν − z) and its image is pictured in Figure 2. All regular reduced spaces of φ
are homeomorphic to S2 and so,

π1(M) = π1(Mred) = π1(Fmin) = {1}.

φ(M)

−1

0

1

Figure 2. Moment map image for the T
2-action on S2 × R

2.

Example 6. Let us now give an example which shows that the requirement for
properness of the moment map is essential to our results. Let us consider

M = S2 × C \ {0}
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with the same symplectic form and the same circle action as in Example 5 above.
The image of the moment map φ = ν + z is now the interval (−1,∞). This
map has no critical points on M and is no longer proper (note for instance
that the level sets φ−1(a) for values a ∈ (−1, 1) are not compact). We can easily
check that Theorem 3.1 is no longer valid. In fact, the fundamental group of the
manifold, π1(M) = Z, is no longer the fundamental group of the level sets of φ.
Indeed, considering, for instance, a value a ∈ (−1, 1), the level sets φ−1(a) are
diffeomorphic to S3 \ {pt}. Note also that the level sets of this moment map are
no longer all diffeomorphic (as they would be for a proper moment map with no
critical points) since, for a ∈ (1,∞), they are diffeomorphic to S2 × S1.

Example 7. We end this section with an example of a non-compact Hamiltonian
S1-space with a non-proper moment map with a critical point for which the
conclusion on the fundamental groups in Theorem 3.1 fails to hold. Let us consider

M =
(

S2 \ N
)

×
(

S2 \ N
)

with symplectic form 2ρ ⊕ ρ, where ρ is a symplectic form on S2 with total area
1 and N is the north pole, equipped with the standard diagonal circle action (cf.
Figure 3). This action is Hamiltonian and its moment map φ has a unique critical
value at 0 corresponding to the fixed point (S, S), where S is the south pole of the
sphere (see Example 3 for the moment map expression and compare Figures 1 and
3). We can see that the reduced spaces have different fundamental groups. Indeed,
for a ∈ (0, 1), the reduced spaces

Ma = φ−1(a)/S1

are spheres while, for a ∈ (2, 3), they are spheres minus two points. That is,
π1(Ma) = {1} for a ∈ (0, 1), and π1(Ma) = Z for a ∈ (2, 3).

φ(M)

0

1

2

3

(S, S)

Figure 3. Moment map image for an extended T 2-action on
(

S2 \ {N}
)

×
(

S2 \ {N}
)

.
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