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Cddigo com distancia minima > d Empacotar Mais mensagens que
mais esferas podemos transmitir
< d/2 erros ~
d—1 .C
2 - As questoes mais basicas:

* Qual o tamanho do maior codigo com
comprimento n, tamanho de alfabeto g, e

distancia minima d ?

 Conseguimos desenvolver algoritmos de
codificacao e descodificacao eficientes”?
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Desigualdade de Singleton

Qualquer cédigo C C 2" com g = | 2| e distancia minima d satisfaz

‘C‘ < qn—(d—l) .
Cl Cz C3 o o o Cn_(d_l)
H~
/ / / /
Ci | G| €3 v Ch—(d—-1)

Caso contrario d(c, c) < d((¢,,_y1)41s -+ C)s (Ch_(gyp1s - C)) S d = 1.
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Codigos a partir de polindmios
Quao longe esta a desigualdade de Singleton da verdade?

Irving Reed + Gustave Solomon (1960):

- Alfabeto 2. = Z, com p primo.

« Interpretar mensagem m & leg como polindmio de grau < k — 1

k
m—f (x) = Z mx'"! mod p
i=1

» Codificar m através de “avaliagées” de |,

Enc(m) — (fm(al)afm(GZ)’ . ’fm(an))

com ay, ..., o, € £, distintos.
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- Alfabeto 2 = Z, com p > n primo.

« Interpretar mensagem m & lej como polindmiode grau < k — 1

k
s £y = Y = s Enclm) = (£ (@), o fo)
=1

 Distancia minimad =n — (k— 1)
n—(d—1)

~~

Desigualdade de Singleton!

« Tamanho do codigo | Cl — Pk =P

Conclusao: Cddigos Reed-Solomon sao optimais (para alfabetos de tamanho primo > n)!
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fx) =5+ Z ,Bl-xi , com p; € Zp escolhidos “ao calhas”.
i=1

S: = (a;,f(a)) paraay, ..., a, distintos em Zp\{O}.

(Reconstrucao) Qualquer subconjunto de f partes determina s

Polindmio de grau < t — 1 é completamente determinado por ¢ pontos.
Equivalente a correccao de rasuras por codigo Reed-Solomon!

(Privacidade) Qualquer subconjunto de ¢ — 1 partes nao revela informacao sobre s

Fixamos yy, ..., y,_; arbitrarios. Para qualquer segredo s existe exatamente um
polinémio gdegrau < — 1 talque g(0) =0e g(a;) =y, parai = 1,...,1 — 1.

Equivalente a “codigos Reed-Solomon atingem a desigualdade de Singleton”!
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Computacao distribuida

u e {0,1}* y e {0,1}*

°s’ — > f(l/l,V)

Quantos bits de comunicacao sao necessarios para a Alice calcular f(u, v)?
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Complexidade de comunicacao da igualdade

o(u)

Se quisermos que a Alice acerte sempre, precisamos de comunicar k bits...

E se aceitarmos uma pequena probabilidade de erro?
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Menos comunicacao via polinomios

comunicacao: V& {O 1}
~ 21log p « log k bits

p > 100k primo (a,f,(@))

k - J()=f)!

1. (x) = Z ul-xi_l mod p
i=1 Pr[Alice erra] < 0.01.
o — Zp ao calhas

Seu #v...
P

[{a€ Z,: f,(a) = f(a)}\<k<ﬁ
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OBRIGADO! :)



