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1. Considere o campo vectorial 𝐹(𝑥, 𝑦, 𝑧) =
(
sen 𝑥 −

𝑦3

3
, cos 𝑦 +

𝑥3

3
, 𝑥𝑦𝑧

)
.

(a) (1 val.) Calcule o rotacional de 𝐹 .
Resolução:

Como 𝐹 é de classe 𝐶
1 em ℝ

3, então rot 𝐹 está bem definido em ℝ
3 e

rot 𝐹(𝑥, 𝑦, 𝑧) =

|
|
|
|
|
|
|
|

𝐞𝟏 𝐞𝟐 𝐞𝟑

𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

sen 𝑥 −
𝑦3

3
cos 𝑦 + 𝑥3

3
𝑥𝑦𝑧

|
|
|
|
|
|
|
|

= (𝑥𝑧, −𝑦𝑧, 𝑥
2
+ 𝑦

2
)

(b) (4 val.) Use (obrigatoriamente) o teorema de Stokes para calcular

∫
𝛾

𝐹 ⋅ 𝑑𝛾

onde 𝛾 é a curva 𝑥2
+ 𝑦

2
= 4 no plano 𝑧 = 0, percorrida em sentido negativo quando observada

do ponto (0, 0, 10).
Resolução

(a) Uma superfı́cie 𝑆0, cujo bordo é a circunferência dada pode ser

𝑆0 =
{
(𝑥, 𝑦, 𝑧) ∈ ℝ

3
∶ 𝑧 = 0 e 𝑥

2
+ 𝑦

2
< 4

}
.

Note que qualquer superfı́cie cujo bordo é 𝛾 serve. Escolhemos a mais simples possı́vel: a que
está contida no plano coordenado 𝑧 = 0. A sua parametrização pode ser:

𝑔(𝑥, 𝑦) = (𝑥, 𝑦, 0), definida em 𝑇 =
{
(𝑥, 𝑦) ∈ ℝ

2
∶ 𝑥

2
+ 𝑦

2
< 4

}
.

A normal unitária induzida por 𝑔 é 𝜕𝑔

𝜕𝑥
×

𝜕𝑔

𝜕𝑦
= (1, 0, 0) × (0, 1, 0) = (0, 0, 1), à qual corresponde o

sentido positivo da circunferência; como o caminho pedido tem o sentido oposto, escolhemos
(0, 0, −1) (se tem dúvidas, faça uma figura).



Finalmente, temos que 𝐹 é de classe 𝐶1 em ℝ
3 e 𝑆 é uma superfı́cie regular. O teorema de Stokes

garante-nos que o trabalho pedido é dado por:

∫
𝛾

𝐹 ⋅ 𝑑𝛾 = ∫
𝜕𝑆0

𝐹 ⋅ 𝑑𝛾 = ∬
𝑆0

rot 𝐹 ⋅ 𝜈 𝑑𝑆

Usando a alı́nea (a), resulta então que:

∫
𝛾

𝐹 ⋅ 𝑑𝛾 = ∬
𝑇

rot 𝐹(𝑔(𝑥, 𝑦)) ⋅ (
−
𝜕𝑔

𝜕𝑥
×
𝜕𝑔

𝜕𝑦)
𝑑𝑥𝑑𝑦

= ∬
𝑇

rot 𝐹(𝑥, 𝑦, 0) ⋅ (0, 0, −1) 𝑑𝑥𝑑𝑦

= ∬
𝑇
(0, 0, 𝑥

2
+ 𝑦

2
) ⋅ (0, 0, −1) 𝑑𝑥𝑑𝑦 = ∬

𝑇

−(𝑥
2
+ 𝑦

2
) 𝑑𝑥𝑑𝑦

Usando coordenadas polares 𝑥 = 𝑟 cos 𝜃, 𝑦 = 𝑟 sen 𝜃, então com

𝑇 =
{
(𝑟, 𝜃) ∶ 0 ≤ 𝑟 ≤ 2 e 0 ≤ 𝜃 ≤ 2𝜋

}
,

o integral anterior fica:

∫
𝛾

𝐹 ⋅ 𝑑𝛾 = ∬
𝑇

−𝑟
2
𝑟𝑑𝑟𝑑𝜃 = ∫

2𝜋

0
(∫

2

0

−𝑟
3
𝑑𝑟

)
𝑑𝜃 = −∫

2𝜋

0

𝑑𝜃 ⋅ ∫

2

0

𝑟
3
𝑑𝑟

= −2𝜋 ⋅
𝑟4

4

|
|
|
|

2

0

= −2𝜋
16

4
= −8𝜋.

(c) (2 val.) Determine, justificando

∬
𝑆

rot 𝐹 ⋅ 𝜈 𝑑𝑆,

onde 𝑆 =
{
(𝑥, 𝑦, 𝑧) ∈ ℝ

3
∶ 𝑧 − 2 = −

√
𝑥2 + 𝑦2, 𝑧 > 0

}
orientada pela normal unitária com

terceira componente negativa.
Resolução

Começamos por notar que a superfı́cie é o cone 𝑧 = 2 −
√
𝑥2 + 𝑦2, com 𝑧 > 0, cujo bordo está

na intersecção de 𝑧 = 0 com 𝑧 − 2 = −
√
𝑥2 + 𝑦2, ou seja:

−
√
𝑥2 + 𝑦2 = 2 ⇔ 𝑥

2
+ 𝑦

2
= 4 (em 𝑧 = 0).

Trata-se do caminho, 𝛾 da alı́nea (b); note-se que o sentido de 𝛾 é compatı́vel com a orientação
de 𝑆 (deve fazer uma figura). Pelo teorema de Stokes (aplicado a 𝑆) e alı́nea (b):

∬
𝑆

rot 𝐹 ⋅ 𝜈 𝑑𝑆 = ∫
𝜕𝑆

𝐹 ⋅ 𝑑𝛾 = ∫
𝛾

𝐹 ⋅ 𝑑𝛾 = −8𝜋.



2. (7 val.) Resolva o problema de valor inicial e de fronteira
⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝜕𝑢

𝜕𝑡
= 4

𝜕2𝑢

𝜕𝑥2
se 0 < 𝑥 < 𝜋

2
, 𝑡 > 0

𝑢(𝑡, 0) = 𝑢(𝑡,
𝜋

2 ) = 0 se 𝑡 > 0

𝑢(0, 𝑥) = 4 sen(2𝑥) − 2 sen(4𝑥) se 0 < 𝑥 < 𝜋

2

Resolução:

Começamos por resolver o problema de valores de fronteira

𝑢𝑡 = 4𝑢𝑥𝑥 e 𝑢(𝑡, 𝑥) = 𝑢(𝑡,
𝜋

2 ) com 𝑥 ∈ ]0,
𝜋

2 [ , 𝑡 > 0,

(um problema de Dirichlet homogéneo) pelo método de separação de variáveis; para tal, vamos
procurar soluções não nulas da forma 𝑢(𝑡, 𝑥) = 𝑇 (𝑡)𝑋(𝑥). Substituindo na equação diferencial,
obtemos

𝑇
′
(𝑡)𝑋(𝑥) = 4𝑇 (𝑡)𝑋

′′
(𝑥) ou seja

𝑇 ′

4𝑇
=

𝑋 ′′

𝑋
,

válida para qualquer 𝑥 ∈ ]0,
𝜋

2 [ e 𝑡 > 0. Como o primeiro membro da igualdade depende apenas de
𝑡, enquanto o segundo membro depende apenas de 𝑥 , para que a última igualdade se verifique para
todo 𝑡 > 0 e 𝑥 ∈ ]0,

𝜋

2 [, ambos os membros da mesma têm que ser constantes. Assim sendo, para
certos valores de 𝜆 ∈ ℝ:

𝑇 ′

4𝑇
= 𝜆 e

𝑋 ′′

𝑋
= 𝜆.

Por outro lado, analisando as condições de fronteira

𝑢(𝑡, 0) = 0 ⇒ 𝑇(𝑡)𝑋(0) = 0 ⇒ 𝑇(𝑡) ≡ 0 ou 𝑋(0) = 0

dado que 𝑇 (𝑡) não deve ser a função nula.

𝑢(𝑡, 0) = 0 ⇒ 𝑋(0) = 0

Do mesmo modo
𝑢 (𝑡,

𝜋

2 ) = 0 ⇒ 𝑋 (
𝜋

2 ) = 0

Temos assim dois problemas para resolver:
{
𝑋

′′
− 𝜆𝑋 = 0 se 𝑥 ∈ ]0,

𝜋

2 [

𝑋(0) = 𝑋(𝜋
2
) = 0

(1)

e
𝑇

′
= 4𝜆𝑇 se 𝑡 > 0. (2)

O problema (1) é um problema de valores próprios para a equação 𝑋
′′
− 𝜆𝑋 = 0 com condições de

fronteira de Dirichlet 𝑋(0) = 𝑋(𝜋
2
) = 0. Assim, os valores próprios são −4𝑛2 (para todo o 𝑛 ∈ ℕ),

associados às soluções 𝑋𝑛(𝑥) = sen(2𝑛𝑥).
Podemos agora resolver (2), apenas para os valores de 𝜆 encontrados anteriormente, pois para outros
valores de 𝜆 a solução de (1) é a solução nula, que não nos interessa. Assim, para cada 𝑛 ∈ ℕ, e a
menos de combinação linear

𝑇
′
(𝑡) = −8𝑛

2
𝑇 ⇒ 𝑇𝑛(𝑡) = 𝑒

−8𝑛2𝑡

Então, para cada 𝑛 ∈ ℕ, a função

𝑢𝑛(𝑡, 𝑥) = 𝑇𝑛(𝑡)𝑋𝑛(𝑥) = 𝑒
−8𝑛2𝑡

sen(2𝑛𝑥)



Consequentemente qualquer combinação linear também o será, ou seja

𝑢(𝑡, 𝑥) =

∞

∑

𝑛=1

𝐴𝑛𝑒
−8𝑛2𝑡

sen(2𝑛𝑥)

Para calcular as constantes 𝐴𝑛 com 𝑛 = 1, 2, … utilizamos a condição inicial:

∞

∑

𝑛=1

𝐴𝑛 sen(2𝑛𝑥) = 𝐴1 sen(2𝑥) + 𝐴2 sen(4𝑥) + 𝐴3 sen(6𝑥) + ⋯

= 𝑢(0, 𝑥) = 4 sen(2𝑥) − 2 sen(4𝑥)

Assim
𝐴1 = 4, 𝐴2 = −2 e 𝐴𝑛 = 0 ∀ 𝑛 ∈ ℕ ⧵ {1, 2}.

Finalmente, a solução do problema de valores iniciais e de fronteira é

𝑢(𝑡, 𝑥) = 4𝑒
−8𝑡

sen(2𝑥) − 2𝑒
−32𝑡

sen(4𝑥).

3. Considere a função 𝑓 ∶ [−𝜋, 𝜋] → ℝ dada por 𝑓 (𝑥) = |𝑥|.
(a) (4 val.) Determine a série de Fourier de 𝑓 (𝑥) e estude-a quanto à convergência pontual em

[−𝜋, 𝜋].
Resolução:

(a) Como 𝑓 é uma função par, a série de Fourier é uma série de cossenos:

𝑆𝐹𝑓 (𝑥) =
𝑎0

2
+

∞

∑

𝑛=1

𝑎𝑛 cos(𝑛𝑥),

onde
𝑎0 =

2

𝜋 ∫

𝜋

0

|𝑥| 𝑑𝑥 =
2

𝜋 ∫

𝜋

0

𝑥 𝑑𝑥 =
2

𝜋

𝑥2

2

|
|
|
|

𝜋

0

= 𝜋.

e, para cada 𝑛 ∈ ℕ,

𝑎𝑛 =
2

𝜋 ∫

𝜋

0

|𝑥| cos(𝑛𝑥) 𝑑𝑥 =
2

𝜋 ∫

𝜋

0

𝑥 cos(𝑛𝑥) 𝑑𝑥

=
2

𝜋 (���
����

𝑥
1

𝑛
sen(𝑛𝑥)

|
|
|
|

𝜋

0

− ∫

𝜋

0

1

𝑛
sen(𝑛𝑥) 𝑑𝑥

)

=
2

𝜋
⋅
1

𝑛2
cos(𝑛𝑥)

|
|
|
|

𝜋

0

=
2

𝜋𝑛2 ( cos(𝑛𝜋) − 1) =
2

𝜋𝑛2 ((−1)
𝑛
− 1)

Logo, a série de Fourier de 𝑓 é

𝑆𝐹𝑓 (𝑥) =
𝜋

2
+

2

𝜋

∞

∑

𝑛=1

(−1)𝑛 − 1

𝑛2
cos(𝑛𝑥)

Para determinar a soma da série, notamos que 𝑓 é contı́nua no seu domı́nio e 𝑓 (−𝜋) = | − 𝜋| =

𝜋 = 𝑓 (𝜋). Além disso, 𝑓 é seccionalmente 𝐶1. Pelo teorema da convergência pontual das séries
de Fourier:

𝑆𝐹𝑓 (𝑥) = |𝑥| ∀𝑥 ∈ [−𝜋, 𝜋].



(b) (2 val.) Utilizando o resultado anterior, calcule a soma da série:

∞

∑

𝑘=1

1

(2𝑘 − 1)2
.

Resolução:

Pelo resultado anterior aplicado ao ponto 𝑥 = 0, 𝑆𝐹𝑓 (0) = 0, ou seja:

𝜋

2
+

2

𝜋

∞

∑

𝑛=1

(−1)𝑛 − 1

𝑛2
= 0.

Tendo em conta que

(−1)𝑛 − 1

𝑛2
=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

− 2

(2𝑘−1)2
se 𝑛 = 2𝑘 − 1 (com 𝑘 ∈ ℕ)

0 se 𝑛 = 2𝑘 (com 𝑘 ∈ ℕ).

resulta que
𝜋

2
−

4

𝜋

∞

∑

𝑘=1

1

(2𝑘 − 1)2
= 0.

Concluı́mos pois que
∞

∑

𝑘=1

1

(2𝑘 − 1)2
=

𝜋

2
⋅
𝜋

4
=

𝜋2

8
.


