Master in Mathematics and Applications - Técnico, Lisbon Numerical Functional Analysis and Optimization - Fall Semester 2016

2st Problem sheet

1. Consider the following Fredhom integral equation of second kind

$$\lambda u(t) - \int_0^1 \frac{u(s)}{1 + s^2 t^2} \, ds = f(t) \,, \qquad 0 \le t \le 1 \,, \tag{1}$$

where $\lambda \in \mathbb{R} \setminus \{0\}$ and $f \in C[0, 1]$. Show that, if $|\lambda|$ is chosen sufficiently large, then there exists a unique solution $u \in C[0, 1]$ to (8). For those values of λ , bound $||u||_{\infty}$ in terms of $||f||_{\infty}$.

2. Let $f \in C[0,1]$ and consider the boundary value problem

$$\begin{cases} -u''(t) = f(t) & 0 < t < 1, \\ u(0) = u(1) = 0. \end{cases}$$
(2)

a) Show that the unique solution u of problem (2) is given by

$$u(t) = \int_0^1 k(t,s) f(s) \, ds \,, \tag{3}$$

where

$$k(t,s) = \begin{cases} s(1-t), & 0 \le s \le t, \\ t(1-s), & t \le s \le 1. \end{cases}$$

b) Consider the boundary value problem

$$\begin{cases} -u''(t) + a(t) u(t) = f(t), & 0 < t < 1, \\ u(0) = u(1) = 0, \end{cases}$$
(4)

where $a, f \in C[0, 1]$. Show that (4) can be written as a Fredholm integral equation of the second kind.

c) Assume that $\max_{t \in [0,1]} |a(t)| \le a_0$. Show that if $a_0 > 0$ is sufficiently small then problem (4) has a unique solution $u \in C^2[0,1]$.

3. Show that the Fredholm integral equation

$$u(x) - \int_0^1 \sin \pi (x - t) u(t) dt = f(x), \qquad 0 \le x \le 1,$$

has a unique solution $u \in C[0, 1]$ for any given $f \in C[0, 1]$. As an approximation of the solution u, use the formula

$$u_n(x) = f(x) + \sum_{j=1}^n L^j f(x)$$

to compute u_2 .

4. Assume that the conditions of the geometric series theorem are satisfied. Then for any $f \in V$ the equation (I - L) u = f has a unique solution $u \in V$. Show that this solution can be approximated by a sequence $\{u_n\}$ defined by

$$u_0 \in V$$
, $u_n = f + L u_{n-1}$, $n = 1, 2, \dots$

by deriving an error bound for $||u - u_n||_V$.

5. Let V and W be Banach spaces and assume that $T \in \mathcal{L}(V, W)$ has a bounded inverse T^{-1} : $W \to V$. Show that if $S \in \mathcal{L}(V, W)$ satisfies $||T - S|| < 1/||T^{-1}||$, then $S^{-1} \in \mathcal{L}(W, V)$ exists and

$$||S^{-1}|| \le \frac{||T^{-1}||}{1 - ||T^{-1}|| ||T - S||}$$

6. Consider the nonlinear Volterra integral equation

$$u(t) = \int_{a}^{t} k(t, s, u(s)) \, ds + f(t) \qquad a \le t \le b \,, \tag{5}$$

where $f \in C[a, b]$ and $k(\cdot, \cdot, \cdot)$ is a continuous function for $a \leq s \leq t \leq b$, $u \in \mathbb{R}$. Assume that there exists a constant $M \geq 0$ such that for $a \leq s \leq t \leq b$

$$|k(t, s, u_1) - k(t, s, u_2)| \le M |u_1 - u_2| \qquad \forall u_1, u_2 \in \mathbb{R}.$$

Let V = C[a, b] and define a nonlinear operator $T: V \to V$ by

$$T(u)(t) = \int_{a}^{t} k(t, s, u(s)) \, ds + f(t) \, , \qquad a \le t \le b \, .$$

a) Show that

$$||T^{m}(u) - T^{m}(v)||_{V} \le \frac{[M(b-a)]^{m}}{m!} ||u - v||_{V} \quad \forall u, v \in V, \quad m = 0, 1, \dots.$$

b) Prove that the operator T admits a unique fixed point in V, that is, show that the integral equation (5) admits a unique solution $u \in V$.

c) Show that the mapping $|||v||| := \max_{t \in [0,b]} e^{-\beta t} |v(t)|, \beta \in \mathbb{R}$ is anorm in C[0,b], equivalent to the uniform norm $|| \cdot ||_{\infty}$.

d) Let a = 0. Show that $T : C[0, b] \to C[0, b]$ has a unique fixed point in $(C[0, b], || \cdot ||)$. Assume that $\beta > M$.

7. Let V = C[0,1] and consider the following nonlinear Volterra integral equation

$$u(t) = \frac{1}{2} \int_0^t s \, u^2(s) \, ds + f(t) \,, \qquad 0 \le t \le 1 \,, \tag{6}$$

where $f \in V$ is such that $||f||_V \leq \frac{1}{2}$.

a) Define $T: V \to V$ through

$$T(u)(t) = \frac{1}{2} \int_0^t s \, u^2(s) \, ds + f(t) \,, \qquad 0 \le t \le 1$$

and let $K = \{v \in V \mid ||v||_{\infty} \leq C\}$. Choose C > 0 in such a way that the operator T has a unique fixed point $u \in K$ and the iteration

$$\begin{cases} u_{n+1}(t) = \frac{1}{2} \int_0^t s \, u_n^2(s) \, ds + f(t) \,, \quad n \ge 0 \\ u_0(t) = 1 \end{cases}$$
(7)

converges to u.

b) Let f(t) = t/2 and C = 4/3. Compute the first two iterates from (7). Derive an upper bound for the error $||u - u_2||_V$.

8. Consider the nonlinear Urysohn integral equation

$$u(t) = \mu \int_{a}^{b} k(t, s, u(s)) \, ds + f(t) \,, \qquad a \le t \le b \,, \tag{8}$$

where $\mu \in \mathbb{R}$, $k \in C([a, b] \times [a, b] \times \mathbb{R})$ and $f \in C[a, b]$. Assume that there exists a constant $L \ge 0$ such that

$$|k(t, s, u_1) - k(t, s, u_2)| \le L |u_1 - u_2|, \quad \forall u_1, u_2 \in \mathbb{R}, \quad a \le t, s \le b.$$

a) Show that, if $|\mu| L(b-a) < 1$, then equation (8) admits a unique solution $u \in C[a, b]$ and the iteration

$$u_{n+1}(t) = \mu \int_{a}^{b} k(t, s, u_n(s)) \, ds + f(t) \,, \qquad a \le t \le b \,, \quad n = 0, 1, \dots$$

converges to u, for any choice of $u_0 \in C[a, b]$.

b) Let

$$[a,b] = [0,1], \qquad f(t) = \frac{7}{8}t, \qquad k(t,s,u(s)) = \frac{ts}{1+u^2(s)}.$$

Prove that, if $|\mu| < 1$, then equation (8) admits a unique solution $u \in C[0, 1]$. Approximate u by computing the first two iterates by the fixed point iteration. Consider $\mu = 1/2$ and $u_0(t) = 1$. Derive an upper bound for the error of the approximation u_2 .