1. For \(g \in L^p(\mathbb{R}^n) \) fixed, with \(1 \leq p < \infty \), consider the operator \(T_g : L^1(\mathbb{R}^n) \to L^p(\mathbb{R}^n) \) defined by
\[
T_g f = g * f, \quad f \in L^1(\mathbb{R}^n).
\]
Show that the operator norm of \(T_g \), \(\|T_g\|_{L^1 \to L^p} \), is exactly equal to \(\|g\|_{L^p(\mathbb{R}^n)} \). And what is the operator norm for \(p = \infty \)?

2. Let \((X, \mu) \) and \((Y, \nu) \) be \(\sigma \)-finite measure spaces, and \(f : X \times Y \to \mathbb{C} \) a measurable function. The mixed \(L^p \) norm of \(f \) is defined as
\[
\|f\|_{L^p(X,L^q(Y))} = \left\| \|f(x,y)\|_{L^q(Y)} \right\|_{L^p(X)},
\]
and analogously,
\[
\|f\|_{L^q(Y,L^p(X))} = \left\| \|f(x,y)\|_{L^p(X)} \right\|_{L^q(Y)},
\]
for any \(0 < p, q \leq \infty \). The order in which the partial norms are computed is very important, as they do not commute. Show, however, that for \(0 < p \leq q \leq \infty \), the following inequality holds
\[
\|f\|_{L^q(Y,L^p(X))} \leq \|f\|_{L^p(X,L^q(Y))}.
\]

3. In the same framework as in the previous problem, consider the integral operator
\[
Kf(x) = \int K(x,y)f(y)dy,
\]
where the kernel \(K(x,y) \) satisfies
\[
\|K\|_{L^q(Y,L^p(X))} \leq C_0 \quad \text{and} \quad \|K\|_{L^p(X,L^q(Y))} \leq C_1,
\]
for any \(1 \leq p, q \leq \infty \). Prove that, for \(q' \leq s \leq p' \), \(\frac{1}{s} + \frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r} \) and \(f \in L^s(Y) \), then \(Kf(x) \) is well defined a.e. \(x \in X \), \(Kf \in L^r(X) \) and the following inequality holds
\[
\|Kf\|_r \leq C_0^\theta C_1^{1-\theta} \|f\|_s,
\]
where \(0 \leq \theta \leq 1 \) is such that \(\frac{1}{s} = \theta \frac{1}{q} + (1-\theta) \frac{1}{p} \).

\textit{Obs:} Note that the case \(p = \infty \) was done in class, corresponding to the generalized Schur-Young inequality. The case \(p = q = 2 \) is also very important: in this case \(K \in L^2(X \times Y) \) are called Hilbert-Schmidt kernels and the corresponding integral formulas define linear bounded continuous operators from \(L^2 \) to \(L^2 \), known in the literature as integral Hilbert-Schmidt operators.
4. Consider \(f \in L^1_{loc}(\mathbb{R}^n) \) and \(g \in C^k_c(\mathbb{R}^n) \).

a) Prove rigorously that \(f * g \in C^k(\mathbb{R}^n) \) and that \(\forall |\alpha| \leq k \) \(\partial^\alpha (f * g) = f * \partial^\alpha g \).

b) If also \(f \in C^l(\mathbb{R}^n) \) (maintaining the condition \(g \in C^k_c(\mathbb{R}^n) \)), show then that \(f * g \in C^{k+l}(\mathbb{R}^n) \) and that \(\partial^\alpha (f * g) = \partial^\alpha_1 f * \partial^\alpha_2 g \), with \(\alpha = \alpha_1 + \alpha_2 \), \(|\alpha_1| \leq l \) and \(|\alpha_2| \leq k \).

5. Let \(\varphi \in C^\infty_c(\mathbb{R}^n) \), with \(\int \varphi = 1 \) and \(\text{supp} \ \varphi \subset B_1(0) \). If \(f \in L^1_{loc}(\mathbb{R}^n) \) (which, from the previous problem, we know implies \(\varphi^\epsilon * f \in C^\infty \)), prove that, when \(\epsilon \to 0 \), then \(\varphi^\epsilon * f \to f \) uniformly on any compact subset of an open set where \(f \) is continuous. Show also that, in case \(f \) is \(k \) times continuously differentiable in that open set, then all derivatives \(\partial^\alpha \varphi^\epsilon * f \) converge uniformly to \(\partial^\alpha f \), \(|\alpha| \leq k \), in compact subsets too. Remember that \(\varphi^\epsilon(x) = 1/\epsilon^n \varphi(x/\epsilon) \).

6. This problem shows that, in \(L^\infty(\mathbb{R}^n) \), continuity of the translation holds if and only if \(f \) is uniformly continuous (the “if” part of the equivalence being trivial). Let \(f \in L^\infty(\mathbb{R}^n) \) satisfy \(\lim_{h \to 0} ||f(\cdot - h) - f(\cdot)||_{L^\infty(\mathbb{R}^n)} = 0 \). Prove that, in this case, \(f \) is equal a.e. to a uniformly continuous function. Suggestion: Define the averages of \(f \) over balls of radius \(r \) as

\[
A_r f(x) = \frac{1}{\text{Vol}(B_r(x))} \int_{B_r(x)} f(y) \, dy,
\]

and, trying to recognize here the formula of the convolution of \(f \) by an appropriate approximation of the identity, use it to approximate \(f \) and reach the desired conclusion.