Master in Mathematics and Applications - Técnico, Lisbon Numerical Functional Analysis and Optimization - Fall Semester 2016

4th Problem sheet

1. Let $u, v \in \mathbb{R}^N$ be column vectors and $A, B \in \mathbb{R}^{N \times N}$ square matrices. Moreover, let $||A||_F$ denote the Fröbenius norm and $||A||_2$ the (operator) norm induced by the Euclidean vector norm $|| \cdot ||_2$.

a) Show that

$$||uv^T||_F = ||uv^T||_2 = ||u||_2 ||v||_2.$$

b) Prove that

$$|AB||_F \le \min\{||A||_2 ||B||_F, ||A||_F ||B||_2\}.$$

2. Let $P \in \mathbb{R}^{N \times N}$ be a ortogonal projection matrix, i.e. P is symmetric and $P^2 = P$.

a) Show that

$$||x||_{2}^{2} = ||Px||_{2}^{2} + ||x - Px||_{2}^{2} \qquad \forall x \in \mathbb{R}^{N}$$

b) Let $w \in \mathbb{R}^N$ be a column vector and $L = ww^T/w^T w$. Show that L and I - L are orthogonal projection matrices. Determine the eigenvalues of L and I - L and show that $||L||_2 = ||I - L||_2$.

3. Let $A \in \mathbb{R}^{N \times N}$, $y, s \in \mathbb{R}^N$, $s \neq 0$ and $Q(y, s) = \{B \in \mathbb{R}^{N \times N} | Bs = y\}$. Prove that the minimization problem

$$\min_{B \in Q(s,y)} \|B - A\|_F$$

admits at most one solution.

4. Consider the minimization problem

$$\min_{B\in Q(y,s)} \|B-A\|_2,$$

where

$$A = \begin{bmatrix} 4 & 1 \\ -1 & 1 \end{bmatrix}, \quad s = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad y = \begin{bmatrix} 5 \\ -2 \end{bmatrix}.$$

Prove that every matrix $A(\alpha)$ of the form

$$A(\alpha) = A + \begin{bmatrix} 1 & \alpha \\ -1 & \alpha \end{bmatrix}, \qquad \alpha \in [-1, 1],$$

solves this problem. What would the solution be if the minimization was done with respect to the Fröbenius norm?

5. Let $\{x_k\}_{k\geq 0}$ be a sequence of elements in \mathbb{R}^N and assume that $\lim_{k\to\infty} x_k = x_*$ with a superlinear rate of convergence. Show that

$$\lim_{k \to \infty} \frac{\|x_{k+1} - x_k\|}{\|x_k - x_*\|} = 1.$$

6. Let F(x) = Ax - b, with $A \in \mathbb{R}^{N \times N}$ non-singular and $b \in \mathbb{R}^N$, and consider the following modified Broyden's update for approximating the solution of the linear system F(x) = 0

$$A_{k+1} = A_k + \theta \, \frac{(y_k - A_k s_k) s_k^T}{s_k^T s_k} \,, \quad \theta \in \mathbb{R} \,,$$

where $y_k = F(x_{k+1}) - F(x_k)$ and $s_k = x_{k+1} - x_k$. **a)** Show that $A \in Q(y_k, s_k) = \{B \in \mathbb{R}^{N \times N} | Bs_k = y_k\}.$

b) Show that

$$A_{k+1} - A = \left(A_k - A\right) \left(I - \theta \frac{s_k s_k^T}{s_k^T s_k}\right), \qquad k = 0, 1, \dots,$$

and that

$$||A_{k+1} - A||_2 \le ||A_k - A||_2, \quad \forall \theta \in [0, 2].$$

7. Consider the function $F : \mathbb{R}^2 \to \mathbb{R}^2$, given by

$$F(x) = \left[\begin{array}{c} x_1 + x_2 - 3 \\ x_1^2 + x_2^2 - 9 \end{array} \right] \,,$$

where $x = (x_1, x_2)$. The equation F(x) = 0 has two roots, $z_* = (3, 0) \in y_* = (0, 3)$.

a) Approximate the solution of the nonlinear system F(x) = 0 by the Newton's and the Broyden's method. Choose $x_0 = (1, 5)$, $A_0 = J_F(x_0)$ and compute the first five iteratates. Analyse the rate of convergence in both cases.

b) Show that

$$\lim_{k \to \infty} A_k = \begin{bmatrix} 1 & 1 \\ 1.5 & 7.5 \end{bmatrix} \neq J_F(y_*) = \begin{bmatrix} 1 & 1 \\ 0 & 6 \end{bmatrix},$$

where A_k is Broyden's update matrix.

c) Verify that

$$\lim_{k \to \infty} \frac{\|(A_k - J_F(y_*))(x_{k+1} - x_k)\|}{\|x_{k+1} - x_k\|} = 0.$$