Master in Mathematics and Applications - Técnico, Lisbon Numerical Functional Analysis and Optimization - Fall Semester 2016

3rd Problem sheet

1. Let V = C[0,1] and consider the integral operator $T: V \to V$, defined by

$$T(u)(t) = \int_0^1 k(t,s) u^2(s) \, ds + f(t) \,, \qquad 0 \le t \le 1 \,,$$

where $k \in C([0, 1] \times [0, 1])$ and $f \in C[0, 1]$.

a) Show that T is Fréchet differentiable and determine the Fréchet derivative T'(u).

b) Derive a bound for the norm ||T'(u)||.

2. Let V be a Hilbert space equipped with the inner product (\cdot, \cdot) . Consider the functional $f: V \to \mathbb{R}$ defined by

$$f(u) = (u, Au)$$

where $A \in \mathcal{L}(V)$.

a) Show that f is Fréchet differentiable and compute f'(u).

b) Show that f' is Fréchet differentiable and compute f''(u).

c) Let $V = \mathbb{R}^N$ and assume that $A \in \mathbb{R}^{N \times N}$ is a symmetric matrix. Determine the first two Fréchet derivatives of f.

3. Let $A \in \mathbb{R}^{N \times N}$ be a symmetric matrix and consider the functional $f : \mathbb{R}^N \to \mathbb{R}$ defined by $f(x) = x^T A x + b^T x + c$ where $b \in \mathbb{R}^N$ and $c \in \mathbb{R}$. Show that f is a convex function if and only if A is positive semi-definite and is strictly convex if and only if A is positive definite.

4. Let $f : \mathbb{R}^M \to \mathbb{R}$ be a convex and Fréchet differentiable in \mathbb{R}^M and consider a function $g : \mathbb{R}^N \to \mathbb{R}$ defined by g(x) = f(Ax + b), where $A \in \mathbb{R}^{M \times N}$ and $b \in \mathbb{R}^M$. Determine the first Fréchet derivative of g and show that g is a convex function.

5. Let K be a non-empty, closed, convex subset of a Hilbert space V and assume that $f \in V$.

a) Show that $\phi^* \in K$ is the best approximation of f in K, with respect to the induced norm, if and only if

$$(f - \phi^*, \phi - \phi^*) \le 0 \qquad \forall \phi \in K.$$
(1)

b) Show that, given $f \in V$, there exists a unique $\phi^* \in K$ such that

$$||f - \phi^*|| = \min_{\phi \in K} ||f - \phi||,$$

and that ϕ^* is also characterized by the inequality (1).

c) Show that if K is a subspace of V then the best approximation ϕ^* is characterized by

$$(f - \phi^*, \phi) = 0 \qquad \forall \phi \in K.$$

6. Let V be a Banach space and $K \subset V$ a non-empty convex subset. Assume that $f: K \to \mathbb{R}$ is convex and Fréchet differentiable in K.

a) Show that there exists $u \in K$ such that

$$f(u) = \min_{v \in K} f(v)$$

if and only if there exists $u \in K$ such that

$$f'(u)(v-u) \ge 0 \qquad \forall v \in K.$$
⁽²⁾

b) Show that when K is a subspace, inequality (2) reduces to the equality

$$f'(u)v = 0 \qquad \forall v \in K.$$

7. Assume that $F: K \subset \mathbb{R}^N \to \mathbb{R}^M$ be continuously Fréchet differentiable in an open non-empty convex set $K_0 \subset K$.

a) Show that if F' is Lipschitz continuous in K_0 , i.e. there exists $L \ge 0$ such that

$$||F'(x) - F'(y)|| \le L ||x - y|| \quad \forall x, y \in K_0$$

then

$$||F(x+h) - F(x) - F'(x)h|| \le \frac{L}{2} ||h||^2 \quad \forall x, x+h \in K_0.$$

b) Show that if F is twice continuously Fréchet differentiable in $K_0 \subset K$ then

$$||F(x+h) - F(x) - F'(x)h|| \le \frac{1}{2} \sup_{0 \le t \le 1} ||F''(x+th)|| \, ||h||^2 \quad \forall x, x+h \in K_0.$$

(Hint: Use the mean value theorem.)

8. Let $F : U \to V$ be continuously Fréchet differentiable, let u^* be a solution to the nonlinear equation F(u) = 0 and assume that $[F'(u^*)]^{-1}$ exists as a continuous linear map from V to U. Use the Banach fixed-point theorem to show that the Newton's chord method

$$u_{n+1} = u_n - F'(u_0) F(u_n), n = 0, 1, \dots$$

converges linearly to u^* provided u_0 is chosen sufficiently close to u^* . (Hint: Recall exercise 5 from the 2nd problem sheet and choose $||F'(u_0) - F'(u^*)||$ sufficiently small.)