Master in Mathematics and Applications - Técnico, Lisbon
 Numerical Functional Analysis and Optimization - Fall Semester 2016

$4^{\text {th }}$ Problem sheet

1. Let $u, v \in \mathbb{R}^{N}$ be column vectors and $A, B \in \mathbb{R}^{N \times N}$ square matrices. Moreover, let $\|A\|_{F}$ denote the Fröbenius norm and $\|A\|_{2}$ the (operator) norm induced by the Euclidean vector norm $\|\cdot\|_{2}$.
a) Show that

$$
\left\|u v^{T}\right\|_{F}=\left\|u v^{T}\right\|_{2}=\|u\|_{2}\|v\|_{2}
$$

b) Prove that

$$
\|A B\|_{F} \leq \min \left\{\|A\|_{2}\|B\|_{F},\|A\|_{F}\|B\|_{2}\right\}
$$

2. Let $P \in \mathbb{R}^{N \times N}$ be a ortogonal projection matrix, i.e. P is symmetric and $P^{2}=P$.
a) Show that

$$
\|x\|_{2}^{2}=\|P x\|_{2}^{2}+\|x-P x\|_{2}^{2} \quad \forall x \in \mathbb{R}^{N}
$$

b) Let $w \in \mathbb{R}^{N}$ be a column vector and $L=w w^{T} / w^{T} w$. Show that L and $I-L$ are orthogonal projection matrices. Determine the eigenvalues of L and $I-L$ and show that $\|L\|_{2}=\|I-L\|_{2}$.
3. Let $A \in \mathbb{R}^{N \times N}, y, s \in \mathbb{R}^{N}, s \neq 0$ and $Q(y, s)=\left\{B \in \mathbb{R}^{N \times N} \mid B s=y\right\}$. Prove that the minimization problem

$$
\min _{B \in Q(s, y)}\|B-A\|_{F}
$$

admits at most one solution.
4. Consider the minimization problem

$$
\min _{B \in Q(y, s)}\|B-A\|_{2}
$$

where

$$
A=\left[\begin{array}{cc}
4 & 1 \\
-1 & 1
\end{array}\right], \quad s=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad y=\left[\begin{array}{c}
5 \\
-2
\end{array}\right]
$$

Prove that every matrix $A(\alpha)$ of the form

$$
A(\alpha)=A+\left[\begin{array}{cc}
1 & \alpha \\
-1 & \alpha
\end{array}\right], \quad \alpha \in[-1,1]
$$

solves this problem. What would the solution be if the minimization was done with respect to the Fröbenius norm?
5. Let $\left\{x_{k}\right\}_{k \geq 0}$ be a sequence of elements in \mathbb{R}^{N} and assume that $\lim _{k \rightarrow \infty} x_{k}=x_{*}$ with a superlinear rate of convergence. Show that

$$
\lim _{k \rightarrow \infty} \frac{\left\|x_{k+1}-x_{k}\right\|}{\left\|x_{k}-x_{*}\right\|}=1
$$

6. Let $F(x)=A x-b$, with $A \in \mathbb{R}^{N \times N}$ non-singular and $b \in \mathbb{R}^{N}$, and consider the following modified Broyden's update for approximating the solution of the linear system $F(x)=0$

$$
A_{k+1}=A_{k}+\theta \frac{\left(y_{k}-A_{k} s_{k}\right) s_{k}^{T}}{s_{k}^{T} s_{k}}, \quad \theta \in \mathbb{R}
$$

where $y_{k}=F\left(x_{k+1}\right)-F\left(x_{k}\right)$ and $s_{k}=x_{k+1}-x_{k}$.
a) Show that $A \in Q\left(y_{k}, s_{k}\right)=\left\{B \in \mathbb{R}^{N \times N} \mid B s_{k}=y_{k}\right\}$.
b) Show that

$$
A_{k+1}-A=\left(A_{k}-A\right)\left(I-\theta \frac{s_{k} s_{k}^{T}}{s_{k}^{T} s_{k}}\right), \quad k=0,1, \ldots,
$$

and that

$$
\left\|A_{k+1}-A\right\|_{2} \leq\left\|A_{k}-A\right\|_{2}, \quad \forall \theta \in[0,2]
$$

7. Consider the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, given by

$$
F(x)=\left[\begin{array}{l}
x_{1}+x_{2}-3 \\
x_{1}^{2}+x_{2}^{2}-9
\end{array}\right]
$$

where $x=\left(x_{1}, x_{2}\right)$. The equation $F(x)=0$ has two roots, $z_{*}=(3,0)$ e $y_{*}=(0,3)$.
a) Approximate the solution of the nonlinear system $F(x)=0$ by the Newton's and the Broyden's method. Choose $x_{0}=(1,5), A_{0}=J_{F}\left(x_{0}\right)$ and compute the first five iteratates. Analyse the rate of converegence in both cases.
b) Show that

$$
\lim _{k \rightarrow \infty} A_{k}=\left[\begin{array}{cc}
1 & 1 \\
1.5 & 7.5
\end{array}\right] \neq J_{F}\left(y_{*}\right)=\left[\begin{array}{ll}
1 & 1 \\
0 & 6
\end{array}\right]
$$

where A_{k} is Broyden's update matrix.
c) Verify that

$$
\lim _{k \rightarrow \infty} \frac{\left\|\left(A_{k}-J_{F}\left(y_{*}\right)\right)\left(x_{k+1}-x_{k}\right)\right\|}{\left\|x_{k+1}-x_{k}\right\|}=0 .
$$

