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5th Problem set

1. Consider the quadratic functional f(x) = 1
2 x

TAx − bTx + c, where A ∈ RN×N is a symmetric and
positive semi-definite matrix, b ∈ RN and c ∈ R.

a) Show that every stationary point of f is a global minimizer of f .

b) Prove that if A positive definite then f has a unique global minimizer.

2. Let f : RN → R be twice continuously differentiable in an open convex set K ⊂ RN and assume that
the Hessian matrix of f satisfies the following Lipschitz condition at x ∈ K:

∃ γ ≥ 0 tal que ‖Hf (y)−Hf (x)‖ ≤ γ ‖y − x‖ ∀y ∈ K .

Show that∣∣∣ f(x+ p)− f(x)−∇f(x)T p− 1

2
pTHf (x) p

∣∣∣ ≤ γ

6
‖p ‖3 ∀ p ∈ RN such that x+ p ∈ K .

3. Consider the linear least squares problem

min
x∈RN

‖Ax− b‖22 ,

where A ∈ RM×N ,M > N, and b ∈ RM . Use the necessary and sufficient conditions of optimality for
unconstrained minimization problems to analyse the existence and uniqueness of solutions to the least
squares problem.

4. Consider the unconstrained minimization problem minx∈R2 f(x) , where f(x) = 1
2 x

2
1 + x1 cosx2.

a) Determine the stationary and saddle points as well as the local and global minimizers of f .

b) Choosing x(0) = [1 0]T and B0 = Hf (x
(0)), compute the matrix B1 from the BFGS method’s update

formula.

5. Given F : RN → RN , consider the nonlinear system F (x) = 0 and the unconstrained minimization
problem

min
x∈RN

f(x) , (1)

where f(x) = 1
2 F (x)

TF (x).

a) Relate the zeros of F with the local and global minimizers of f .

b) Compute ∇f(x) and Hf (x).

c) Show that the direction
pk = − JF (xk)−1F (xk) ,

i.e. Newton’s direction for the nonlinear system F (x) = 0, is a descent direction for f at xk, provided
JF (xk) is non singular and F (xk) 6= 0.

d) Consider the quadratic model

mk(s) =
1

2

(
F (xk) + JF (xk)s

)T(
F (xk) + JF (xk)s

)
Show that pk is the (unique) global minimizer of mk and that pk is a descent direction for mk.



6. Considere the quadratic function f : RN → R, f(x) = 1
2 x

TAx − bTx + c, where A ∈ RN×N is a
symmetric and positive semi-definite matrix, b ∈ RN and c ∈ R.

a) Show that the solution of the one-dimensional minimization problem

min
αk>0

f(xk − αk∇f(xk))

is given by

αk =
‖Axk − b‖22
‖Axk − b‖2A

,

where ‖x‖A =
√

(x,Ax). Conclude that the method of steepest descent reduces to:

Given x0 ∈ RN , compute

xk+1 = xk −
‖Axk − b‖22
‖Axk − b‖2A

(Axk − b) , k = 0, 1, . . . .

b) Write the method of steepest descent as

xk+1 = xk + αkrk , k = 0, 1, . . . ,

where rk = b− Axk and αk =
‖rk‖22
‖rk‖2A

, let x∗ ∈ RN be the global minimizer of f , i.e. Ax∗ = b, and define
the error vector ek = x∗ − xk.

Prove that

‖ek+1‖2A =

(
1− ‖rk‖42

rTArk r
T
k A
−1rk

)
‖ek‖2A , (2)

where ‖x‖A =
√

(x,Ax).

c) Kantorovich Lemma: Let A ∈ RN×N be symmetric and positive semi-definite and assume that 0 <
λ1 ≤ λ2 ≤ . . . ≤ λN are the eigenvalues of A. Then

(xTx)2

xTAxxTA−1x
≥ 4λ1λN

(λ1 + λN )2
∀x ∈ RN \ {0} .

Use the Kantorovich lemma in the estimate (2) to conclude that

‖ek+1‖A ≤
λN − λ1
λN + λ1

‖ek‖A .

d) Verify that

f(xk)− f(x∗) =
1

2
‖ek‖2A .

7. Consider a quasi-Newton line search method xk+1 = xk + αkpk, with the search direction

pk = −B−1k ∇f(xk) ,

where Bk ∈ RN×N is symmetric and positive definite matrix. Assume that the step length αk > 0
satisfies the Wolfe conditions and that cond2(Bk) ≤M . Suppose that the objective function f : RN → R
is bounded below in RN and that f is continuously differentiable in a convex open set D ⊂ RN containing
the level set L(x0) = {x : f(x) ≤ f(x0)} where x0 is the starting point of the iteration. Assume also that
∇f is Lipschitz continuous in D.

Show that
−∇f(xk)T pk
‖∇f(xk)‖2 ‖pk‖2

≥ 1/M ,

and conclude that the line search method is globally convergent.



8. Let f : RN → R be twice continuously differentiable and assume that the Hessian matrix Hf is
Lipschitzian in a neighborhood of x∗, a point where the sufficient conditions of optimality are satisfied.
Show that the sequence {‖∇f(xk)‖2}, generated by the Newton’s iteration xk+1 = xk −H−1f (xk)∇f(xk),
converges to zero with a quadratic rate.

9. Consider the unconstrained minimization problem

min
x∈RN

f(x) , (3)

for the quadratic objective function f(x) = 1
2 x

TAx− bTx+ c, where the matrix A ∈ RN×N is symmetric
and positive definite, b ∈ RN and c ∈ R. Let x∗ ∈ RN the global minimizer of f .

Show that the method of steepest descent, for the numerical solution of (3), converges in one iteration, if
x0 = x∗ + β u, where u ∈ RN is an eigenvector associated with one of the eigenvalues of A and β ∈ R.

10. Consider the following unconstrained minimization problem

min
x∈RN

‖x‖3 (4)

where ‖ · ‖ is the Euclidean norm in RN .
Show that the pure Newton’s method, applied to problem (4) reduces to

x(k+1) =
1

2
x(k) , k = 0, 1, . . . .

Determine the rate of convergence of Newton’s method in this case.

Hint: You may find the following formula useful:(
I +

xxT

‖x‖2

)−1
=

(
I − xxT

2 ‖x‖2

)
.

11. Let A ∈ RN×N be a non singular matrix, U, V ∈ RN×M , with 1 ≤ M ≤ N , and assume that
det(I + V TA−1U) 6= 0.

a) Establish the Sherman–Morrison–Woodbury formula

(A+ UV T )−1 = A−1 −A−1U(I + V TA−1U)−1V TA−1 .

b) Let U = [u1, u2], V = [v1, v2], with uj , vj ∈ RN . Show that

(A+
2∑
j=1

ujv
T
j )
−1 = A−1 −A−1UC−1V TA−1 ,

where

C =

[
1 + vT1 A

−1u1 vT1 A
−1u2

vT2 A
−1u1 1 + vT2 A

−1u2

]
.

12. Consider the following update formula for the BFGS method which generates symmetric and positive
definite approximations of the inverse of the Hessian matrix

H−1k+1 = (I − ρkskyTk )H−1k (I − ρkyksTk ) + ρk sks
T
k , ρk =

1

yTk sk
> 0 . (5)

a) Use the Sherman–Morrison–Woodbury formula to derive expression (5) from the BFGS update of
matrix Hk.

b) Show that H−1k+1 = H−1k + E, with rank(E) = 2.

c) Confirm that H−1k+1 is symmetric if H−1k is symmetric.

d) Show that H−1k+1 satisfies the secant equation H−1k+1yk = sk.

e) Show that H−1k+1 is positive definite if H−1k is positive definite,


