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Exam (Part I) – January 19th, 2017 – Solutions

1. Let V = C([0, 1]) and consider the integral operator T : V → V defined by

Tu(t) :=

∫ 1

0
cos(λu(s)) ds+ f(t) , (1)

where λ ∈ R \ {0} and f ∈ V .

a) Show that T is Fréchet differentiable and caracterize its Fréchet derivative T ′(u). [1.0]

Solution: Let h ∈ V , with ‖h‖V � 1. Given that

cos(λ (u+ h)) = cos(λu)− λ sin(λu)h− 1

2
λ2 cos(λu)h2 +O(‖h‖3V ) ,

we see that
T (u+ h)− Tu− T ′(u)h = O(‖h‖2V ) ,

where

T ′(u)h = −λ
∫ 1

0
sin(λu(s))h(s) ds . (2)

The operator T is thus Fréchet differentiable and its Fréchet derivative is caracterized by (2).

b) Consider the integral equation

u(t)−
∫ 1

0
cos(λu(s)) ds = f(t) , 0 ≤ t ≤ 1 . (3)

Show that there exists λ0 > 0 such that for |λ| ≤ λ0, equation (3) admits one and only one solution
u ∈ V . [1.5]

Solution: Given that,

‖T ′(u)h‖V = max
t∈[0,1]

∣∣∣λ ∫ 1

0
sin(λu(s))h(s) ds

∣∣∣ ≤ |λ| ∫ 1

0
| sin(λu(s))| ds ‖h‖V ≤ |λ| ‖h‖V ,

we have
‖T ′(u)‖L(V ) = sup

h∈V \{0}

‖T ′(u)h‖V
‖h‖V

≤ |λ| ∀u ∈ V .

Thus, if λ ∈ R \ {0} is such that |λ| ≤ λ0 < 1, then ‖T ′(u)h‖V < 1 for all u ∈ V , that is, the
operator T is a contraction in V .

Moreover, T : V → V and V = C[0, 1] is a closed and non-empty set, thus by Banach’s Fixed Point
Theorem, the operator T admits a unique fixed point u ∈ V provided |λ| ≤ λ0 < 1. In other words,
there exists λ0 ∈ (0, 1) such that if |λ| ≤ λ0 then the operator equation u = T (u) admits a unique
solution u ∈ V .

c) Let f(t) = t. Approximate the solution of the integral equation (3) by the fixed point method.
Consider λ = 0.5, u0(t) = 0 and compute the first three iterates. Derive an upper bound for the
error

‖u−u3‖V = max
t∈[0,1]

|u(t)−u3(t)| . [1.5]



Solution: The fixed point method reads as

un+1(t) =

∫ 1

0
cos(0.5u(s)) ds+ t , n = 0, 1, . . . , u0(t) = 0 .

It follows that

u1(t) =
∫ 1
0 ds+ t = 1 + t , u2(t) =

∫ 1
0 cos(0.5 (1 + s) ds+ t = 2 ( sin 1− sin 0.5 ) + t = 0.724091 + t ,

u3(t) =
∫ 1
0 cos(0.5 (0.724091 + s) ds+ t = 2

(
sin 1+0.724091

2 − sin 0.724091
2

)
+ t = 0.809975 + t .

Recalling the error estimate
‖u− u3‖V ≤

α

1− α
‖u3 − u2‖V ,

where α ∈ (0, 1) is the Lipschitz constant of T . It holds

α ≤ |λ| = 0.5 , ‖u3 − u2‖V = 0.085884 ⇒ ‖u− u3‖V ≤ 0.085884 .

2. Let u, v ∈ RN \ {0} be two column vectors. Show that the matrix I + uvT is invertible if and
only if 1 + vTu 6= 0. [1.5]

Solution: The eigenvalues of matrix I + uvT are 1 and 1 + vTu. In fact,

(I + uvT )u = (1 + vTu)u , (I + uvT )wj = wj , j = 1, 2, . . . N − 1 ,

where wj , j = 1, 2, . . . N − 1 are such that (v, wj) = 0. Note that there exist N − 1 linearly
independent vectors orthogonal to a given vector v ∈ RN \ {0}. Since all eigenvalues of I + uvT are
non-zero, the matrix I + uvT is non-singular.

3. Consider the vector field F : R2 → R2 defined by

F (x) =

[
x1 + x2 − 3
x1 + 2x2 − 9

]
.

a) Show that the Newton’s method converges to the exact solution x∗ = [−3 6]T of equation
F (x) = 0 in one iteration for any initial approximation. [1.0]

Solution: Let F (x) = Ax− b, where

A =

[
1 1

1 2

]
, b =

[
3

9

]
.

It is easy to see that Ax∗ − b = 0 and that A is a non-singular matrix so x∗ = A−1b = [−3 6]T is
the unique solution of equation F (x) = 0. Newton’s method reads as

x(n+1) = x(n) − J−1F (xn))F (x(n)) , n = 0, 1, . . . .

Given that JF (x) = A, it follows that

x(1) = x(0) − A−1 (Ax(0) − b) = A−1 b ,

independently of the initial guess x(0) ∈ R2.



b) Approximate the solution of equation F (x) = 0 by Broyden’s method. Consider

x0 = [−1 5]T , B0 =

[
1 0

0 1

]
,

and compute the first three iterates. Explain the result. [1.5]

Solution: In Broyden’s method, we need to, given B0 and x0, solve the linear system Bksk = −F (xk)
and compute

xk+1 = xk + sk , yk = F (xk+1)− F (xk) , Bk+1 = Bk +
(yk −Bksk)sTk

sTk sk
.

for k = 0, 1, . . .. Given that Ask = yk, we may write the Broyden’s update formula as

Bk+1 = Bk +
(
A−Bk

) sksTk
sTk sk

, where A =

[
1 1

1 2

]
.

It follows that

F (x0) =

[
1

0

]
, s0 =

[
−1

0

]
, B1 =

[
1 0

1 1

]
, x1 =

[
−2

5

]
.

F (x1) =

[
0

−1

]
, s1 =

[
0

1

]
, B2 =

[
1 1

1 2

]
, x2 =

[
−2

6

]
.

F (x2) =

[
1

1

]
, s2 =

[
−1

0

]
, x3 =

[
−3

6

]
= x∗ .

The third iterate coincides with the exact solution. In fact, Broyden’s method converges to the
exact solution of a linear system of N equations at most in 2N iterations.

4. Let K be a non-empty, closed, convex subset of a Hilbert space H, equipped with the inner
product (·, ·), and assume that f ∈ H. Show that φ∗ ∈ K is the best approximation of f in K, with
respect to the induced norm, if and only if

(f−φ∗, φ−φ∗) ≤ 0 ∀φ ∈ K . [2.0]

Solution: Let φ∗ be a best approximation of f ∈ H in K and φ an arbitrary element in K. Since
K is convex, we have

φ∗ + λ (φ− φ∗) ∈ K ∀λ ∈ [0, 1] .

This means that the real-valued and differentiable function ϕ : [0, 1]→ R defined by

ϕ(λ) = ‖f − (φ∗ + λ (φ− φ∗))‖2

has a minimum at λ = 0. Therefore ϕ′(0) ≥ 0. Observing that

ϕ(λ) = ‖f − φ∗‖2 − 2λ (f − φ∗, φ− φ∗) + λ2‖φ− φ∗‖2 ,



we obtain
ϕ′(0) = −2 (f − φ∗, φ− φ∗) ≥ 0 ⇔ (f − φ∗, φ− φ∗) ≤ 0 .

On the other hand, if (f − φ∗, φ− φ∗) ≤ 0, then

‖f − φ‖2 = ‖f − φ∗ + φ∗ − φ‖2 = ‖f − φ∗‖2 + 2 (f − φ∗, φ∗ − φ) + ‖φ∗ − φ‖2

≥ ‖f − φ∗‖2 + ‖φ∗ − φ‖2 ≥ ‖f − φ∗‖2 ∀φ ∈ K ,

that is φ∗ ∈ K is, by definition, a best approximation of f ∈ H in K with respect to the induced
norm ‖ · ‖ =

√
(·, ·).



Exam (Part II) – January 19th, 2017 – Solutions

1. Consider the unconstrained minimization problem

min
x∈S

f(x) ,

where f : S → R is a convex function, S ⊂ RN a convex set and x∗ ∈ S a local minimizer of f .
Show that x∗ is a global solution of the problem. [2.0]

Solution: Assume, for the sake of contradiction, that x∗ is not a global minimizer, that is, there
exists y ∈ S, say, for which f(y) < f(x∗). Given that S is a convex set, the convex combination
z(λ) = λx∗ + (1 − λ)y of y and x∗ is an element in S for all λ ∈ [0, 1]. On the other, from the
convexity of f it follows that

f(z(λ)) = f(λx∗+(1−λ)y) ≤ λf(x∗)+(1−λ)f(y) < λf(x∗)+(1−λ)f(x∗) = f(x∗) , ∀λ ∈ (0, 1) .

But this contradicts the fact that x∗ is a local minimizer since z(λ)→ x∗ when λ→ 1.

2. Consider the unconstrained minimization problem

min
x∈RN

f(x) , (4)

where f(x) = 1
2 x

TAx, with A ∈ RN×N symmetric and positive definite..

a) Show that the numerical approximation of problem (5) by the method of steepest descent corre-
sponds to: Given x0 ∈ RN compute

xk+1 = xk −
xTkA

2xk

xTkA
3xk

Axk , k = 0, 1, . . . [1.5]

Solution: For the objective function f(x) = 1
2x

TAx, it holds ∇f(x) = Ax and Hf (x) = A, since A
is a symmetric matrix. The method of steepest descent thus reduces to

xk+1 = xk − αk∇f(xk) = xk − αkAxk , (5)

where αk solves the one-dimensional minimization problem

min
αk>0

f(xk − αkAxk) .

To solve this problem exactly, we define

g(αk) := f(xk − αkAxk) ,

and compute

g′(αk) = −(Axk)T∇f(xk − αkAxk) = −(Axk)TA(xk − αkAxk) = −xTkA2xk + αkx
T
kA

3xk .

It follows that

g′(αk) = 0 ⇔ αk =
xTkA

2xk

xTkA
3xk

.



Note that g′′(αk) = xTkA
3xk and that A2 and A3 are positive definite matrices (given that A is the

positive definite), so that αk is the global positive minimizer of g(αk). Substituting the value of αk
to (5), the method of steepest descent becomes

xk+1 = xk −
xTkA

2xk

xTkA
3xk

Axk, k = 0, 1, . . .

b) Consider the problem
min
x∈RN

F (x) , (6)

where F (x) = 1
2 ‖∇f(x)‖

2
2. Prove that in this case the method of steepst descent reduces to: Given

x0 ∈ RN , compute

xk+1 = xk−
xTkA

4xk

xTkA
6xk

A2xk , k = 0, 1, . . . [1.0]

Solution: The objective function F can be written as

F (x) =
1

2
‖∇f(x)‖22 =

1

2
‖Ax‖22 =

1

2
(Ax)TAx =

1

2
xTATAx =

1

2
xTA2x ,

where we have used the symmetry of A. This shows that minimizing F corresponds to minimizing
f with the matrix A replaced with A2. Thus the method of steepest descent for minimizing the
objective function F can be written as

xk+1 = xk −
xTkA

4xk

xTkA
6xk

A2xk, k = 0, 1, . . . .

c) Show that the sequence {f(xk)} converges to f(x∗) and the sequence {F (xk)} converges to F (x∗)
when k → ∞. Show also that the convergence of the sequence {f(xk)} is faster that that of the
sequence {F (xk)}. [2.0]

Solution: Defining the error ek+1 = f(xk+1)− f(x∗), we have the estimate

|ek+1| ≤
(
λN − λ1
λN + λ1

)2

|ek|,

where 0 < λ1 ≤ . . . ≤ λN are the eigenvalues of the (symmetric and positive definite) Hessian
matrix Hf (x∗) = A, cf. formulas. For the objective function F , the error estimate can be written
as

|Ek+1| ≤
(
µN − µ1
µN + µ1

)2

|Ek|,

where Ek+1 = F (xk+1) − F (x∗) and 0 < µ1 ≤ . . . ≤ µN are the eigenvalues of the Hessian matrix
HF (x∗) = A2.

Note that if x ∈ RN \ {0} is an eigenvector associated with the eigenvalue λ of matrix A, it holds

A2x = A(Ax) = Aλx = λAx = λ2x ,

that is, the eigenvalues of matrix A2 are µk = λ2k, k = 1, . . . , N. If λ1 < λN , it thus holds

0 <
λN − λ1
λN + λ1

= 1− 2
λ1

λN + λ1
< 1 , 0 <

µN − µ1
µN + µ1

= 1− 2
λ21

λ2N + λ21
< 1 ,



so that
|ek+1| ≤ βk+1 |e0| , |Ek+1| ≤ γk+1 |E0| ,

with some β, γ ∈ (0, 1). The sequence {f(xk)} thus converges to f(x∗) and the sequence {F (xk)}
converges to F (x∗).

To show that the first method converges more rapidly, it suffices to observe that if λ1 6= λN then

λN − λ1
λN + λ1

<
µN − µ1
µN + µ1

=
λ2N − λ21
λ2N + λ21

⇐⇒ λ2N + λ21 < (λ2N + λ21)
2 ⇐⇒ 2λ1λN > 0 ,

where the last inequality holds since λj > 0 ∀j.

Obs.: When λ1 = λN , i.e. λ1 = λ2 = . . . = λN , we have |e1| = |E1| = 0, that is, both methods
attain the exact solution x∗ in a single iteration. Note also that both methods converge to the
global minimizer x∗ = 0.

3. Consider the following constrained minimization problem

min
x∈RN

xTAx subject to xTx = 1 , (7)

where A ∈ RN×N is a symmetric matrix with N distinct eigenvalues λ1 < λ2 < . . . < λN .

a) Write down the KKT conditions for problem (7). Determine all KKT points (x∗, λ∗). Show that
the constraint qualification LICQ is valid at the stationary points x∗. [2.0]

Solution: The constrained minimization problem reads as

min
x∈RN

f(x) subject to c1(x) = 0 , (8)

where f(x) = xTAx and c1(x) = xTx− 1. The Lagrangean function associated with problem (8) is
thus L(x, λ) = f(x)− λ c1(x). The KKT conditions hold at (x∗, λ∗) if

∇xL(x∗, λ∗) = 0 , c1(x∗) = 0 ,

that is, if 2Ax∗ − 2λ∗x∗ = 0 and xT∗ x∗ = 1. The Lagrange multiplier λ∗ satisfying the KKT
conditions thus corresponds to one of the N distinct eigenvalues λj , j = 1, . . . , N, of matrix A, and
the stationary points x∗ are the (normalized) eigenvectors wj associated with λj ’s, i.e.

Ax∗ = λ∗x∗ , ‖x∗‖2 = 1 , where (x∗, λ
∗) = (wj , λj) , j = 1, . . . , N .

The constraint qualification LICQ is valid if∇c1(x∗) 6= 0. Now, ∇c1(x∗) = 2x∗ 6= 0 since ‖x∗‖2 = 1;
thus LICQ holds at each of the N stationary points.

b) Determine all local and global solutions of problem (7). [1.5]

Solution: The local solutions (minimizers) of problem (7) must satisfy the second-order necessary
conditions:

wT∇2
xL(x∗, λ∗)w ≥ 0 ∀w ∈ F2(x∗, λ

∗) ,

where F2(x∗, λ
∗) = {w ∈ RN | ∇c1(x∗)Tw = 0 }. Given that A is symmetric, ∇2

xL(x∗, λ∗) =
2A− 2λ∗I , and thus

wT∇2
xL(x∗, λ∗)w = 2

(
wTAw − λ∗wTw

)
. (9)

Now, fix j ∈ {2, . . . , N} and consider the KKT point (x∗, λ∗) = (wj , λj), where wj is the eigenvector
associated with λj . The matrix A is symmetric, thus its eigenvectors constitute an orthogonal basis



in RN . Thus, the critical cone F2(x∗, λ
∗), spanned by vectors w orthogonal to wj , is composed of

the N−1 eigenvectors wk, k 6= j of A, including, in particular, w1. Hence, testing the condition (9)
at (x∗, λ∗) = (wj , λj), with w = w1 ∈ F2(x∗, λ

∗), we get

wT∇2
xL(x∗, λ∗)w = 2

(
wT1 Aw1 − λjwT1 w1

)
= 2(λ1 − λj)‖w1‖22 < 0 ∀j 6= 1 ,

since λ1, the eigenvalue associated with the eigenvector w1, is the smallest eigenvalue and the
eigenvalues are distinct. The second-order necessary condition of optimality is thus violated and we
conclude that the N−1 stationary points (x∗, λ∗) = (wj , λj), j = 2, . . . , N , are not local solutions.

On the other hand, when (x∗, λ
∗) = (w1, λ1), we have F2(x∗, λ

∗) = span{w2, w3, . . . , wN} and

wT∇2
xL(x∗, λ∗)w = 2

(
wTj Awj − λ1wTj wj

)
= 2(λj − λ1)‖wj‖22 > 0 ∀w = wj , j = 2, 3, . . . , N .

In other words, the second-order sufficient condition is valid and, therefore, (x∗, λ∗) = (w1, λ1) is a
local minimizer.

The point (x∗, λ∗) = (w1, λ1) is also a global solution since by the Rayleigh quotient

f(x∗) = xT∗ Ax∗ = λ∗ x
T
∗ x∗ = λ1 ≤ xTAx = f(x) ∀x ∈ RN , with xTx = 1 ,

or because, by Weierstrass’ theorem, the objective function must attain its global minimum (and
maximum) in the feasible set S since f : S → RN is continuous and S is compact. The solution is
(x∗, λ

∗) = (w1, λ1) is unique because the LICQ condition is valid at each point of the feasible region
so that all possible solutions must satisfy the first-order necessary conditions (KKT conditions).


