## Master in Mathematics and Applications - Técnico, Lisbon <br> Numerical Functional Analysis and Optimization - Fall Semester 2016

## Exam (Part I) - January 19th, 2017 - Solutions

1. Let $V=C([0,1])$ and consider the integral operator $T: V \rightarrow V$ defined by

$$
\begin{equation*}
T u(t):=\int_{0}^{1} \cos (\lambda u(s)) d s+f(t) \tag{1}
\end{equation*}
$$

where $\lambda \in \mathbb{R} \backslash\{0\}$ and $f \in V$.
a) Show that $T$ is Fréchet differentiable and caracterize its Fréchet derivative $T^{\prime}(u)$.

Solution: Let $h \in V$, with $\|h\|_{V} \ll 1$. Given that

$$
\cos (\lambda(u+h))=\cos (\lambda u)-\lambda \sin (\lambda u) h-\frac{1}{2} \lambda^{2} \cos (\lambda u) h^{2}+\mathcal{O}\left(\|h\|_{V}^{3}\right)
$$

we see that

$$
T(u+h)-T u-T^{\prime}(u) h=\mathcal{O}\left(\|h\|_{V}^{2}\right)
$$

where

$$
\begin{equation*}
T^{\prime}(u) h=-\lambda \int_{0}^{1} \sin (\lambda u(s)) h(s) d s \tag{2}
\end{equation*}
$$

The operator $T$ is thus Fréchet differentiable and its Fréchet derivative is caracterized by (2).
b) Consider the integral equation

$$
\begin{equation*}
u(t)-\int_{0}^{1} \cos (\lambda u(s)) d s=f(t), \quad 0 \leq t \leq 1 \tag{3}
\end{equation*}
$$

Show that there exists $\lambda_{0}>0$ such that for $|\lambda| \leq \lambda_{0}$, equation (3) admits one and only one solution $u \in V$.

Solution: Given that,

$$
\left\|T^{\prime}(u) h\right\|_{V}=\max _{t \in[0,1]}\left|\lambda \int_{0}^{1} \sin (\lambda u(s)) h(s) d s\right| \leq|\lambda| \int_{0}^{1}|\sin (\lambda u(s))| d s\|h\|_{V} \leq|\lambda|\|h\|_{V}
$$

we have

$$
\left\|T^{\prime}(u)\right\|_{\mathcal{L}(V)}=\sup _{h \in V \backslash\{0\}} \frac{\left\|T^{\prime}(u) h\right\|_{V}}{\|h\|_{V}} \leq|\lambda| \quad \forall u \in V
$$

Thus, if $\lambda \in \mathbb{R} \backslash\{0\}$ is such that $|\lambda| \leq \lambda_{0}<1$, then $\left\|T^{\prime}(u) h\right\|_{V}<1$ for all $u \in V$, that is, the operator $T$ is a contraction in $V$.
Moreover, $T: V \rightarrow V$ and $V=C[0,1]$ is a closed and non-empty set, thus by Banach's Fixed Point Theorem, the operator $T$ admits a unique fixed point $u \in V$ provided $|\lambda| \leq \lambda_{0}<1$. In other words, there exists $\lambda_{0} \in(0,1)$ such that if $|\lambda| \leq \lambda_{0}$ then the operator equation $u=T(u)$ admits a unique solution $u \in V$.
c) Let $f(t)=t$. Approximate the solution of the integral equation (3) by the fixed point method. Consider $\lambda=0.5, u_{0}(t)=0$ and compute the first three iterates. Derive an upper bound for the error

$$
\begin{equation*}
\left\|u-u_{3}\right\|_{V}=\max _{t \in[0,1]}\left|u(t)-u_{3}(t)\right| \tag{1.5}
\end{equation*}
$$

Solution: The fixed point method reads as

$$
u_{n+1}(t)=\int_{0}^{1} \cos (0.5 u(s)) d s+t, \quad n=0,1, \ldots, \quad u_{0}(t)=0
$$

It follows that

$$
\begin{aligned}
& u_{1}(t)=\int_{0}^{1} d s+t=1+t, \quad u_{2}(t)=\int_{0}^{1} \cos (0.5(1+s) d s+t=2(\sin 1-\sin 0.5)+t=0.724091+t \\
& u_{3}(t)=\int_{0}^{1} \cos \left(0.5(0.724091+s) d s+t=2\left(\sin \frac{1+0.724091}{2}-\sin \frac{0.724091}{2}\right)+t=0.809975+t\right.
\end{aligned}
$$

Recalling the error estimate

$$
\left\|u-u_{3}\right\|_{V} \leq \frac{\alpha}{1-\alpha}\left\|u_{3}-u_{2}\right\|_{V}
$$

where $\alpha \in(0,1)$ is the Lipschitz constant of $T$. It holds

$$
\alpha \leq|\lambda|=0.5, \quad\left\|u_{3}-u_{2}\right\|_{V}=0.085884 \quad \Rightarrow \quad\left\|u-u_{3}\right\|_{V} \leq 0.085884
$$

2. Let $u, v \in \mathbb{R}^{N} \backslash\{0\}$ be two column vectors. Show that the matrix $I+u v^{T}$ is invertible if and only if $1+v^{T} u \neq 0$.
Solution: The eigenvalues of matrix $I+u v^{T}$ are 1 and $1+v^{T} u$. In fact,

$$
\left(I+u v^{T}\right) u=\left(1+v^{T} u\right) u, \quad\left(I+u v^{T}\right) w_{j}=w_{j}, \quad j=1,2, \ldots N-1
$$

where $w_{j}, j=1,2, \ldots N-1$ are such that $\left(v, w_{j}\right)=0$. Note that there exist $N-1$ linearly independent vectors orthogonal to a given vector $v \in \mathbb{R}^{N} \backslash\{0\}$. Since all eigenvalues of $I+u v^{T}$ are non-zero, the matrix $I+u v^{T}$ is non-singular.
3. Consider the vector field $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
F(x)=\left[\begin{array}{l}
x_{1}+x_{2}-3 \\
x_{1}+2 x_{2}-9
\end{array}\right]
$$

a) Show that the Newton's method converges to the exact solution $x_{*}=[-36]^{T}$ of equation $F(x)=0$ in one iteration for any initial approximation.
[1.0]
Solution: Let $F(x)=A x-b$, where

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right], \quad b=\left[\begin{array}{l}
3 \\
9
\end{array}\right]
$$

It is easy to see that $A x_{*}-b=0$ and that $A$ is a non-singular matrix so $x_{*}=A^{-1} b=[-36]^{T}$ is the unique solution of equation $F(x)=0$. Newton's method reads as

$$
x^{(n+1)}=x^{(n)}-J_{F}^{-1}\left(x^{n)}\right) F\left(x^{(n)}\right), \quad n=0,1, \ldots
$$

Given that $J_{F}(x)=A$, it follows that

$$
x^{(1)}=x^{(0)}-A^{-1}\left(A x^{(0)}-b\right)=A^{-1} b,
$$

independently of the initial guess $x^{(0)} \in \mathbb{R}^{2}$.
b) Approximate the solution of equation $F(x)=0$ by Broyden's method. Consider

$$
x_{0}=\left[\begin{array}{ll}
-1 & 5
\end{array}\right]^{T}, \quad B_{0}=\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]
$$

and compute the first three iterates. Explain the result.
Solution: In Broyden's method, we need to, given $B_{0}$ and $x_{0}$, solve the linear system $B_{k} s_{k}=-F\left(x_{k}\right)$ and compute

$$
x_{k+1}=x_{k}+s_{k}, \quad y_{k}=F\left(x_{k+1}\right)-F\left(x_{k}\right), \quad B_{k+1}=B_{k}+\frac{\left(y_{k}-B_{k} s_{k}\right) s_{k}^{T}}{s_{k}^{T} s_{k}}
$$

for $k=0,1, \ldots$ Given that $A s_{k}=y_{k}$, we may write the Broyden's update formula as

$$
B_{k+1}=B_{k}+\left(A-B_{k}\right) \frac{s_{k} s_{k}^{T}}{s_{k}^{T} s_{k}}, \quad \text { where } \quad A=\left[\begin{array}{cc}
1 & 1 \\
1 & 2
\end{array}\right]
$$

It follows that

$$
\begin{gathered}
F\left(x_{0}\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad s_{0}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \quad B_{1}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right], \quad x_{1}=\left[\begin{array}{c}
-2 \\
5
\end{array}\right] . \\
F\left(x_{1}\right)=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \quad s_{1}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad B_{2}=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right], \quad x_{2}=\left[\begin{array}{c}
-2 \\
6
\end{array}\right] . \\
F\left(x_{2}\right)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad s_{2}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \quad x_{3}=\left[\begin{array}{c}
-3 \\
6
\end{array}\right]=x_{*} .
\end{gathered}
$$

The third iterate coincides with the exact solution. In fact, Broyden's method converges to the exact solution of a linear system of $N$ equations at most in $2 N$ iterations.
4. Let $K$ be a non-empty, closed, convex subset of a Hilbert space $H$, equipped with the inner product $(\cdot, \cdot)$, and assume that $f \in H$. Show that $\phi^{*} \in K$ is the best approximation of $f$ in $K$, with respect to the induced norm, if and only if

$$
\begin{equation*}
\left(f-\phi^{*}, \phi-\phi^{*}\right) \leq 0 \quad \forall \phi \in K \tag{2.0}
\end{equation*}
$$

Solution: Let $\phi^{*}$ be a best approximation of $f \in H$ in $K$ and $\phi$ an arbitrary element in $K$. Since $K$ is convex, we have

$$
\phi^{*}+\lambda\left(\phi-\phi^{*}\right) \in K \quad \forall \lambda \in[0,1] .
$$

This means that the real-valued and differentiable function $\varphi:[0,1] \rightarrow \mathbb{R}$ defined by

$$
\varphi(\lambda)=\left\|f-\left(\phi^{*}+\lambda\left(\phi-\phi^{*}\right)\right)\right\|^{2}
$$

has a minimum at $\lambda=0$. Therefore $\varphi^{\prime}(0) \geq 0$. Observing that

$$
\varphi(\lambda)=\left\|f-\phi^{*}\right\|^{2}-2 \lambda\left(f-\phi^{*}, \phi-\phi^{*}\right)+\lambda^{2}\left\|\phi-\phi^{*}\right\|^{2},
$$

we obtain

$$
\varphi^{\prime}(0)=-2\left(f-\phi^{*}, \phi-\phi^{*}\right) \geq 0 \quad \Leftrightarrow \quad\left(f-\phi^{*}, \phi-\phi^{*}\right) \leq 0 .
$$

On the other hand, if $\left(f-\phi^{*}, \phi-\phi^{*}\right) \leq 0$, then

$$
\begin{gathered}
\|f-\phi\|^{2}=\left\|f-\phi^{*}+\phi^{*}-\phi\right\|^{2}=\left\|f-\phi^{*}\right\|^{2}+2\left(f-\phi^{*}, \phi^{*}-\phi\right)+\left\|\phi^{*}-\phi\right\|^{2} \\
\geq\left\|f-\phi^{*}\right\|^{2}+\left\|\phi^{*}-\phi\right\|^{2} \geq\left\|f-\phi^{*}\right\|^{2} \quad \forall \phi \in K,
\end{gathered}
$$

that is $\phi^{*} \in K$ is, by definition, a best approximation of $f \in H$ in $K$ with respect to the induced norm $\|\cdot\|=\sqrt{(\cdot, \cdot)}$.

## Exam (Part II) - January 19th, 2017 - Solutions

1. Consider the unconstrained minimization problem

$$
\min _{x \in S} f(x)
$$

where $f: S \rightarrow \mathbb{R}$ is a convex function, $S \subset \mathbb{R}^{N}$ a convex set and $x_{*} \in S$ a local minimizer of $f$. Show that $x_{*}$ is a global solution of the problem.
Solution: Assume, for the sake of contradiction, that $x_{*}$ is not a global minimizer, that is, there exists $y \in S$, say, for which $f(y)<f\left(x_{*}\right)$. Given that $S$ is a convex set, the convex combination $z(\lambda)=\lambda x_{*}+(1-\lambda) y$ of $y$ and $x_{*}$ is an element in $S$ for all $\lambda \in[0,1]$. On the other, from the convexity of $f$ it follows that
$f(z(\lambda))=f\left(\lambda x_{*}+(1-\lambda) y\right) \leq \lambda f\left(x_{*}\right)+(1-\lambda) f(y)<\lambda f\left(x_{*}\right)+(1-\lambda) f\left(x_{*}\right)=f\left(x_{*}\right), \quad \forall \lambda \in(0,1)$. But this contradicts the fact that $x_{*}$ is a local minimizer since $z(\lambda) \rightarrow x_{*}$ when $\lambda \rightarrow 1$.
2. Consider the unconstrained minimization problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{N}} f(x), \tag{4}
\end{equation*}
$$

where $f(x)=\frac{1}{2} x^{T} A x$, with $A \in \mathbb{R}^{N \times N}$ symmetric and positive definite..
a) Show that the numerical approximation of problem (5) by the method of steepest descent corresponds to: Given $x_{0} \in \mathbb{R}^{N}$ compute

$$
\begin{equation*}
x_{k+1}=x_{k}-\frac{x_{k}^{T} A^{2} x_{k}}{x_{k}^{T} A^{3} x_{k}} A x_{k}, \quad k=0,1, \ldots \tag{1.5}
\end{equation*}
$$

Solution: For the objective function $f(x)=\frac{1}{2} x^{T} A x$, it holds $\nabla f(x)=A x$ and $H_{f}(x)=A$, since $A$ is a symmetric matrix. The method of steepest descent thus reduces to

$$
\begin{equation*}
x_{k+1}=x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)=x_{k}-\alpha_{k} A x_{k} \tag{5}
\end{equation*}
$$

where $\alpha_{k}$ solves the one-dimensional minimization problem

$$
\min _{\alpha_{k}>0} f\left(x_{k}-\alpha_{k} A x_{k}\right)
$$

To solve this problem exactly, we define

$$
g\left(\alpha_{k}\right):=f\left(x_{k}-\alpha_{k} A x_{k}\right)
$$

and compute

$$
g^{\prime}\left(\alpha_{k}\right)=-\left(A x_{k}\right)^{T} \nabla f\left(x_{k}-\alpha_{k} A x_{k}\right)=-\left(A x_{k}\right)^{T} A\left(x_{k}-\alpha_{k} A x_{k}\right)=-x_{k}^{T} A^{2} x_{k}+\alpha_{k} x_{k}^{T} A^{3} x_{k}
$$

It follows that

$$
g^{\prime}\left(\alpha_{k}\right)=0 \quad \Leftrightarrow \quad \alpha_{k}=\frac{x_{k}^{T} A^{2} x_{k}}{x_{k}^{T} A^{3} x_{k}}
$$

Note that $g^{\prime \prime}\left(\alpha_{k}\right)=x_{k}^{T} A^{3} x_{k}$ and that $A^{2}$ and $A^{3}$ are positive definite matrices (given that $A$ is the positive definite), so that $\alpha_{k}$ is the global positive minimizer of $g\left(\alpha_{k}\right)$. Substituting the value of $\alpha_{k}$ to (5), the method of steepest descent becomes

$$
x_{k+1}=x_{k}-\frac{x_{k}^{T} A^{2} x_{k}}{x_{k}^{T} A^{3} x_{k}} A x_{k}, \quad k=0,1, \ldots
$$

b) Consider the problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{N}} F(x) \tag{6}
\end{equation*}
$$

where $F(x)=\frac{1}{2}\|\nabla f(x)\|_{2}^{2}$. Prove that in this case the method of steepst descent reduces to: Given $x_{0} \in \mathbb{R}^{N}$, compute

$$
\begin{equation*}
x_{k+1}=x_{k}-\frac{x_{k}^{T} A^{4} x_{k}}{x_{k}^{T} A^{6} x_{k}} A^{2} x_{k}, \quad k=0,1, \ldots \tag{1.0}
\end{equation*}
$$

Solution: The objective function $F$ can be written as

$$
F(x)=\frac{1}{2}\|\nabla f(x)\|_{2}^{2}=\frac{1}{2}\|A x\|_{2}^{2}=\frac{1}{2}(A x)^{T} A x=\frac{1}{2} x^{T} A^{T} A x=\frac{1}{2} x^{T} A^{2} x
$$

where we have used the symmetry of $A$. This shows that minimizing $F$ corresponds to minimizing $f$ with the matrix $A$ replaced with $A^{2}$. Thus the method of steepest descent for minimizing the objective function $F$ can be written as

$$
x_{k+1}=x_{k}-\frac{x_{k}^{T} A^{4} x_{k}}{x_{k}^{T} A^{6} x_{k}} A^{2} x_{k}, \quad k=0,1, \ldots
$$

c) Show that the sequence $\left\{f\left(x_{k}\right)\right\}$ converges to $f\left(x_{*}\right)$ and the sequence $\left\{F\left(x_{k}\right)\right\}$ converges to $F\left(x_{*}\right)$ when $k \rightarrow \infty$. Show also that the convergence of the sequence $\left\{f\left(x_{k}\right)\right\}$ is faster that that of the sequence $\left\{F\left(x_{k}\right)\right\}$.
[2.0]
Solution: Defining the error $e_{k+1}=f\left(x_{k+1}\right)-f\left(x_{*}\right)$, we have the estimate

$$
\left|e_{k+1}\right| \leq\left(\frac{\lambda_{N}-\lambda_{1}}{\lambda_{N}+\lambda_{1}}\right)^{2}\left|e_{k}\right|
$$

where $0<\lambda_{1} \leq \ldots \leq \lambda_{N}$ are the eigenvalues of the (symmetric and positive definite) Hessian matrix $H_{f}\left(x_{*}\right)=A$, cf. formulas. For the objective function $F$, the error estimate can be written as

$$
\left|E_{k+1}\right| \leq\left(\frac{\mu_{N}-\mu_{1}}{\mu_{N}+\mu_{1}}\right)^{2}\left|E_{k}\right|
$$

where $E_{k+1}=F\left(x_{k+1}\right)-F\left(x_{*}\right)$ and $0<\mu_{1} \leq \ldots \leq \mu_{N}$ are the eigenvalues of the Hessian matrix $H_{F}\left(x_{*}\right)=A^{2}$.
Note that if $x \in \mathbb{R}^{N} \backslash\{0\}$ is an eigenvector associated with the eigenvalue $\lambda$ of matrix $A$, it holds

$$
A^{2} x=A(A x)=A \lambda x=\lambda A x=\lambda^{2} x
$$

that is, the eigenvalues of matrix $A^{2}$ are $\mu_{k}=\lambda_{k}^{2}, k=1, \ldots, N$. If $\lambda_{1}<\lambda_{N}$, it thus holds

$$
0<\frac{\lambda_{N}-\lambda_{1}}{\lambda_{N}+\lambda_{1}}=1-2 \frac{\lambda_{1}}{\lambda_{N}+\lambda_{1}}<1, \quad 0<\frac{\mu_{N}-\mu_{1}}{\mu_{N}+\mu_{1}}=1-2 \frac{\lambda_{1}^{2}}{\lambda_{N}^{2}+\lambda_{1}^{2}}<1
$$

so that

$$
\left|e_{k+1}\right| \leq \beta^{k+1}\left|e_{0}\right|, \quad\left|E_{k+1}\right| \leq \gamma^{k+1}\left|E_{0}\right|
$$

with some $\beta, \gamma \in(0,1)$. The sequence $\left\{f\left(x_{k}\right)\right\}$ thus converges to $f\left(x_{*}\right)$ and the sequence $\left\{F\left(x_{k}\right)\right\}$ converges to $F\left(x_{*}\right)$.
To show that the first method converges more rapidly, it suffices to observe that if $\lambda_{1} \neq \lambda_{N}$ then

$$
\frac{\lambda_{N}-\lambda_{1}}{\lambda_{N}+\lambda_{1}}<\frac{\mu_{N}-\mu_{1}}{\mu_{N}+\mu_{1}}=\frac{\lambda_{N}^{2}-\lambda_{1}^{2}}{\lambda_{N}^{2}+\lambda_{1}^{2}} \Longleftrightarrow \lambda_{N}^{2}+\lambda_{1}^{2}<\left(\lambda_{N}^{2}+\lambda_{1}^{2}\right)^{2} \Longleftrightarrow 2 \lambda_{1} \lambda_{N}>0
$$

where the last inequality holds since $\lambda_{j}>0 \forall j$.
Obs.: When $\lambda_{1}=\lambda_{N}$, i.e. $\lambda_{1}=\lambda_{2}=\ldots=\lambda_{N}$, we have $\left|e_{1}\right|=\left|E_{1}\right|=0$, that is, both methods attain the exact solution $x_{*}$ in a single iteration. Note also that both methods converge to the global minimizer $x_{*}=0$.
3. Consider the following constrained minimization problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{N}} x^{T} A x \quad \text { subject to } \quad x^{T} x=1 \tag{7}
\end{equation*}
$$

where $A \in \mathbb{R}^{N \times N}$ is a symmetric matrix with $N$ distinct eigenvalues $\lambda_{1}<\lambda_{2}<\ldots<\lambda_{N}$.
a) Write down the KKT conditions for problem (7). Determine all KKT points $\left(x_{*}, \lambda^{*}\right)$. Show that the constraint qualification LICQ is valid at the stationary points $x_{*}$.

Solution: The constrained minimization problem reads as

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{N}} f(x) \quad \text { subject to } \quad c_{1}(x)=0 \tag{8}
\end{equation*}
$$

where $f(x)=x^{T} A x$ and $c_{1}(x)=x^{T} x-1$. The Lagrangean function associated with problem (8) is thus $\mathcal{L}(x, \lambda)=f(x)-\lambda c_{1}(x)$. The KKT conditions hold at $\left(x_{*}, \lambda_{*}\right)$ if

$$
\nabla_{x} \mathcal{L}\left(x_{*}, \lambda^{*}\right)=0, \quad c_{1}\left(x_{*}\right)=0
$$

that is, if $2 A x_{*}-2 \lambda^{*} x_{*}=0$ and $x_{*}^{T} x_{*}=1$. The Lagrange multiplier $\lambda^{*}$ satisfying the KKT conditions thus corresponds to one of the $N$ distinct eigenvalues $\lambda_{j}, j=1, \ldots, N$, of matrix $A$, and the stationary points $x_{*}$ are the (normalized) eigenvectors $w_{j}$ associated with $\lambda_{j}$ 's, i.e.

$$
A x_{*}=\lambda^{*} x_{*}, \quad\left\|x_{*}\right\|_{2}=1, \quad \text { where } \quad\left(x_{*}, \lambda^{*}\right)=\left(w_{j}, \lambda_{j}\right), \quad j=1, \ldots, N
$$

The constraint qualification LICQ is valid if $\nabla c_{1}\left(x_{*}\right) \neq 0$. Now, $\nabla c_{1}\left(x_{*}\right)=2 x_{*} \neq 0$ since $\left\|x_{*}\right\|_{2}=1$; thus LICQ holds at each of the $N$ stationary points.
b) Determine all local and global solutions of problem (7).

Solution: The local solutions (minimizers) of problem (7) must satisfy the second-order necessary conditions:

$$
w^{T} \nabla_{x}^{2} \mathcal{L}\left(x_{*}, \lambda^{*}\right) w \geq 0 \quad \forall w \in F_{2}\left(x_{*}, \lambda^{*}\right)
$$

where $F_{2}\left(x_{*}, \lambda^{*}\right)=\left\{w \in \mathbb{R}^{N} \mid \nabla c_{1}\left(x_{*}\right)^{T} w=0\right\}$. Given that $A$ is symmetric, $\nabla_{x}^{2} \mathcal{L}\left(x_{*}, \lambda^{*}\right)=$ $2 A-2 \lambda^{*} I$, and thus

$$
\begin{equation*}
w^{T} \nabla_{x}^{2} \mathcal{L}\left(x_{*}, \lambda^{*}\right) w=2\left(w^{T} A w-\lambda^{*} w^{T} w\right) \tag{9}
\end{equation*}
$$

Now, fix $j \in\{2, \ldots, N\}$ and consider the KKT point $\left(x_{*}, \lambda^{*}\right)=\left(w_{j}, \lambda_{j}\right)$, where $w_{j}$ is the eigenvector associated with $\lambda_{j}$. The matrix $A$ is symmetric, thus its eigenvectors constitute an orthogonal basis
in $\mathbb{R}^{N}$. Thus, the critical cone $F_{2}\left(x_{*}, \lambda^{*}\right)$, spanned by vectors $w$ orthogonal to $w_{j}$, is composed of the $N-1$ eigenvectors $w_{k}, k \neq j$ of $A$, including, in particular, $w_{1}$. Hence, testing the condition (9) at $\left(x_{*}, \lambda^{*}\right)=\left(w_{j}, \lambda_{j}\right)$, with $w=w_{1} \in F_{2}\left(x_{*}, \lambda^{*}\right)$, we get

$$
w^{T} \nabla_{x}^{2} \mathcal{L}\left(x_{*}, \lambda^{*}\right) w=2\left(w_{1}^{T} A w_{1}-\lambda_{j} w_{1}^{T} w_{1}\right)=2\left(\lambda_{1}-\lambda_{j}\right)\left\|w_{1}\right\|_{2}^{2}<0 \quad \forall j \neq 1
$$

since $\lambda_{1}$, the eigenvalue associated with the eigenvector $w_{1}$, is the smallest eigenvalue and the eigenvalues are distinct. The second-order necessary condition of optimality is thus violated and we conclude that the $N-1$ stationary points $\left(x_{*}, \lambda^{*}\right)=\left(w_{j}, \lambda_{j}\right), j=2, \ldots, N$, are not local solutions.
On the other hand, when $\left(x_{*}, \lambda^{*}\right)=\left(w_{1}, \lambda_{1}\right)$, we have $F_{2}\left(x_{*}, \lambda^{*}\right)=\operatorname{span}\left\{w_{2}, w_{3}, \ldots, w_{N}\right\}$ and

$$
w^{T} \nabla_{x}^{2} \mathcal{L}\left(x_{*}, \lambda^{*}\right) w=2\left(w_{j}^{T} A w_{j}-\lambda_{1} w_{j}^{T} w_{j}\right)=2\left(\lambda_{j}-\lambda_{1}\right)\left\|w_{j}\right\|_{2}^{2}>0 \quad \forall w=w_{j}, \quad j=2,3, \ldots, N .
$$

In other words, the second-order sufficient condition is valid and, therefore, $\left(x_{*}, \lambda^{*}\right)=\left(w_{1}, \lambda_{1}\right)$ is a local minimizer.

The point $\left(x_{*}, \lambda^{*}\right)=\left(w_{1}, \lambda_{1}\right)$ is also a global solution since by the Rayleigh quotient

$$
f\left(x_{*}\right)=x_{*}^{T} A x_{*}=\lambda_{*} x_{*}^{T} x_{*}=\lambda_{1} \leq x^{T} A x=f(x) \quad \forall x \in \mathbb{R}^{N}, \quad \text { with } x^{T} x=1,
$$

or because, by Weierstrass' theorem, the objective function must attain its global minimum (and maximum) in the feasible set $S$ since $f: S \rightarrow \mathbb{R}^{N}$ is continuous and $S$ is compact. The solution is $\left(x_{*}, \lambda^{*}\right)=\left(w_{1}, \lambda_{1}\right)$ is unique because the LICQ condition is valid at each point of the feasible region so that all possible solutions must satisfy the first-order necessary conditions (KKT conditions).

