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Numerical Functional Analysis and Optimization - Fall Semester 2016

Exam (Part I) — January 19th, 2017 — Solutions

1. Let V = C([0,1]) and consider the integral operator T': V' — V defined by

1
Tu(t) ::/0 cos(Au(s))ds+ f(t), (1)

where A € R\ {0} and f € V.
a) Show that T is Fréchet differentiable and caracterize its Fréchet derivative T"(u). [1.0]
Solution: Let h € V', with ||h||y < 1. Given that

1 .
cos(A (u+ h)) = cos(Au) — A sin(Au) h — 5)\2 cos(Au) b2+ O(||h|}),
we see that
T(u+h) = Tu—T'(u)h = O(|hll})
where .
T (u)h = =\ / sin(Au(s)) h(s)ds. (2)
0
The operator T is thus Fréchet differentiable and its Fréchet derivative is caracterized by (2).

b) Consider the integral equation

1
u(t) — /0 cos(Au(s))ds = f(t), 0<t<1. (3)

Show that there exists Ag > 0 such that for |A\| < Ao, equation (3) admits one and only one solution
ueV. [1.5]

Solution: Given that,

1 1
Iyl = s |3 [ sinu)h(s)ds | < AT [ Jsin( o) ds [l < 0 el

we have

/
ITWleqy = sup IEEI R
revvioy  lIPllv

Thus, if A € R\ {0} is such that |\ < Ao < 1, then ||T"(u)h|ly < 1 for all u € V, that is, the
operator T' is a contraction in V.

< |A| YueV.

Moreover, T : V — V and V = (0, 1] is a closed and non-empty set, thus by Banach’s Fixed Point
Theorem, the operator T" admits a unique fixed point u € V' provided |A| < A\g < 1. In other words,
there exists Ao € (0,1) such that if |A\| < Ag then the operator equation u = T'(u) admits a unique
solution u € V.

c) Let f(t) = t. Approximate the solution of the integral equation (3) by the fixed point method.
Consider A = 0.5, up(t) = 0 and compute the first three iterates. Derive an upper bound for the
error

— = t) —uz(t)|. 1.5
Ju—ually = max u(t) ~ us(0)| 15



Solution: The fixed point method reads as

1
Un+1(t) :/0 cos(0.5u(s))ds+t, n=0,1,..., uo(t) =0.

It follows that

uy(t) = fol ds+t=1+t, ug(t) = fol cos(0.5(1+s)ds+t=2(sinl —sin0.5) + ¢t = 0.724091 + ¢,

us(t) = [} cos(0.5(0.724091 + 5) ds + t = 2 (sin LE0.724001 _ iy %) +t = 0.809975 + £

Recalling the error estimate

(0]
lu — uslly < 1 lusz — uallv,

-«
where « € (0,1) is the Lipschitz constant of T'. It holds

a<|A =05, |us—uslly =0085884 = |ju—uslly <0.085884.

2. Let u,v € RV \ {0} be two column vectors. Show that the matrix I + uv’ is invertible if and
only if 14+ vTu # 0. [1.5]

Solution: The eigenvalues of matrix I + uv” are 1 and 1+ v”u. In fact,
(I4+uwwh)u=>0+vTu)u, (I+wwj=w;, j=1,2,...N—1,

where wj,j = 1,2,...N — 1 are such that (v,w;) = 0. Note that there exist N — 1 linearly
independent vectors orthogonal to a given vector v € RV \ {0}. Since all eigenvalues of I + uv’ are
non-zero, the matrix I 4+ uv? is non-singular.

3. Consider the vector field F : R? — R? defined by

o S 3
Fla) = [ :z1—|-2x2—9] ‘
a) Show that the Newton’s method converges to the exact solution z, = [-3 6]7 of equation
F(x) =0 in one iteration for any initial approximation. [1.0]

Solution: Let F(x) = Ax — b, where

A=

a)eem ]

It is easy to see that Az, — b = 0 and that A is a non-singular matrix so x. = A~'b = [-3 6] is
the unique solution of equation F(z) = 0. Newton’s method reads as

L) — () _ ng(xn))p(x(n)), n=0,1,....
Given that Jp(z) = A, it follows that
0 = 0 _ 4-1 (A 2O — b)=A"1p,

independently of the initial guess z(*) € R2.



b) Approximate the solution of equation F'(x) = 0 by Broyden’s method. Consider

10
wo=[-15", By= ,
0 1
and compute the first three iterates. Explain the result. [1.5]
Solution: In Broyden’s method, we need to, given By and xg, solve the linear system Bys = —F'(xy)
and compute
Yk — Bisi)si
Tpp1 =Tk + 8k, Y= F(ps1) — Fzr),  Bry1 =By + (sTsk)k :
k
for k=0,1,.... Given that As; = y, we may write the Broyden’s update formula as
T 11
Byi1 = By + (A — Bk> S?Sk , where A= )
S Sk 1 2
It follows that
[ 1 —1 ] 1 0] [ —2 ]
F(xO) — ) S0 = ) Bl — 5 Tl =
| 0 0 | |1 1] 5
[0 0| (1 1] [ 2]
F(I’l) — 3 S1 = ) B2 — 5 T =
| —1 1] |1 2 ] | 6]
1 -1 -3
F(xg) = , sy = , r3 = = T
1 0 6

The third iterate coincides with the exact solution. In fact, Broyden’s method converges to the
exact solution of a linear system of IV equations at most in 2N iterations.

4. Let K be a non-empty, closed, convex subset of a Hilbert space H, equipped with the inner
product (-,-), and assume that f € H. Show that ¢* € K is the best approximation of f in K, with
respect to the induced norm, if and only if

(f—¢",6—¢") <0 VoeK. 2.0]

Solution: Let ¢* be a best approximation of f € H in K and ¢ an arbitrary element in K. Since
K is convex, we have

P+ A(Pp—9")e K VYAe]0,1].
This means that the real-valued and differentiable function ¢ : [0,1] — R defined by
) = |If = (6" + A (6~ ¢"))II?

has a minimum at A = 0. Therefore ¢'(0) > 0. Observing that

e\ = =" 1P =27 (f — 9", 0 — ¢") + N6 — 67|12,



we obtain

¢'0)=-2(f-¢"d—¢") 20 < (f—9¢"¢—9")<0.
On the other hand, if (f — ¢*,¢ — ¢*) < 0, then
If=ollP=1f —¢*+¢* =P =If =" +2(f — 6%, 6" — ¢) + 9" — oI
>\ f = P+ llo* —oI* 2 |If =P VoeK,

that is ¢* € K is, by definition, a best approximation of f € H in K with respect to the induced
norm | - || = /().



Exam (Part II) — January 19th, 2017 — Solutions

1. Consider the unconstrained minimization problem

min f(z),

where f : S — R is a convex function, S C RY a convex set and x, € S a local minimizer of f.
Show that x, is a global solution of the problem. [2.0]

Solution: Assume, for the sake of contradiction, that z, is not a global minimizer, that is, there
exists y € S, say, for which f(y) < f(z.). Given that S is a convex set, the convex combination
2(A) = Axy + (1 — ANy of y and x, is an element in S for all A € [0,1]. On the other, from the
convexity of f it follows that

FzN) = fFAz+(1=Ny) S Af(2) +(1=A)f(y) < Af(22)+ A=A f(ze) = f(za), VA€ (0,1).

But this contradicts the fact that x, is a local minimizer since z(A) — x, when A — 1.

2. Consider the unconstrained minimization problem

min f(z), (4)

zeRN

where f(z) = 3 27 Az, with A € R¥*Y symmetric and positive definite..

a) Show that the numerical approximation of problem (5) by the method of steepest descent corre-
sponds to: Given zg € RV compute

w%Azxk
xl A3z,

Tpt1 = Tk — Az, k=0,1,... [1.5]

Solution: For the objective function f(z) = 127 Az, it holds V f(z) = Az and Hy(z) = A, since A
is a symmetric matrix. The method of steepest descent thus reduces to

Th+1 = T — O Vf(.’lj‘k) =Tk — OdkA.%'k s (5)
where «;, solves the one-dimensional minimization problem

i — apAxy) .
gklgb (xx — apAxy)

To solve this problem exactly, we define
glay) = f(zr — axAzy)
and compute
d(ap) = —(Azp) 'V f(xp — apAxy) = —(Azp) T A(zy, — apAzy) = —a} A%2p, 4 apat Adxy,.
It follows that

z;{Aka
al Adzy,

Jdlap) =0 & ap=



Note that ¢”(ax) = 21 A3z and that A? and A3 are positive definite matrices (given that A is the
positive definite), so that «y, is the global positive minimizer of g(ay). Substituting the value of ay
to (5), the method of steepest descent becomes

x%Aka

Th 2Tk gy k=0,1,...
a:fA%k k

Th+1 = Tk —

b) Consider the problem
min F(x), (6)

z€RN

where F(z) = 1 ||V f(2)||3. Prove that in this case the method of steepst descent reduces to: Given
zo € RY, compute

x;{A‘lazk

SRR A2y, k=0,1,... 1.0
zl Abzy, Tk 1.0

Tr+1 = Tp—

Solution: The objective function F' can be written as
_ 1 o 1 2 1 T A AU S P
F(z) = LIV F@)3 = Sl Aal} = 2 (A2)T Az = £ T AT Az = T A%,
2 2 2 2 2
where we have used the symmetry of A. This shows that minimizing F' corresponds to minimizing

f with the matrix A replaced with A%. Thus the method of steepest descent for minimizing the
objective function F' can be written as

$£A4CL‘]§

R T A%, k=0,1,....
xl Abzy, .

Th+1 = Tk —

c¢) Show that the sequence { f(zx)} converges to f(x,) and the sequence { F'(xy)} converges to F(x.)
when k — co. Show also that the convergence of the sequence {f(xj)} is faster that that of the
sequence {F'(zg)}. [2.0]

Solution: Defining the error ex11 = f(zr+1) — f(x4), we have the estimate
Av = A
e <\ — lexl,
el = (P30 ) e

where 0 < A\ < ... < Ay are the eigenvalues of the (symmetric and positive definite) Hessian
matrix Hy(x.) = A, cf. formulas. For the objective function F, the error estimate can be written

as 9
UN — H1

Eyq S() Ey|,

Bl < (EE20)

where Ej11 = F(zk41) — F(zs) and 0 < pp < ... < upn are the eigenvalues of the Hessian matrix

Note that if 2 € RV \ {0} is an eigenvector associated with the eigenvalue A of matrix A, it holds
A%z = A(Az) = Az = Az = Nz,
that is, the eigenvalues of matrix A? are pj = )\i, k=1,...,N. If \y < Ay, it thus holds

Av — A A - A2
0< N g9 Aoy o<BNTH g5 A
AN + A1 AN + A1 UN + p1 A%+ AL



so that
lerra| < BF eol, |Ejt1] <A Eol,

with some 8,7 € (0,1). The sequence {f(x)} thus converges to f(z.) and the sequence {F(xy)}
converges to F(xy).

To show that the first method converges more rapidly, it suffices to observe that if A\ # Ay then

AN — A1 N :)‘?\/'_)\%
AN+ pun A+ /\?\7—%)\%

= AN+ <DL A2 = 20x >0,

where the last inequality holds since A; > 0 V.

Obs.: When A\; = Ay, ie. \j = A2 = ... = Ay, we have |e;| = |E1| = 0, that is, both methods
attain the exact solution x, in a single iteration. Note also that both methods converge to the
global minimizer z, = 0.

3. Consider the following constrained minimization problem

min z7 Az subject to le=1, (7)

zeRN

where A € RV*N ig 4 symmetric matrix with N distinct eigenvalues A\ < Ao < ... < An.

a) Write down the KKT conditions for problem (7). Determine all KKT points (x., A*). Show that
the constraint qualification LICQ is valid at the stationary points x.. [2.0]

Solution: The constrained minimization problem reads as

min f(x) subject to c1(x) =0, (8)
z€RN

where f(z) = 27 Az and ¢;(x) = 272 — 1. The Lagrangean function associated with problem (8) is
thus L(z,\) = f(x) — Aci(x). The KKT conditions hold at (., As) if

Vaol(ze,\*) =0, c1(xy) =0,

that is, if 2Az, — 2AX*z, = 0 and x*Tx* = 1. The Lagrange multiplier \* satisfying the KKT
conditions thus corresponds to one of the N distinct eigenvalues A;, 5 =1,..., N, of matrix A, and
the stationary points x, are the (normalized) eigenvectors w; associated with A;’s, i.e.

Az, = Na,, lz<]]2 =1, where (z4,A%)=(wj,N;), j=1,...,N.
The constraint qualification LICQ is valid if Ve (24) # 0. Now, Vei(z,) = 22, # 0 since ||z4]|2 = 1;
thus LICQ holds at each of the N stationary points.
b) Determine all local and global solutions of problem (7). [1.5]

Solution: The local solutions (minimizers) of problem (7) must satisfy the second-order necessary
conditions:
wINV2L(z, N)w >0 Yw € Fy(z,, \Y),

where Fp(z4,\*) = {w € RY|Vey(z)Tw = 0}. Given that A is symmetric, V2L(z4, \*) =
2 A —2X*I, and thus
W V2L (20, ) w = 2 (wTAw - )\*wTw) . 9)

Now, fix j € {2,..., N} and consider the KKT point (z,, \*) = (wj, \;), where w; is the eigenvector
associated with ;. The matrix A is symmetric, thus its eigenvectors constitute an orthogonal basis



in RY. Thus, the critical cone F5(x,, A\*), spanned by vectors w orthogonal to wj, is composed of
the N —1 eigenvectors wy, k # j of A, including, in particular, w;. Hence, testing the condition (9)
at (T4, \*) = (wy, Aj), with w = w; € Fa(xy, A*), we get

W V2L (2e, V) w = 2<w1‘FA wy — /\jw{wl) =2\ — A\j)|Jwr]3 <0 Vj#1,

since A;, the eigenvalue associated with the eigenvector wj, is the smallest eigenvalue and the
eigenvalues are distinct. The second-order necessary condition of optimality is thus violated and we
conclude that the N —1 stationary points (z., A*) = (wj;, A),j = 2,..., N, are not local solutions.

On the other hand, when (x., \*) = (w1, A1), we have Fy(z,, A\*) = span{ws, ws, ..., wy} and
wT V2L (20, ) w = 2<w;‘-Fij - )xleij) =200 —M)|wi[|3 >0 Yw=w;, j=2,3,...,N.
In other words, the second-order sufficient condition is valid and, therefore, (z., \*) = (w1, A1) is a

local minimizer.

The point (z., \*) = (w1, A1) is also a global solution since by the Rayleigh quotient
flze) =2l Az, = Moala, =N\ <2TAz = f(z) Yz eRY, with 2z =1,

or because, by Weierstrass’ theorem, the objective function must attain its global minimum (and
maximum) in the feasible set S since f : S — RY is continuous and S is compact. The solution is
(4, A*) = (w1, A1) is unique because the LICQ condition is valid at each point of the feasible region
so that all possible solutions must satisfy the first-order necessary conditions (KKT conditions).



