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Midterm Exam – November 10th, 2016 – Solutions

1. Show that

〈x, y〉 := x1y1 + 2x1y2 + 2x2y1 + 5x2y2 , x = (x1, x2), y = (y1, y2) ,

defines an inner product on R2. (Hint: Express 〈x, y〉 as xTAy with some A ∈ R2×2.) [1.5]

Solution: We can write

x1y1 + 2x1y2 + 2x2y1 + 5x2y2 = xT
[

1 2
2 5

]
y =: xTAy = (x,Ay) ,

where (·, ·) is the usual inner product in R2. The eigenvalues, λ1 = 3− 2
√

2 and λ2 = 3− 2
√

2, of
matrix A are both positive. The matrix A is thus symmetric and positive definite. Therefore

〈x, x〉 > 0 ∀x ∈ R2 \ {0} , and 〈x, x〉 = 0 ⇔ x = 0 .

The other inner product properties for 〈·, ·〉 follow from the properties of the standard Eucldean
inner product (·, ·).

2. Let V be a Hilbert space equipped with the inner product (·, ·). Let a ∈ V, a 6= 0 be given and
consider the functional f : V → R defined through f(u) = (u, a) (u, u). Show that f is Fréchet
differentiable at u ∈ V and determine the Fréchet derivative f ′(u). Compute also f ′′(u). [2.0]

Solution: Note first that both inner products, (u, a) and (u, u), are twice continuously differentiable
as continuous bilinear forms from V × V to R and well defined since a, u ∈ V . We have

f(u+ h)− f(u) = (u+ h, a)(u+ h, u+ h)− (u, a)(u, u)

= (h, a)(u, u) + 2(u, a)(h, u) + (u, a)(h, h) + 2(h, a)(h, u) + (h, a)(h, h) ,

where we have used the symmetry of the inner product (·, ·). Defining

T (u)h := (h, a)(u, u) + 2(u, a)(h, u) ,

we see that

|f(u+ h)− f(u)− T (u)h| ≤ 3||a|| ||u|| ||h||2 + ||a|| ||h||3 = O(||h‖|2) = o(‖h‖) ,

where ‖u‖ =
√

(u, u) and where we have used the Cauchy-Schwarz inequality. The operator T (u) :
V → R thus coincides with the (unique) Fréchet derivative of f at u, i.e.

f ′(u)h = (h, a)(u, u) + 2(u, a)(h, u) .

Moreover

f ′(u+ k)h− f ′(u)h = (h, a)(u+ k, u+ k) + 2(u+ k, a)(h, u+ k)− (h, a)(u, u)− 2(u, a)(h, u)

= 2(h, a)(k, u) + 2(k, a)(h, u) + 2(u, a)(h, k) + 2(k, a)(h, k) + (h, a)(k, k) ,



where
2(k, a)(h, k) + (h, a)(k, k) = O(||k||2) = o(‖k‖) .

It thus follows that the symmetric bilinear operator f ′′(u) : V × V → R defined by

f ′′(u)hk = 2(h, a)(k, u) + 2(k, a)(h, u) + 2(u, a)(h, k) .

is the second-order Fréchet derivative of f at u.

3. Consider the initial value problem
u′′(t) = −u′(t) sinu(t) + t , 0 < t < 1 ,

u(0) = α , u′(0) = β ,
(1)

where α, β ∈ R.

a) Show that the initial value problem (1) can be written in the form u = T (u), where

T (u)(t) =

∫ t

0
cosu(s) ds+ (β − cosα) t+ α+

t3

6
, 0 ≤ t < 1 . [1.5]

Solution: Integrating the differential equation from 0 to t, we get

u′(t) = u′(0)−
∫ t

0
u′(s) sinu(s) ds+

t2

2
= β + cosu(t)− cosα+

t2

2
.

Integrating again from 0 to t, we have

u(t) = u(0) + β t+

∫ t

0
cosu(s) ds− t cosα+

t3

6
=

∫ t

0
cosu(s) ds+ (β − cosα)t+ α+

t3

6
,

which shows that u = T (u).

b) Let V = C[0, 1] and choose α = β = 0. Show that the operator T : V → V admits a unique
fixed point u ∈ V . [1.5]

Solution: With α = β = 0 we have the integral equation

u(t) =

∫ t

0
cosu(s) ds+

t3

6
− t .

Defining

T (u)(t) =

∫ t

0
cosu(s) ds+

t3

6
− t , 0 ≤ t ≤ 1 ,

we obtain

|T (u)(t)− T (v)(t)| =
∣∣∣∣∫ t

0
(cosu(s)− cos v(s)) ds

∣∣∣∣ ≤ ∫ t

0
| cosu(s)− cos v(s)| ds

≤ max
ξ∈R
| sin ξ |

∫ t

0
|u(s)− v(s)| ds =

∫ t

0
|u(s)− v(s)| ds ≤ t ||u− v||V , ∀t ∈ [0, 1] ,

|T 2(u)(t)− T 2(v)(t)| ≤
∫ t

0
|T (u)(s)− T (v)(s)| ds ≤

∫ t

0
s ds ||u− v||V =

t2

2
||u− v||V , ∀t ∈ [0, 1] ,



where ‖u‖V = maxt∈[0,1] |u(t)|. Hence,

|T 2(u)(t)− T 2(v)(t)| ≤ 1

2
||u− v||V ∀t ∈ [0, 1] ⇒ ||T 2(u)− T 2(v)||V ≤

1

2
||u− v||V ,

that is, T 2 is a contraction in V and thus admits a unique fixed point u ∈ V . Moreover, if S = T 2,
it holds

u = lim
k→∞

Sk(u) = lim
k→∞

Sk(T (u)) = lim
k→∞

T (Sk(u)) = lim
k→∞

T (u) = T (u)

so u ∈ V is also the unique fixed point of T .

c) Approximate the solution of the nonlinear Volterra integral equation u = T (u) by Newton’s
method. Consider α = β = 0, u0(t) = 0 and compute the first iterate u1(t). [1.5]

Solution: Newton’s method, applied to the nonlinear equation F (u) = u− T (u), reads as

F ′(un)∆un = −F (un) ⇔

∆un(t)−
∫ t

0
sinun(s) ∆un(s) ds = −un(t) +

∫ t

0
cosun(s) ds+

t3

6
− t , n = 0, 1, . . . ,

where ∆un(t) = un+1(t)− un(t). Choosing u0(t) = 0, we obtain

∆u0(t) =

∫ t

0
ds+

t3

6
− t =

t3

6
⇒ u1(t) =

t3

6
.

4. Consider a Broyden’s type update for the inverse of the matrix Ak:

A−1k+1 = A−1k +
(sk −A−1k yk) s

T
kA
−1
k

sTkA
−1
k yk

, k = 0, 1, . . . ,

Can we say that
‖A−1k+1 −A

−1
k ‖2 ≤ ‖B

−1 −A−1k ‖2 ,

for all nonsingular B ∈ Q(yk, sk) =
{
B ∈ RN×N |Bsk = yk

}
? Justify your answer. You may assume

that sTkA
−1
k yk 6= 0. [2.0]

Solution: Given that sk = B−1yk, we obtain

A−1k+1 −A
−1
k =

(sk −A−1k yk) s
T
kA
−1
k

sTkA
−1
k yk

=
(
B−1 −A−1k

) yksTkA−1k
sTkA

−1
k yk

.

However, the matrix A−1k+1 does not necessarily solve the minimization problem since, although

‖A−1k+1 −A
−1
k ‖2 ≤ ‖B

−1 −A−1k ‖2
∣∣∣∣∣∣∣∣∣yksTkA−1k
sTkA

−1
k yk

∣∣∣∣∣∣∣∣∣ ,
where ||| · ||| can be either the Frobenius or the matrix 2-norm, we have∥∥∥∥xyTxT y

∥∥∥∥
F

=

∥∥∥∥xyTxT y

∥∥∥∥
2

=
‖x||2 ‖y‖2
xT y

≥ 1 ∀x, y ∈ R \ {0} ,

and the equality holds if and only if x ‖ y.



The so called "bad" Broyden’s method which uses an approximation of the inverse of the Jacobian
matrix is formulated as

A−1k+1 = A−1k +
(sk −A−1k yk) yk

yTk yk
.

In this case, we do have
‖A−1k+1 −A

−1
k ‖2 ≤ ‖B

−1 −A−1k ‖2 ,

for all nonsingular B ∈ Q(yk, sk) =
{
B ∈ RN×N |Bsk = yk

}
but, as can be shown using Sherman-

Morrison formula, this corresponds to a different update formula for Ak, namely

Ak+1 = Ak +
(yk −Aksk) yTk Ak

yTk Aksk
.


