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Numerical Functional Analysis and Optimization - Fall Semester 2016

Midterm Exam — November 10th, 2016 — Solutions

1. Show that

(x,y) := 2191 + 221Y2 + 222y1 + Sx2Y2 , r=(x1,22), ¥y = (y1,%2),

defines an inner product on R?. (Hint: Express (x,) as #7 Ay with some A € R?*2)) [1.5]

Solution: We can write

1 2
T1y1 4 221y2 + 202yt + Sroys = T [ 9 & ] y=:2" Ay = (z, Ay),

where (-,-) is the usual inner product in R?. The eigenvalues, A\; = 3 — 2v/2 and Ay = 3 — 2v/2, of

matrix A are both positive. The matrix A is thus symmetric and positive definite. Therefore
(z,x) >0V eR2\ {0}, and (r,z)y =0 & x=0.

The other inner product properties for (-,-) follow from the properties of the standard Eucldean

inner product (-,-).

2. Let V be a Hilbert space equipped with the inner product (-,-). Let a € V,a # 0 be given and
consider the functional f : V' — R defined through f(u) = (u,a) (u,u). Show that f is Fréchet
differentiable at v € V' and determine the Fréchet derivative f’(u). Compute also f”(u). [2.0]

Solution: Note first that both inner products, (u,a) and (u, u), are twice continuously differentiable
as continuous bilinear forms from V x V to R and well defined since a,u € V. We have

Flu+h) — f(u) = (u+h,a)(u+h,uth) — (u,a)(u, u)
= (h, a)(u, u) + 2(u, a)(h,u) + (u, a)(h, h) + 2(h, a)(h,u) + (h,a)(h,h)
where we have used the symmetry of the inner product (-,-). Defining
T(w)h == (h,a)(u,u) + 2(u, a)(h, ),
we see that
|f(u+h) = f(u) = T(u)h] < 3|lal|||ull |[2][* +[lal[ [|2]]> = O([R]*) = o(l|Al]) ,

where |lu|| = v/(u,u) and where we have used the Cauchy-Schwarz inequality. The operator T'(u) :
V — R thus coincides with the (unique) Fréchet derivative of f at u, i.e.

f'(w)h = (h,a)(u,u) + 2(u,a)(h,u) .

Moreover

fllu+k)h— f'(u)h = (hya)(u+ k,u+ k) + 2(u+ k,a)(h,u + k) — (h,a)(u,u) — 2(u,a)(h, u)

= 2(h,a)(k,u) + 2(k,a)(h,u) + 2(u,a)(h, k) + 2(k,a)(h, k) + (h,a)(k, k),



where

2(k, a)(h, k) + (h,a)(k, k) = O(|[K|*) = o(||k]|) -
It thus follows that the symmetric bilinear operator f”(u) : V x V — R defined by

f"(u)hk = 2(h,a)(k,u) + 2(k,a)(h,u) + 2(u,a)(h, k) .

is the second-order Fréchet derivative of f at w.

3. Consider the initial value problem

u'(t) = —u/(t) sinu(t) + ¢, 0<t<1,
(1)
u(0) = a, u'(0) =3,
where «a, 8 € R.
a) Show that the initial value problem (1) can be written in the form v = T'(u), where
t t3
T(u)(t):/ cosu(s)ds—k(ﬁ—cosa)t—i—a—kg, 0<t<1. [1.5]
0

Solution: Integrating the differential equation from 0 to t, we get

t 2 2
t t
u'(t) = u/(0) — / u/'(s) sinu(s)ds + 3= B + cosu(t) — cosa + 3
0
Integrating again from 0 to ¢, we have
t t3 t t3
u(t) = u(0) + ﬁt+/ cosu(s)ds —t cosa + i / cosu(s)ds+ (B —cosa)t + o + 5
0 0

which shows that u = T'(u).

b) Let V = C]0,1] and choose @ = = 0. Show that the operator T': V' — V admits a unique
fixed point u € V. [1.5]

Solution: With @ = 8 = 0 we have the integral equation

t t3
u(t) = / cosu(s)ds+ — —t.
0 6
Defining
t t3
T(u)(t):/cosu(s)ds+6—t, 0<t<1,
0
we obtain

|T(u)(t) — T(v)(t)] = /0 (cosu(s) — cosuv(s))ds| < /0 | cosu(s) — coswv(s)|ds

t t
gmaxysmg\/ \u(s)—v(s)yds:/ lu(s) — v(s)| ds < ¢ |[u—vlly, Vtelo,1],
£eR 0 0

@0 - T*0] < [ 11006 - T ds < [ sdsllu—lly =5 lu=ellv. vee0.1]



where |ully = max;c(o1) [u(t)]. Hence,
2 2 1 2 2 1
(W) (®) ~T°)Ol < S llu—vllv  ¥e€[0,1] = [IT%w) T O)llv < 5 llu—1llv,

that is, 72 is a contraction in V and thus admits a unique fixed point v € V. Moreover, if S = T2,
it holds
uw= lim S*(u) = lim S*(T(u)) = lim T(S*(u)) = lim T'(u) = T'(u)
k—o0 k—o00 k—o00 k—o0

so u € V is also the unique fixed point of T

c) Approximate the solution of the nonlinear Volterra integral equation u = T'(u) by Newton’s
method. Consider o = 8 = 0, up(¢) = 0 and compute the first iterate u (¢). [1.5]

Solution: Newton’s method, applied to the nonlinear equation F(u) = u — T'(u), reads as
F'(up)Auy, = —F(uy) &
3

t t
t
Auy(t) — / Sin uy, (8) Aup(s) ds = —up(t) —I—/ cos up(s) ds + 5 t, n=0,1,...,
0 0

where Auy(t) = tupt1(t) — un(t). Choosing ug(t) = 0, we obtain

t t3 t3 t3
0

4. Consider a Broyden’s type update for the inverse of the matrix Ay:

(s — Ay yr) st AT

A—l
sEA .

k+1

=A 1t + k=0,1,...,

Can we say that

1At = Aptll < 1B7" = AL,
for all nonsingular B € Q(yk, sx) = {B € RV*N |Bs, =y, }? Justify your answer. You may assume
that st A; 'y # 0. [2.0]
Solution: Given that s, = B~ 'y, we obtain

-1 -1 -
Al gl = (sk — Ay yk)‘S%Ak _ (B_l _ AA) yksgAk .
k+1 k SZA,Zlyk k s{Aglyk

However, the matrix A,;l_l does not necessarily solve the minimization problem since, although

T 41
- - - _ YrSi, A
A 1 A 1 < ||B 1 A 1 H k'k ,
| k+1 k 2 < | k 2 75%14,;1%
where || - || can be either the Frobenius or the matrix 2-norm, we have
T T
zy Ty ]2 [yll2
= = >1 Va,y € R\ {0},
Tyl p Ty, zTy

and the equality holds if and only if z || y.



The so called "bad" Broyden’s method which uses an approximation of the inverse of the Jacobian

matrix is formulated as .
(st — AL "Uk) Uk
YL Yk

-1 -1
Apy =4, +
In this case, we do have
-1 - -1 -1
1A — Al < 1B7H = At e,

for all nonsingular B € Q(yx, sk) = {B € RVXN |Bs;, = yk} but, as can be shown using Sherman-
Morrison formula, this corresponds to a different update formula for Ay, namely

(yx — Axsi) Yt Ak

Ap1 = A +
N YL Agsi,




