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Probability Simplex and Models

▶ Let Ω = [n] = {1, . . . , n} be a discrete sample space. The
probability simplex ∆n−1 is the set of all possible probability
distributions on Ω:

∆n−1 =

{
(p1, . . . , pn) | pi ≥ 0,

n∑
i=1

pi = 1

}
.

▶ A parametric statistical model MΘ is a family of probability
distributions parametrized by θ ∈ Θ ⊆ Rd :

MΘ = {pθ ∈ ∆n−1 : θ ∈ Θ}.

▶ Therefore we have MΘ ⊆ ∆n−1.



Example: Independence model in 2 binary r.v.
Simple non-trivial example: Two independent coin tosses.

Figure 1: ∆3 (tetrahedron) with independence model surface

▶ A log-linear model is a special kind of subset inside the
probability simplex (To be studied!)
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Data and Maximum Likelihood Estimation

▶ We observe data D = X (1), . . .X (n) i.i.d from some unknown
distribution.

▶ We choose a parametric model MΘ = {pθ : θ ∈ Θ} that we
believe contains or approximates the true distribution.

▶ Objective: Find the best estimated distribution pθ̂ ∈ MΘ.

▶ The likelihood of θ given data D is:

L(θ | D) = pθ(D) =
n∏

i=1

pθ(X
(i))

▶ The maximum likelihood estimate (MLE) is:

θ̂ = argmax
θ∈Θ

L(θ | D).



MLE calculation

In order to calculate the MLE, we can either:

▶ Analytically solve the score equations

∇θ log L(θ | D) = 0

▶ Use an algorithm like Iterative Proportional Scaling (IPS) to
approximate a solution for log-linear models. (To be studied!)



IPS convergence

Figure 2: Green: true distribution. Red: MLE from IPS

▶ Goal: Understand geometry and convergence properties
of IPS.
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