Master in Mathematics and Applications - Técnico, Lisbon
 Numerical Functional Analysis and Optimization - Fall Semester 2016

$2^{\text {st }}$ Problem sheet

1. Consider the following Fredhom integral equation of second kind

$$
\begin{equation*}
\lambda u(t)-\int_{0}^{1} \frac{u(s)}{1+s^{2} t^{2}} d s=f(t), \quad 0 \leq t \leq 1 \tag{1}
\end{equation*}
$$

where $\lambda \in \mathbb{R} \backslash\{0\}$ and $f \in C[0,1]$. Show that, if $|\lambda|$ is chosen sufficiently large, then there exists a unique solution $u \in C[0,1]$ to (8). For those values of λ, bound $\|u\|_{\infty}$ in terms of $\|f\|_{\infty}$.
2. Let $f \in C[0,1]$ and consider the boundary value problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(t)=f(t) \quad 0<t<1 \tag{2}\\
u(0)=u(1)=0
\end{array}\right.
$$

a) Show that the unique solution u of problem (2) is given by

$$
\begin{equation*}
u(t)=\int_{0}^{1} k(t, s) f(s) d s \tag{3}
\end{equation*}
$$

where

$$
k(t, s)= \begin{cases}s(1-t), & 0 \leq s \leq t \\ t(1-s), & t \leq s \leq 1\end{cases}
$$

b) Consider the boundary value problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(t)+a(t) u(t)=f(t), \quad 0<t<1 \tag{4}\\
u(0)=u(1)=0
\end{array}\right.
$$

where $a, f \in C[0,1]$. Show that (4) can be written as a Fredholm integral equation of the second kind.
c) Assume that $\max _{t \in[0,1]}|a(t)| \leq a_{0}$. Show that if $a_{0}>0$ is sufficiently small then problem (4) has a unique solution $u \in C^{2}[0,1]$.
3. Show that the Fredholm integral equation

$$
u(x)-\int_{0}^{1} \sin \pi(x-t) u(t) d t=f(x), \quad 0 \leq x \leq 1
$$

has a unique solution $u \in C[0,1]$ for any given $f \in C[0,1]$. As an approximation of the solution u, use the formula

$$
u_{n}(x)=f(x)+\sum_{j=1}^{n} L^{j} f(x)
$$

to compute u_{2}.
4. Assume that the conditions of the geometric series theorem are satisfied. Then for any $f \in V$ the equation $(I-L) u=f$ has a unique solution $u \in V$. Show that this solution can be approximated by a sequence $\left\{u_{n}\right\}$ defined by

$$
u_{0} \in V, \quad u_{n}=f+L u_{n-1}, \quad n=1,2, \ldots
$$

by deriving an error bound for $\left\|u-u_{n}\right\|_{V}$.
5. Let V and W be Banach spaces and assume that $T \in \mathcal{L}(V, W)$ has a bounded inverse T^{-1} : $W \rightarrow V$. Show that if $S \in \mathcal{L}(V, W)$ satisfies $\|T-S\|<1 /\left\|T^{-1}\right\|$, then $S^{-1} \in \mathcal{L}(W, V)$ exists and

$$
\left\|S^{-1}\right\| \leq \frac{\left\|T^{-1}\right\|}{1-\left\|T^{-1}\right\|\|T-S\|}
$$

6. Consider the nonlinear Volterra integral equation

$$
\begin{equation*}
u(t)=\int_{a}^{t} k(t, s, u(s)) d s+f(t) \quad a \leq t \leq b \tag{5}
\end{equation*}
$$

where $f \in C[a, b]$ and $k(\cdot, \cdot, \cdot)$ is a continuous function for $a \leq s \leq t \leq b, u \in \mathbb{R}$. Assume that there exists a constant $M \geq 0$ such that for $a \leq s \leq t \leq b$

$$
\left|k\left(t, s, u_{1}\right)-k\left(t, s, u_{2}\right)\right| \leq M\left|u_{1}-u_{2}\right| \quad \forall u_{1}, u_{2} \in \mathbb{R}
$$

Let $V=C[a, b]$ and define a nonlinear operator $T: V \rightarrow V$ by

$$
T(u)(t)=\int_{a}^{t} k(t, s, u(s)) d s+f(t), \quad a \leq t \leq b
$$

a) Show that

$$
\left\|T^{m}(u)-T^{m}(v)\right\|_{V} \leq \frac{[M(b-a)]^{m}}{m!}\|u-v\|_{V} \quad \forall u, v \in V, \quad m=0,1, \ldots
$$

b) Prove that the operator T admits a unique fixed point in V, that is, show that the integral equation (5) admits a unique solution $u \in V$.
c) Show that the mapping $\|v\|:=\max _{t \in[0, b]} e^{-\beta t}|v(t)|, \beta \in \mathbb{R}$ is anorm in $C[0, b]$, equivalent to the uniform norm $\|\cdot\|_{\infty}$.
d) Let $a=0$. Show that $T: C[0, b] \rightarrow C[0, b]$ has a unique fixed point in $(C[0, b],\| \| \|)$. Assume that $\beta>M$.
7. Let $V=C[0,1]$ and consider the following nonlinear Volterra integral equation

$$
\begin{equation*}
u(t)=\frac{1}{2} \int_{0}^{t} s u^{2}(s) d s+f(t), \quad 0 \leq t \leq 1 \tag{6}
\end{equation*}
$$

where $f \in V$ is such that $\|f\|_{V} \leq \frac{1}{2}$.
a) Define $T: V \rightarrow V$ through

$$
T(u)(t)=\frac{1}{2} \int_{0}^{t} s u^{2}(s) d s+f(t), \quad 0 \leq t \leq 1
$$

and let $K=\left\{v \in V \mid\|v\|_{\infty} \leq C\right\}$. Choose $C>0$ in such a way that the operator T has a unique fixed point $u \in K$ and the iteration

$$
\left\{\begin{array}{l}
u_{n+1}(t)=\frac{1}{2} \int_{0}^{t} s u_{n}^{2}(s) d s+f(t), \quad n \geq 0 \tag{7}\\
u_{0}(t)=1
\end{array}\right.
$$

converges to u.
b) Let $f(t)=t / 2$ and $C=4 / 3$. Compute the first two iterates from (7). Derive an upper bound for the error $\left\|u-u_{2}\right\|_{V}$.
8. Consider the nonlinear Urysohn integral equation

$$
\begin{equation*}
u(t)=\mu \int_{a}^{b} k(t, s, u(s)) d s+f(t), \quad a \leq t \leq b \tag{8}
\end{equation*}
$$

where $\mu \in \mathbb{R}, k \in C([a, b] \times[a, b] \times \mathbb{R})$ and $f \in C[a, b]$. Assume that there exists a constant $L \geq 0$ such that

$$
\left|k\left(t, s, u_{1}\right)-k\left(t, s, u_{2}\right)\right| \leq L\left|u_{1}-u_{2}\right|, \quad \forall u_{1}, u_{2} \in \mathbb{R}, \quad a \leq t, s \leq b
$$

a) Show that, if $|\mu| L(b-a)<1$, then equation (8) admits a unique solution $u \in C[a, b]$ and the iteration

$$
u_{n+1}(t)=\mu \int_{a}^{b} k\left(t, s, u_{n}(s)\right) d s+f(t), \quad a \leq t \leq b, \quad n=0,1, \ldots
$$

converges to u, for any choice of $u_{0} \in C[a, b]$.
b) Let

$$
[a, b]=[0,1], \quad f(t)=\frac{7}{8} t, \quad k(t, s, u(s))=\frac{t s}{1+u^{2}(s)}
$$

Prove that, if $|\mu|<1$, then equation (8) admits a unique solution $u \in C[0,1]$. Approximate u by computing the first two iterates by the fixed point iteration. Consider $\mu=1 / 2$ and $u_{0}(t)=1$. Derive an upper bound for the error of the approximation u_{2}.

