Harmonic Analysis

1st Exam

24 June 2010

Carefully write down all relevant computations and justifications

1. Show that the $L^1(\mathbb{R}^n)$ kernel of a convolution operator in $L^p(\mathbb{R}^n)$ is unique. That is, let K and \tilde{K} be kernels in $L^1(\mathbb{R}^n)$, such that for a certain fixed $1 \leq p \leq \infty$ and all $f \in L^p(\mathbb{R}^n)$, $K * f = \tilde{K} * f$. Show that, necessarily, $K = \tilde{K}$.

2. Let T be a linear and symmetric operator, defined on the space of measurable functions on \mathbb{R}^n. Symmetric, here, means that the following holds
\[
\int_{\mathbb{R}^n} T f(x) g(x) \, dx = \int_{\mathbb{R}^n} f(x) T g(x) \, dx,
\]
for any measurable functions f, g, for which one of the integrals (and therefore the other) exists.

a) Show that T is then a bounded operator from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$, with $1 \leq p, q \leq \infty$, if and only if it is also bounded from $L^{p'}(\mathbb{R}^n)$ to $L^{q'}(\mathbb{R}^n)$ (p' and q' denote, as usual, the conjugate exponents of p and q, respectively).

b) Conclude that, if such a symmetric operator $T : L^p(\mathbb{R}^n) \to L^q(\mathbb{R}^n)$ is bounded, it will also be bounded from $L^r(\mathbb{R}^n)$ to $L^s(\mathbb{R})$, for all exponents r between p and q', with s satisfying $1/p + 1/s = 1/q + 1/r$.

3. Use Plancherel’s theorem to prove that whenever $f, g \in L^1(\mathbb{T})$ satisfy $f * f, g * g \in L^2(\mathbb{T})$, then $f * g \in L^2(\mathbb{T})$. Estimate the norm $\|f * g\|_{L^2(\mathbb{T})}$ in terms of the norms $\|f * f\|_{L^2(\mathbb{T})}$ and $\|g * g\|_{L^2(\mathbb{T})}$.

4. Prove that the Fourier transform map, which takes a finite (and regular) Borel measure $\mu \in \mathcal{M}(\mathbb{T})$, to its Fourier coefficients $\hat{\mu}(n) = \int_{\mathbb{T}} e^{-int} \, d\mu(t)$, is one to one (injective). Equivalently, suppose that $\mu \in \mathcal{M}(\mathbb{T})$ satisfies $\hat{\mu}(n) = 0$ for all $n \in \mathbb{Z}$, and conclude that μ is the zero measure on \mathbb{T}.

5. Show that, if the trigonometric series $\sum_{n=-\infty}^{+\infty} c_n e^{int}$ converges to f in $L^p(\mathbb{T})$, for any fixed $1 \leq p \leq \infty$, i.e. if $\|\sum_{n=-N}^{N} c_n e^{int} - f\|_{L^p(\mathbb{T})} \to 0$ when $N \to \infty$, then the coefficients c_n are necessarily equal to the Fourier coefficients of f
\[
c_n = \hat{f}(n) = \frac{1}{2\pi} \int_{\mathbb{T}} f(t) e^{-int} \, dt.
\]

6. Show that $L^2(\mathbb{T}) * L^2(\mathbb{T}) = A(\mathbb{T})$, i.e., that $f \in A(\mathbb{T})$ if and only if there exist two functions $g, h \in L^2(\mathbb{T})$ such that $f = g * h$.
7. Let \(f : \mathbb{T} \to \mathbb{R}, f \in L^1(\mathbb{T}) \), be given by

\[
 f(x) = \begin{cases}
 \sin \left(\frac{1}{x} \right), & \text{se } x \in]-\pi, \pi[\setminus \{0\} \\
 0 & \text{se } x = 0, \pi.
 \end{cases}
\]

Study the pointwise convergence of the partial sums of the Fourier series of this function at every point of \(\mathbb{T} \), justifying your answer carefully and in detail.

8. a) What can you say about the pointwise convergence of Fourier series of arbitrary functions in \(L^1(\mathbb{T}) \)?

b) What if, instead of pointwise convergence, one considers convergence in the norm \(\| \cdot \|_{L^1(\mathbb{T})} \)?

c) Prove that the partial sums of the Fourier series of \(f \in L^1(\mathbb{T}) \) always converge to \(f \) in the sense of distributions, that is, for any \(\phi \in C^\infty(\mathbb{T}) \) show that

\[
 \frac{1}{2\pi} \int_{\mathbb{T}} S_N(f)(t) \phi(t) \, dt \to \frac{1}{2\pi} \int_{\mathbb{T}} f(t) \phi(t) \, dt.
\]

Do only one of the following two problems, noting that they count differently

9. Prove that \(u \in h^1(\mathbb{D}) \) if and only if \(u_r = P_r * \mu \), where \(P_r \) is the Poisson kernel, and \(\mu \) is a unique finite (and regular) Borel measure. (Hint: Notice that this was done in class for the case of the case of Fejér kernel. The proof here is exactly the same).

10. Let \(1 \leq p, q < \infty \).

a) Define the weak-\(L^p \) space \(L^p_w(X) \), for \(1 \leq p < \infty \) and state what its quasi-norm \(\| \cdot \|_{L^p_w(X)} \) is.

b) Define what a linear operator of weak type \((p, q) \) is.

c) Prove that an operator of strong type \((p, q) \) is necessarily of weak type \((p, q) \).