Master in Mathematics and Applications - Técnico, Lisbon
 Numerical Functional Analysis and Optimization - Fall Semester 2016

$1^{\text {st }}$ Problem sheet

1. Consider the following sequence of $C[0,1]$ functions

$$
u_{n}(t)=\left\{\begin{array}{cl}
0, & 0 \leq t \leq \frac{1}{2} \\
2 n t-n, & \frac{1}{2} \leq t<\frac{1}{2}+\frac{1}{2 n} \\
1, & \frac{1}{2}+\frac{1}{2 n} \leq t \leq 1
\end{array}\right.
$$

Show that $\left\{u_{n}\right\}$ is not a Cauchy sequence in the uniform norm $\|\cdot\|_{\infty}$.
2. Let $a, b \geq 0$ and assume $p, q>1$ are such that $1 / p+1 / q=1$.
a) Show that

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q} \quad \quad(\text { Young's inequality })
$$

b) Let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{N}\right)$ be vectors in \mathbb{R}^{N}. Show that

$$
\sum_{j=1}^{N}\left|x_{j} y_{j}\right| \leq\|\mathbf{x}\|_{p}\|\mathbf{y}\|_{q} \quad \quad \text { (Hölder's inequality) }
$$

3. Let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{N}\right) \in \mathbb{R}^{N}$. Show that the mappings

$$
\|\mathbf{x}\|_{p}=\left(\sum_{j=1}^{N}\left|x_{j}\right|^{p}\right)^{1 / p}, \quad 1 \leq p<\infty, \quad \text { and } \quad\|\mathbf{x}\|_{\infty}=\max _{1 \leq j \leq N}\left|x_{j}\right|
$$

are norms in \mathbb{R}^{N}. Show also that the mapping $\|\cdot\|_{p}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is not a norm when $\left.p \in\right] 0,1[$.
4. Let $(V,\|\cdot\|)$ be a normed space. Show that the closed unit ball $B_{1}(0)=\{u \in V \mid\|u\| \leq 1\}$ is a convex set in V.
5. Prove the equivalence of the following norms on $C^{1}[0,1]$

$$
\|f\|_{a}=|f(0)|+\int_{0}^{1}\left|f^{\prime}(x)\right| d x, \quad\|f\|_{b}=\int_{0}^{1}|f(x)| d x+\int_{0}^{1}\left|f^{\prime}(x)\right| d x
$$

6. Let $A \in \mathbb{R}^{N \times N}$ be a symmetric and positive definite matrix e let (\cdot, \cdot) denote the usual (Euclidean) inner product in \mathbb{R}^{N}. Show that $(A x, y)=x^{T} A y$ is an inner product in \mathbb{R}^{N}.
7. Let V be a Hilbert space. Show that the inner product $(\cdot, \cdot): V \times V \rightarrow \mathbb{R}$ is a continuous with respect to its induced norm.
8. A normed space $(V,\|\cdot\|)$ is strictly convex if

$$
\forall u, v \in V \quad \text { such that }\|u\|=\|v\|=1, \quad u \neq v \quad \Longrightarrow \quad\|u+v\|<2 .
$$

Let U be a subspace of a strictly convex normed space $(V,\|\cdot\|)$. Show that, given $f \in V$, there exists at most one best approximation of f in U, with respect to the norm $\|\cdot\|$, i.e. a function ϕ^{*}, say, such that

$$
\left\|f-\phi^{*}\right\|=\min _{\phi \in U}\|f-\phi\|
$$

9. Let V be an inner product space. A linear operator $P: V \rightarrow V$ is called orthogonal projection if

$$
P^{2}=P, \quad(P u, v)=(u, P v) \quad \forall u, v \in V
$$

a) Show that a orthogonal projection is a bounded operator.
b) Assume that $P \neq 0$. Show that

$$
\|P\|=\sup _{\substack{v \in V \\ v \neq 0}} \frac{\|P v\|}{\|v\|}=1
$$

10. Let V, W be normed spaces, let $T: V \rightarrow W$ be a continuous linear operator and suppose that there exists a constant $c>0$ such that

$$
\|T v\|_{W} \geq c\|v\|_{V} \quad \forall v \in V
$$

Show that $T^{-1}: W \rightarrow V$ exists as a continuous linear operator.
11. For any fixed $t_{0} \in[a, b]$, let $f: V \rightarrow \mathbb{R}$ be a functional defined by

$$
f(v)=v\left(t_{0}\right) \quad \forall v \in V
$$

where $V=C[a, b]$.
Show that f is a continuous linear functional and that

$$
\|f\|=\sup _{v \in V, v \neq 0} \frac{|f(v)|}{\|v\|_{\infty}}=1
$$

