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5" Problem set
1. Consider the quadratic functional f(x) = %arTAx —bTx + ¢, where A € RV*N is a symmetric and
positive semi-definite matrix, b € RY and ¢ € R.

a) Show that every stationary point of f is a global minimizer of f.

b) Prove that if A positive definite then f has a unique global minimizer.

2. Let f: RV — R be twice continuously differentiable in an open convex set K C RY and assume that
the Hessian matrix of f satisfies the following Lipschitz condition at x € K:

3920 talque [Hy(y) - Hy@)| <vly—z| Wyek.
Show that

1
f(x—i—p)—f(w)—Vf(a:)Tp—§pTHf(x)p < %HpHg’ VpeRY such that 2 +p € K .

3. Consider the linear least squares problem

min ||Az — b2
min |4z b3,

where A € RM*N M > N, and b € R™. Use the necessary and sufficient conditions of optimality for
unconstrained minimization problems to analyse the existence and uniqueness of solutions to the least
squares problem.

4. Consider the unconstrained minimization problem min,cg> f(x), where f(z) = % 22 + 1 cos 13.

a) Determine the stationary and saddle points as well as the local and global minimizers of f.

b) Choosing z(*) = [1 0] and By = H;(2(?)), compute the matrix B; from the BFGS method’s update
formula.

5. Given F : RV — RY, consider the nonlinear system F(x) = 0 and the unconstrained minimization
problem
. ’ 1

min, f(z) (1)
where f(z) = 5 F(z)TF(z).
a) Relate the zeros of F' with the local and global minimizers of f.
b) Compute V f(x) and Hy(x).
c) Show that the direction

pr = — Jr(x) " F (),

i.e. Newton’s direction for the nonlinear system F(z) = 0, is a descent direction for f at zy, provided
Jr(xg) is non singular and F(xy) # 0.

d) Consider the quadratic model

my(s) = % (F(mk) + Jp(xk)s>T<F(mk) + Jp(xk)s>

Show that py, is the (unique) global minimizer of my, and that py is a descent direction for my.



6. Considere the quadratic function f : RY — R, f(z) = %xTAx —bTz + ¢, where A € RVXN 5 a
symmetric and positive semi-definite matrix, b € RY and ¢ € R.

a) Show that the solution of the one-dimensional minimization problem
min f(ZL'k - Oéka(ZL'k))
ap>0

is given by
oy, = JAZE — bl13
[ Ay, — b% 7
where ||z||4 = \/(z, Az). Conclude that the method of steepest descent reduces to:
Given zg € RV, compute
| Az, — b3

_ IETR T OUS (A —b), k=0,1,... .
| Azy, — blI%

Th+1 = Tk

b) Write the method of steepest descent as

Tht1l = Tk + QT , k=0,1,...,

(1)

[l
I

where r, = b — Az and oy, = , let 2, € RY be the global minimizer of f, i.e. Az, = b, and define

A

the error vector ey, = . — .

Prove that

2 ||7“kH% 2
lextalla=1- llexlla (2)

rT Ary, r%A‘lrk

where ||z||a = v/ (2, Az).

c) Kantorovich Lemma: Let A € RN*YN be symmetric and positive semi-definite and assume that 0 <
AL < A < ... < Ay are the eigenvalues of A. Then

(x7x)? - AN AN

Vo e RV {0}.
2TAx T Al = (A + Ay)? ve \ {0}

Use the Kantorovich lemma in the estimate (2) to conclude that
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d) Verify that
1
Flaw) = fa) = 5 llexld

7. Consider a quasi-Newton line search method x4 = xx + agpk, with the search direction

pr=—B 'V f(zy),

where B, € RV*N is symmetric and positive definite matrix. Assume that the step length aj > 0
satisfies the Wolfe conditions and that conds(By) < M. Suppose that the objective function f: RY — R
is bounded below in RY and that f is continuously differentiable in a convex open set D C RV containing
the level set L(zg) = {z : f(x) < f(x0)} where xg is the starting point of the iteration. Assume also that
V f is Lipschitz continuous in D.

Show that

_ T
Vf(@k)" pr > 1M,
IVf(@i)ll2 [[Pell2
and conclude that the line search method is globally convergent.



8. Let f : RV — R be twice continuously differentiable and assume that the Hessian matrix H 7 is
Lipschitzian in a neighborhood of x,, a point where the sufficient conditions of optimality are satisfied.
Show that the sequence {||V f(xr)||2}, generated by the Newton’s iteration zg41 = x) — Hf_l(a:k)Vf(xk),
converges to zero with a quadratic rate.

9. Consider the unconstrained minimization problem

min f(x), (3)

zERN

for the quadratic objective function f(x) = %xTAaz — bz + ¢, where the matrix A € RV*Y is symmetric
and positive definite, b € RY and ¢ € R. Let z, € R the global minimizer of f.

Show that the method of steepest descent, for the numerical solution of (3), converges in one iteration, if
xo = T+ + S u, where u € RY is an eigenvector associated with one of the eigenvalues of A and 3 € R.

10. Consider the following unconstrained minimization problem

. 3
min ||z 4
min o] )

where || - || is the Euclidean norm in RV,

Show that the pure Newton’s method, applied to problem (4) reduces to

1
x(k+1):§x(k), k=0,1,....
Determine the rate of convergence of Newton’s method in this case.

Hint: You may find the following formula useful:
T\ —1 T
( I 33332) _ < I m2> .
] 2 |||

11. Let A € RY*N he a non singular matrix, U,V € RNXM with 1 < M < N, and assume that
det(I + VTATIU) #£ 0.

a) Establish the Sherman—Morrison—-Woodbury formula
(A+UuvhHt=A1 Al va+vTaTlu)~lvTa—t.

b) Let U = [uy,uz], V = [v1,v2], with u;,v; € RY. Show that
2
(A+> wpl )t =A""—AluclvTat,
j=1

where
1+ UITA_IU1 vlTA_1u2
vi A7y 1+l A7 g

12. Consider the following update formula for the BFGS method which generates symmetric and positive
definite approximations of the inverse of the Hessian matrix

_ _ 1
Hily = = prseyi ) H 'L = prysi) + prosisi o= >0. (5)
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a) Use the Sherman-Morrison-Woodbury formula to derive expression (5) from the BFGS update of
matrix Hp.

b) Show that H,;_:l = H; ' + E, with rank(E) = 2.
c¢) Confirm that ijl is symmetric if Hl;l is symmetric.
d) Show that H,;:l satisfies the secant equation Hk_+11yk’ = S.

e) Show that H,_ 431 is positive definite if H, 1 is positive definite,



