$\mathbf{LMAC}/\mathbf{MMA}/\mathbf{MEIC}$

Análise Numérica

3^a Aula Prática – 7 de Outubro de 2016

- 1. Seja p_2 o polinómio interpolador de f nos pontos distintos $x_0, x_1 \in x_2$.
- a) Pela fórmula de erro de interpolação, tem-se

$$f'(x) - p_2'(x) = f[x_0, x_1, x_2, x, x] W_3(x) + f[x_0, x_1, x_2, x] W_3'(x)$$
, onde $W_3(x) = (x - x_0) (x - x_1) (x - x_2)$.

Como é que deve escolher os pontos x_0, x_1 e x_2 por forma a garantir que $W'_3(x) = 0$? Apresente a fórmula de diferenciação numérica que corresponde a essa escolha.

b) Obtenha a fórmula de diferenças centradas para a segunda derivada de f usando o polinómio p_2 . Mostre que

$$f''(x) - p_2''(x) = -\frac{f^{(4)}(\xi)}{12} h^2, \qquad \xi \in [x_0, x_2].$$

2. Se a função f for suficientemente regular numa vizinhança do ponto z, podemos escrever

$$f''(z) = \frac{f(z+h) - 2f(z) + f(z-h)}{h^2} + e_2h^2 + e_4h^4 + \dots,$$

onde os e_j 's não dependem de h. Utilize esta expressão e o método de extrapolação de Richardson para deduzir uma aproximação de ordem $\mathcal{O}(h^4)$ para f''(z).

3. Um subconjunto K de um espaço vectorial V diz-se convexo se

$$\forall u, v \in K \implies \lambda u + (1 - \lambda) v \in K \quad \forall \lambda \in [0, 1].$$

Seja $(V, \|\cdot\|)$ um espaço normado, $U \subset V$ e K o conjunto de todas as melhores aproximações de $f \in V$ em U, em relação à norma $\|\cdot\|$. Mostre que K é um conjunto convexo.

- **4.** Seja V um espaço vectorial, munido de um produto interno (\cdot, \cdot) e seja $\|\cdot\| = \sqrt{(\cdot, \cdot)}$ a norma induzida pelo produto interno.
- a) Prove a desigualdade de Cauchy-Schwarz

$$|(u,v)| \le ||u|| \, ||v|| \qquad \forall \, u,v \in V \,,$$

onde a igualdade se verifica se e só se u e v forem linearmente dependentes.

b) Mostre que

$$\|u+v\| \leq \|u\| + \|v\| \qquad \forall \, u,v \in V \,.$$

5. Resolva o seguinte problema de minimização

$$\min_{\alpha \in \mathbb{R}} \max_{x \in [0,1]} |f(x) - \alpha x|,$$

com
$$f(x) = 1$$
 e $f(x) = x^2 - 1$.

6. Determine a melhor aproximação uniforme de $f(x) = e^x$ em $\mathcal{P}_1[0,1] \subset C([0,1])$ em que $\mathcal{P}_1[0,1]$ é o espaço de todos os polinómios de grau ≤ 1 em [0,1].