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Código com distância mínima ≥ d

c̃ erros< d/2

As questões mais básicas:

• Qual o tamanho do maior código com 
comprimento , tamanho de alfabeto , e 
distância mínima  ?

n q
d

• Conseguimos desenvolver algoritmos de 
codificação e descodificação eficientes?

Códigos = Empacotamentos de esferas

Empacotar 
mais esferas ⟹ Mais mensagens que 

podemos transmitir
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Caso contrário d(c, c′￼) ≤ d((cn−(d−1)+1, …, cn), (c′￼n−(d−1)+1, …, c′￼n)) ≤ d − 1.
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• Alfabeto  com  primo.Σ = ℤp p ≥ n

• Interpretar mensagem  como polinómio de graum ∈ ℤk
p ≤ k − 1

m ↦ fm(x) =
k

∑
i=1

mixi−1 ↦ Enc(m) = ( fm(α1), …, fm(αn))

• Distância mínima d = n − (k − 1)
• Tamanho do código |C | = pk = pn−(d−1)

Conclusão: Códigos Reed-Solomon são optimais (para alfabetos de tamanho primo )!≥ n

Desigualdade de Singleton!
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Equivalente a “códigos Reed-Solomon atingem a desigualdade de Singleton”!
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Complexidade de comunicação da igualdade

u = v?

Se quisermos que a Alice acerte sempre, precisamos de comunicar  bits…k
E se aceitarmos uma pequena probabilidade de erro?

u ∈ {0,1}k v ∈ {0,1}k

σ(u)
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.Pr[Alice erra] < 0.01

comunicação: 
 bits≈ 2 log p ∝ log k
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OBRIGADO! :)


