Master in Mathematics and Applications - Técnico, Lisbon
 Numerical Functional Analysis and Optimization - Fall Semester 2016

Midterm Exam - November 10th, 2016 - Solutions

1. Show that

$$
\begin{equation*}
\langle x, y\rangle:=x_{1} y_{1}+2 x_{1} y_{2}+2 x_{2} y_{1}+5 x_{2} y_{2}, \quad x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \tag{1.5}
\end{equation*}
$$

defines an inner product on \mathbb{R}^{2}. (Hint: Express $\langle x, y\rangle$ as $x^{T} A y$ with some $A \in \mathbb{R}^{2 \times 2}$.)
Solution: We can write

$$
x_{1} y_{1}+2 x_{1} y_{2}+2 x_{2} y_{1}+5 x_{2} y_{2}=x^{T}\left[\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right] y=: x^{T} A y=(x, A y)
$$

where (\cdot, \cdot) is the usual inner product in \mathbb{R}^{2}. The eigenvalues, $\lambda_{1}=3-2 \sqrt{2}$ and $\lambda_{2}=3-2 \sqrt{2}$, of matrix A are both positive. The matrix A is thus symmetric and positive definite. Therefore

$$
\langle x, x\rangle>0 \forall x \in \mathbb{R}^{2} \backslash\{0\}, \quad \text { and } \quad\langle x, x\rangle=0 \quad \Leftrightarrow \quad x=0
$$

The other inner product properties for $\langle\cdot, \cdot\rangle$ follow from the properties of the standard Eucldean inner product (\cdot, \cdot).
2. Let V be a Hilbert space equipped with the inner product (\cdot, \cdot). Let $a \in V, a \neq 0$ be given and consider the functional $f: V \rightarrow \mathbb{R}$ defined through $f(u)=(u, a)(u, u)$. Show that f is Fréchet differentiable at $u \in V$ and determine the Fréchet derivative $f^{\prime}(u)$. Compute also $f^{\prime \prime}(u)$.
Solution: Note first that both inner products, (u, a) and (u, u), are twice continuously differentiable as continuous bilinear forms from $V \times V$ to \mathbb{R} and well defined since $a, u \in V$. We have

$$
\begin{aligned}
f(u & +h)-f(u)=(u+h, a)(u+h, u+h)-(u, a)(u, u) \\
& =(h, a)(u, u)+2(u, a)(h, u)+(u, a)(h, h)+2(h, a)(h, u)+(h, a)(h, h)
\end{aligned}
$$

where we have used the symmetry of the inner product (\cdot, \cdot). Defining

$$
T(u) h:=(h, a)(u, u)+2(u, a)(h, u)
$$

we see that

$$
|f(u+h)-f(u)-T(u) h| \leq 3\|a\|\|u\|\|h\|^{2}+\|a\|\|h\|^{3}=\mathcal{O}\left(\|h\| \|^{2}\right)=o(\|h\|)
$$

where $\|u\|=\sqrt{(u, u)}$ and where we have used the Cauchy-Schwarz inequality. The operator $T(u)$: $V \rightarrow \mathbf{R}$ thus coincides with the (unique) Fréchet derivative of f at u, i.e.

$$
f^{\prime}(u) h=(h, a)(u, u)+2(u, a)(h, u) .
$$

Moreover

$$
\begin{aligned}
f^{\prime}(u & +k) h-f^{\prime}(u) h=(h, a)(u+k, u+k)+2(u+k, a)(h, u+k)-(h, a)(u, u)-2(u, a)(h, u) \\
& =2(h, a)(k, u)+2(k, a)(h, u)+2(u, a)(h, k)+2(k, a)(h, k)+(h, a)(k, k)
\end{aligned}
$$

where

$$
2(k, a)(h, k)+(h, a)(k, k)=\mathcal{O}\left(\|k\|^{2}\right)=o(\|k\|) .
$$

It thus follows that the symmetric bilinear operator $f^{\prime \prime}(u): V \times V \rightarrow \mathbb{R}$ defined by

$$
f^{\prime \prime}(u) h k=2(h, a)(k, u)+2(k, a)(h, u)+2(u, a)(h, k) .
$$

is the second-order Fréchet derivative of f at u.
3. Consider the initial value problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)=-u^{\prime}(t) \sin u(t)+t, \quad 0<t<1 \tag{1}\\
u(0)=\alpha, \quad u^{\prime}(0)=\beta
\end{array}\right.
$$

where $\alpha, \beta \in \mathbb{R}$.
a) Show that the initial value problem (1) can be written in the form $u=T(u)$, where

$$
\begin{equation*}
T(u)(t)=\int_{0}^{t} \cos u(s) d s+(\beta-\cos \alpha) t+\alpha+\frac{t^{3}}{6}, \quad 0 \leq t<1 \tag{1.5}
\end{equation*}
$$

Solution: Integrating the differential equation from 0 to t, we get

$$
u^{\prime}(t)=u^{\prime}(0)-\int_{0}^{t} u^{\prime}(s) \sin u(s) d s+\frac{t^{2}}{2}=\beta+\cos u(t)-\cos \alpha+\frac{t^{2}}{2}
$$

Integrating again from 0 to t, we have

$$
u(t)=u(0)+\beta t+\int_{0}^{t} \cos u(s) d s-t \cos \alpha+\frac{t^{3}}{6}=\int_{0}^{t} \cos u(s) d s+(\beta-\cos \alpha) t+\alpha+\frac{t^{3}}{6}
$$

which shows that $u=T(u)$.
b) Let $V=C[0,1]$ and choose $\alpha=\beta=0$. Show that the operator $T: V \rightarrow V$ admits a unique fixed point $u \in V$.

Solution: With $\alpha=\beta=0$ we have the integral equation

$$
u(t)=\int_{0}^{t} \cos u(s) d s+\frac{t^{3}}{6}-t
$$

Defining

$$
T(u)(t)=\int_{0}^{t} \cos u(s) d s+\frac{t^{3}}{6}-t, \quad 0 \leq t \leq 1
$$

we obtain

$$
\begin{aligned}
& |T(u)(t)-T(v)(t)|=\left|\int_{0}^{t}(\cos u(s)-\cos v(s)) d s\right| \leq \int_{0}^{t}|\cos u(s)-\cos v(s)| d s \\
& \quad \leq \max _{\xi \in \mathbb{R}}|\sin \xi| \int_{0}^{t}|u(s)-v(s)| d s=\int_{0}^{t}|u(s)-v(s)| d s \leq t\|u-v\|_{V}, \quad \forall t \in[0,1] \\
& \left|T^{2}(u)(t)-T^{2}(v)(t)\right| \leq \int_{0}^{t}|T(u)(s)-T(v)(s)| d s \leq \int_{0}^{t} s d s\|u-v\|_{V}=\frac{t^{2}}{2}\|u-v\|_{V}, \quad \forall t \in[0,1]
\end{aligned}
$$

where $\|u\|_{V}=\max _{t \in[0,1]}|u(t)|$. Hence,

$$
\left|T^{2}(u)(t)-T^{2}(v)(t)\right| \leq \frac{1}{2}\|u-v\|_{V} \quad \forall t \in[0,1] \quad \Rightarrow \quad\left\|T^{2}(u)-T^{2}(v)\right\|_{V} \leq \frac{1}{2}\|u-v\|_{V}
$$

that is, T^{2} is a contraction in V and thus admits a unique fixed point $u \in V$. Moreover, if $S=T^{2}$, it holds

$$
u=\lim _{k \rightarrow \infty} S^{k}(u)=\lim _{k \rightarrow \infty} S^{k}(T(u))=\lim _{k \rightarrow \infty} T\left(S^{k}(u)\right)=\lim _{k \rightarrow \infty} T(u)=T(u)
$$

so $u \in V$ is also the unique fixed point of T.
c) Approximate the solution of the nonlinear Volterra integral equation $u=T(u)$ by Newton's method. Consider $\alpha=\beta=0, u_{0}(t)=0$ and compute the first iterate $u_{1}(t)$.
[1.5]
Solution: Newton's method, applied to the nonlinear equation $F(u)=u-T(u)$, reads as

$$
\begin{aligned}
& F^{\prime}\left(u_{n}\right) \Delta u_{n}=-F\left(u_{n}\right) \quad \Leftrightarrow \\
& \Delta u_{n}(t)-\int_{0}^{t} \sin u_{n}(s) \Delta u_{n}(s) d s=-u_{n}(t)+\int_{0}^{t} \cos u_{n}(s) d s+\frac{t^{3}}{6}-t, \quad n=0,1, \ldots,
\end{aligned}
$$

where $\Delta u_{n}(t)=u_{n+1}(t)-u_{n}(t)$. Choosing $u_{0}(t)=0$, we obtain

$$
\Delta u_{0}(t)=\int_{0}^{t} d s+\frac{t^{3}}{6}-t=\frac{t^{3}}{6} \quad \Rightarrow \quad u_{1}(t)=\frac{t^{3}}{6} .
$$

4. Consider a Broyden's type update for the inverse of the matrix A_{k} :

$$
A_{k+1}^{-1}=A_{k}^{-1}+\frac{\left(s_{k}-A_{k}^{-1} y_{k}\right) s_{k}^{T} A_{k}^{-1}}{s_{k}^{T} A_{k}^{-1} y_{k}}, \quad k=0,1, \ldots
$$

Can we say that

$$
\left\|A_{k+1}^{-1}-A_{k}^{-1}\right\|_{2} \leq\left\|B^{-1}-A_{k}^{-1}\right\|_{2},
$$

for all nonsingular $B \in Q\left(y_{k}, s_{k}\right)=\left\{B \in \mathbb{R}^{N \times N} \mid B s_{k}=y_{k}\right\}$? Justify your answer. You may assume that $s_{k}^{T} A_{k}^{-1} y_{k} \neq 0$.
[2.0]
Solution: Given that $s_{k}=B^{-1} y_{k}$, we obtain

$$
A_{k+1}^{-1}-A_{k}^{-1}=\frac{\left(s_{k}-A_{k}^{-1} y_{k}\right) s_{k}^{T} A_{k}^{-1}}{s_{k}^{T} A_{k}^{-1} y_{k}}=\left(B^{-1}-A_{k}^{-1}\right) \frac{y_{k} s_{k}^{T} A_{k}^{-1}}{s_{k}^{T} A_{k}^{-1} y_{k}} .
$$

However, the matrix A_{k+1}^{-1} does not necessarily solve the minimization problem since, although

$$
\left\|A_{k+1}^{-1}-A_{k}^{-1}\right\|_{2} \leq\left\|B^{-1}-A_{k}^{-1}\right\|_{2}\left\|\frac{y_{k} s_{k}^{T} A_{k}^{-1}}{s_{k}^{T} A_{k}^{-1} y_{k}}\right\|,
$$

where $\|\mid \cdot\|$ can be either the Frobenius or the matrix 2-norm, we have

$$
\left\|\frac{x y^{T}}{x^{T} y}\right\|_{F}=\left\|\frac{x y^{T}}{x^{T} y}\right\|_{2}=\frac{\|x\|_{2}\|y\|_{2}}{x^{T} y} \geq 1 \quad \forall x, y \in \mathbb{R} \backslash\{0\},
$$

and the equality holds if and only if $x \| y$.

The so called "bad" Broyden's method which uses an approximation of the inverse of the Jacobian matrix is formulated as

$$
A_{k+1}^{-1}=A_{k}^{-1}+\frac{\left(s_{k}-A_{k}^{-1} y_{k}\right) y_{k}}{y_{k}^{T} y_{k}}
$$

In this case, we do have

$$
\left\|A_{k+1}^{-1}-A_{k}^{-1}\right\|_{2} \leq\left\|B^{-1}-A_{k}^{-1}\right\|_{2}
$$

for all nonsingular $B \in Q\left(y_{k}, s_{k}\right)=\left\{B \in \mathbb{R}^{N \times N} \mid B s_{k}=y_{k}\right\}$ but, as can be shown using ShermanMorrison formula, this corresponds to a different update formula for A_{k}, namely

$$
A_{k+1}=A_{k}+\frac{\left(y_{k}-A_{k} s_{k}\right) y_{k}^{T} A_{k}}{y_{k}^{T} A_{k} s_{k}} .
$$

