HOLOMORPHIC BUNDLES ON THE BLOWN-UP PLANE AND THE BAR CONSTRUCTION

JOÃO PAULO SANTOS

Abstract. Let $M_0 = \coprod BU(k)$, $M_1 = \coprod (BU(k) \times BU(k))$. We construct a map from $\text{Bar} (M_0, M_0', M_1')$ to the rank-stable moduli space of holomorphic bundles on the blowup of \mathbb{P}^2 at n points, framed on a rational curve. We show that this map is a homotopy equivalence in the degree 1 and 2 components and in the limit when $k \to \infty$.

1. Introduction

In this paper we will study the moduli space of holomorphic bundles over a rational surface with vanishing first Chern class, trivialized on a rational curve, in the limit when the rank of the bundles goes to infinity. This space is isomorphic to the moduli space of based instantons over a positive definite simply connected closed four-manifold (see [2], [9]), and has been studied in [7], [1], [12].

Write $\mathbb{P}^2 = \mathbb{C}^2 \cup \mathbb{P}^1$ and, given a finite subset $I \subset \mathbb{C}^2$, let \mathbb{P}^2_I be the blowup of \mathbb{P}^2 along I. Let \mathcal{M}_r^I be the moduli space of rank r holomorphic bundles on \mathbb{P}^2_I with first Chern class $c_1(E) = 0$, trivialized at \mathbb{P}^1. Direct sum with a trivial rank r' bundle induces a map $\mathcal{M}_r^I \to \mathcal{M}_r'^I$. Let \mathcal{M}_∞^I be the direct limit when $r \to \infty$. In [7], [11], [1] it was shown that $\mathcal{M}_\infty^\emptyset \simeq \coprod BU(k)$ and, for each $x \in \mathbb{C}^2$, $\mathcal{M}_\infty^x \simeq \coprod BU(k) \times BU(k)$. Then, Whitney sum induces a map

$$(\mathcal{M}_\infty^\emptyset)^n \times \mathcal{M}_\infty^\emptyset \to \mathcal{M}_\infty^\emptyset$$

For $J \subset I$, pullback of bundles induces a map $\pi^* : \mathcal{M}_J^\infty \to \mathcal{M}_I^\infty$. Combining with Whitney sum we get maps $\mathcal{M}_\infty^\emptyset \times \mathcal{M}_\infty^x \to \mathcal{M}_\infty^x$. Let

$$(1) \quad B_I = \text{Bar} \left(\mathcal{M}_\infty^\emptyset, \coprod_{x \in I} \mathcal{M}_\infty^x, \coprod_{x \in I} \mathcal{M}_\infty^x \right)$$

Pullback and Whitney sum give maps

$$\mathcal{M}_\infty^\emptyset \to \mathcal{M}_I^\infty \quad \coprod_{x \in I} \mathcal{M}_\infty^x \to \mathcal{M}_I^\infty$$

which induce a map

$$(2) \quad h_I : B_I \to \mathcal{M}_I^\infty$$

The second Chern class of the bundles gives a grading of the spaces $\mathcal{M}_I^\infty, B_I$ and we write $\mathcal{M}_{I,k}^\infty, B_{I,k}, h_{I,k}$ for the degree k components and map. Our first result is

Theorem 1. If, for every $J \subset I$ with $\# J \leq k$, $h_{I,k}$ is a homotopy equivalence, then $h_{I,k}$ is a homotopy equivalence.

Using Theorem 1 and results from [12] we then show that
Theorem 2. For $k = 1, 2$, $h_{I,k}$ is a homotopy equivalence.

In [14], Taubes described, for $k' > k$, gluing maps $\mathcal{M}_{I,k} \to \mathcal{M}_{I,k'}$. He showed that, in the limit when $k \to \infty$, we get $\mathcal{M}_{I,\infty} \simeq BU \times \prod_{x \in I} BU$. We will show that

Theorem 3. The map $h_{I,\infty}: B_{I,\infty} \to \mathcal{M}_{I,\infty}$ is a homotopy equivalence.

Conjecture. The map h_I is a homotopy equivalence.

Let L denote the linear isometries operad and let \mathcal{C} denote the category whose objects are the finite subsets of \mathbb{C}^2 and whose morphisms are the inclusions. The paper is organized as follows: In §2 we describe the moduli space M_I as an L-space. In §3 we describe the bar construction, the space B_I and the map h_I. M_I and B_I are functors from \mathcal{C} to Top, the morphisms being induced by the pullback of holomorphic bundles. In §4 we prove theorem 1. This theorem is a consequence of the following fact (see [12]): $M_{I,k}$ is the colimit $\lim_{\to} M_{J,k}$ taken over the subsets $J \subset I$ with $\#J \leq k$. In §5 we use theorem 1 and results from [12] to prove theorem 2. In §6 we prove theorem 3. We make use of some classifying maps $M_{I,\infty} \to BU$ described in [13]. In the appendix we gather some results needed in section §5. The proofs use the monad descriptions of holomorphic bundles introduced in [4], [6].

2. \mathcal{L}-spaces

The objective of this section is to define a functor from the category \mathcal{C} of finite subsets of \mathbb{C}^2 to the category of L-spaces. Following [10], we first define a functor from \mathcal{C} to the category of L_*-functors. We briefly review the notion of L_* functor. Let L be the category whose objects are the complex hermitian vector spaces with finite or countably infinite dimension, topologized as the limits of their finite dimensional subspaces, and the space of morphisms from V to W is the space linear isometries, with the compact open topology. Let L_n be the full subcategory whose objects have dimension n and let L_* be the graded subcategory given by the union. An L_* functor is a pair (\mathcal{M}, ω) where $\mathcal{M}: L_* \to (\text{Top})$ is a continuous functor and $\omega: \mathcal{M} \times \mathcal{M} \to \mathcal{M} \circ \oplus$ is a commutative, associative and continuous natural transformation satisfying

1. Let 0 be the 0-dimensional vector space and let $* \in \mathcal{M} 0$ be the basepoint. Then $\omega(x,*) = x$.
2. Suppose $V = V' \oplus V''$. Let $* \in \mathcal{M} V''$ be the basepoint. Then the map $\mathcal{M} V' \to \mathcal{M} V$ given by $x \mapsto \omega(x,*)$ is a closed embedding.

A morphism of L_* functors is a continuous natural transformation that commutes with ω.

Now let $H = \mathbb{C}^\infty$. Let L denote the linear isometries operad defined by $L(j) = L(\mathbb{H}^{\oplus j}, \mathbb{H})$. L is an E_∞ operad. There is a functor from the category of L_*-functors to the category of L-spaces: given an L_* functor (\mathcal{M}, ω), we let $\mathcal{M} H = \lim V$ where V runs over the finite dimensional hermitian subspaces of H. Then $\mathcal{M} H$ in an L-space. We proceed to define, for each rational surface X, an L_*-functor (\mathcal{M}_X, ω).
2.1. Objects. Let X be a rational surface. We want to associate to each complex hermitian vector space V a topological space $\mathcal{M}_X(V)$. Fix a rational curve $L_\infty \subset X$ with positive self-intersection. Let $E \to X$ be a complex smooth vector bundle with first Chern class $c_1(E) = 0$ and rank $rk(E) = \dim(V)$. A holomorphic structure on E is a semi-connection $\bar{\partial}_E : \Omega^0(E) \to \Omega^{0,1}(E)$ satisfying the integrability condition $\bar{\partial}^2_E = 0$. Let $C(X, E, V)$ be the space of pairs $(\bar{\partial}_E, \phi)$ where $\bar{\partial}_E$ is a holomorphic structure on E holomorphically trivial on L_∞ and $\phi : E|_{L_\infty} \to V \otimes \mathcal{O}_{L_\infty} = V \times L_\infty$ is an isomorphism of holomorphic bundles. Given an isomorphism of smooth vector bundles $\psi : E_1 \to E_2$ we define the map $\psi_* : C(X, E_1, V) \to C(X, E_2, V)$ by

$$\psi_* (\bar{\partial}, \phi) = (\psi \circ \bar{\partial} \circ \psi^{-1}, \phi \circ \psi^{-1})$$

For $E_1 = E_2 = E$ we get an action of the group $Aut(E)$ of smooth bundle automorphisms of E on $C(X, E, V)$. Now, applying theorem 1.1 and lemma 2.6 from [8], since, for $k > 0$, $H^0(\text{End}(V \otimes \mathcal{O}_{L_\infty}(-k))) = 0$, the action of $Aut(E)$ on $C(X, E, V)$ is free and the quotient has the structure of a finite dimensional Hausdorff complex analytic space. We define $\mathcal{M}(X, E, V)$ as the quotient $C(X, E, V)/Aut(E)$.

Proposition 2.1. Let E_1, E_2 be two isomorphic complex vector bundles. Then there is a canonical isomorphism $\mathcal{M}(X, E_1, V) \cong \mathcal{M}(X, E_2, V)$.

Proof. Let $\psi, \tilde{\psi} : E_1 \to E_2$ be bundle automorphisms and let $g \in Aut(E_1)$. Then $\psi \circ g \circ \psi^{-1}, \tilde{\psi} \circ \psi^{-1} \in Aut(E_2)$ and

$$\psi_* \circ g_* = (\psi \circ g \circ \psi^{-1})_* \circ \psi_*$$

$$\tilde{\psi}_* = (\tilde{\psi} \circ \psi^{-1})_* \circ \psi_*$$

The first equation tells us that ψ_* descends to the quotient to give a map $\psi_* : \mathcal{M}(X, E_1, V) \to \mathcal{M}(X, E_2, V)$. The second equation tells us that $\tilde{\psi}_* = \psi_*$ hence the map is independent of the choice of isomorphism ψ. \square

The smooth isomorphism class of E is completely determined by its rank and its second Chern class $c_2(E) = k$. Hence we will write $\mathcal{M}_{X,k}(V)$ instead of $\mathcal{M}(X, E, V)$.

We define

$$\mathcal{M}_X(V) = \prod_{k=0}^{\infty} \mathcal{M}_{X,k}V$$

2.2. **Morphisms.** We now show how to associate to a linear isometry $\alpha : V \to W$ a continuous map $\mathcal{M}_{X,\alpha} : \mathcal{M}_X(V) \to \mathcal{M}_X(W)$. For each k pick a smooth complex vector bundle E with $c_1(E) = 0, c_2(E) = k$ and $rk(E) = \dim(V)$. Let $V_\alpha = \alpha(V)^\perp$. Then α extends canonically to as isomorphism $\tilde{\alpha} : V \oplus V_\alpha \to W$. Let ϵ_α be the trivial bundle over X with fiber V_α. We will define a map

$$\mathcal{C}_{E,\alpha} : \mathcal{C}(X, E, V) \to \mathcal{C}(X, E \oplus \epsilon_\alpha, W)$$

Given a trivialization $\phi : E|_{L_\infty} \to L_\infty \times V$ we define $\phi_\alpha : E \oplus \epsilon_\alpha \to W \times L_\infty$ as the composition

$$(E \oplus \epsilon_\alpha)|_{L_\infty} \xrightarrow{\phi \oplus 1} (V \oplus V_\alpha) \times L_\infty \xrightarrow{\delta \times 1} W \times L_\infty$$

Let $\bar{\partial}$ be the canonical holomorphic structure on ϵ_α. Then, given $(\bar{\partial}_E, \phi) \in \mathcal{C}(X, E, V)$ we define $\mathcal{C}_{E,\alpha}(\bar{\partial}_E, \phi) = (\bar{\partial}_E \oplus \bar{\partial}, \phi_\alpha)$.

Lemma 2.2. $\mathcal{C}_{E,\alpha}$ descends to the quotient to give a map $\mathcal{M}_{X,\alpha} : \mathcal{M}_{X,k}V \to \mathcal{M}_{X,k}W$.

Proof. An automorphism \(\psi \in \text{Aut}(E) \) induces an automorphism \(\psi_\alpha = \psi \oplus 1 \in \text{Aut}(E \oplus \epsilon_\alpha) \) and it’s a direct verification that \(C_E \alpha \circ \psi_* = (\psi_\alpha)_* \circ C_E \alpha \). The result follows. \(\square \)

\(\mathcal{M}_X \alpha : \mathcal{M}_X V \to \mathcal{M}_X W \) is the map whose degree \(k \) components are \(\mathcal{M}_{X,k} \).

Proposition 2.3. \(\mathcal{M}_X : \mathcal{L}_* \to \text{(Top)} \) is a functor.

Proof. Given isometries \(\alpha : U \to V \) and \(\beta : V \to W \), we want to show that \(\mathcal{M}_X \beta \circ \mathcal{M}_X \alpha = \mathcal{M}_X (\beta \circ \alpha) \). Let \(E \) be a bundle with rank equal to \(\dim U \) and \(c_2(E) = k \). Let \(\epsilon_\alpha = \alpha(U)^{\perp} \times X, \epsilon_\beta = \beta(V)^{\perp} \times X, \epsilon_{\beta \alpha} = (\beta \circ \alpha)(U)^{\perp} \times X \). Then the map \(\beta \oplus 1 : \alpha(U) \oplus \beta(V) \to (\beta \circ \alpha)(U) \) is an isomorphism of hermitian vector spaces inducing an isomorphism of bundles \(\psi : E \oplus \epsilon_\alpha \oplus \epsilon_\beta \to E \oplus \epsilon_{\beta \alpha} \) and we have the commutative diagram

\[
\begin{array}{ccc}
C(X,E,U) & \xrightarrow{C_{E \alpha}} & C(X,E \oplus \epsilon_\alpha,V) \\
\downarrow{C_{E(\beta \circ \alpha)}} & & \downarrow{C_{E \beta}} \\
C(X,E \oplus \epsilon_{\beta \alpha},W) & \xleftarrow{\psi_*} & C(X,E \oplus \epsilon_\alpha \oplus \epsilon_\beta,W)
\end{array}
\]

These maps descend to the quotient and we get \(\mathcal{M}_X \beta \circ \mathcal{M}_X \alpha = \mathcal{M}_X (\beta \circ \alpha) \). \(\square \)

Proposition 2.4. The assignement \(\beta \mapsto \mathcal{M}_X \beta \) induces a continuous map between the space of isometries \(\mathcal{L}(V,W) \) and the space of maps \(\text{Map}(\mathcal{M}_X V, \mathcal{M}_X W) \).

Proof. When \(\dim V = \dim W \), an isometry \(\alpha : V \to W \) induces a map \(\alpha \times 1 : V \times L_{X,0} \to W \times L_{X,0} \) and \(C_E : C(X,E,V) \to C(X,E,W) \) is just the map \(C_E (\partial_E, \phi) = (\partial_E, (\alpha \times 1) \circ \phi) \). The assignement \(\alpha \mapsto C_E \alpha \) is clearly continuous, and hence the assignement \(\alpha \mapsto \mathcal{M}_X \alpha \) is continuous. Consider now the general case. Let \(r, R \) be the dimensions of \(V, W \) respectively, and let \(V_0 = \mathbb{C}^{R-r} \). Consider the restriction map \(\rho : \mathcal{L}(V \oplus V_0, W) \to \mathcal{L}(V,W) \). \(\rho \) is a principal \(U(R-r) \) bundle. We fix a section \(\theta \) of \(\rho \). Given an isometry \(\alpha : V \to W \), let \(V_\alpha = \alpha(V)^{\perp} \), \(\epsilon_0 = V_0 \times X \) and \(\epsilon_\alpha = V_\alpha \times X \). Then, restricting \(\theta(\alpha) \) to \(V_0 \) we get an isomorphism \(\theta(\alpha)(V_0) : V_0 \to V_\alpha \) which induces an isomorphism of holomorphic bundles \(\psi : E \oplus \epsilon_0 \to E \oplus \epsilon_\alpha \). Let \(i : V \to V \oplus V_0 \) be the canonical inclusion. We have the commutative diagram

\[
\begin{array}{ccc}
C(X,E,V) & \xrightarrow{C_{E \iota}} & C(X,E \oplus \epsilon_0, V \oplus V_0) \\
\downarrow{C_{E \alpha}} & & \downarrow{C_{E \oplus \epsilon_0, \theta(\alpha)}} \\
C(X,E \oplus \epsilon_\alpha, W) & \xleftarrow{\psi_*} & C(X,E \oplus \epsilon_0, W)
\end{array}
\]

This shows that the following diagram is commutative

\[
\begin{array}{ccc}
\mathcal{L}(V,W) & \xrightarrow{\mathcal{M}_X} & \text{Map}(\mathcal{M}_X V, \mathcal{M}_X W) \\
\downarrow{\rho} & & \downarrow{(\mathcal{M}_X \iota)^*} \\
\mathcal{L}(V \oplus V_0,W) & \xrightarrow{\mathcal{M}_X} & \text{Map}(\mathcal{M}_X (V \oplus V_0), \mathcal{M}_X W)
\end{array}
\]

where \((\mathcal{M}_X \iota)^* \) is the adjoint of the map \(\mathcal{M}_X \iota : \mathcal{M} V \to \mathcal{M}(V \oplus V_0) \). The bottom map is continuous since \(\dim(V \oplus V_0) = \dim W \). We conclude that \(\mathcal{M}_X : \mathcal{L}(V,W) \to \text{Map}(\mathcal{M}_X V, \mathcal{M}_X W) \) is continuous. \(\square \)
2.3. The natural transformation. We now define a natural transformation \(\omega : \mathcal{M}_X \times \mathcal{M}_X \to \mathcal{M}_X \circ \alpha \). We must define, for each pair \(V_1, V_2 \), maps \(\omega_{V_1,V_2} : \mathcal{M}_X V_1 \times \mathcal{M}_X V_2 \to \mathcal{M}_X (V_1 \oplus V_2) \). Given smooth vector bundles \(E_1, E_2 \) with ranks equal to the dimensions of \(V_1 \) and \(V_2 \) respectively, Whitney sum induces a map

\[
\mathcal{C}(X, E_1, V_1) \times \mathcal{C}(X, E_2, V_2) \to \mathcal{C}(X, E_1 \oplus E_2, V_1 \oplus V_2)
\]

This map descends to the quotient giving a map

\[
\omega : \mathcal{M}_X(V_1) \times \mathcal{M}_X(X_2) \to \mathcal{M}_X(V_1 \oplus V_2)
\]

We can easily check that

Proposition 2.5. Let \(\alpha : V \to W \) be an isometry, and let \(U = \alpha(V) \subset W \). Let \(* \in \mathcal{M}_X 0 \) be the base-point. Then we have the commutative diagram

\[
\begin{array}{ccc}
\mathcal{M}_X V & \xrightarrow{\mathcal{M}_X \alpha} & \mathcal{M}_X W \\
\downarrow {\omega} & & \downarrow {\omega} \\
\mathcal{M}_X V \times \mathcal{M}_X 0 & \xrightarrow{\mathcal{M}_X \alpha} & \mathcal{M}_X U \times \mathcal{M}_X (U^\perp)
\end{array}
\]

Proposition 2.6. \(\omega \) is a commutative and associative natural transformation. Furthermore

(a) Let \(x \in \mathcal{M}_X V \), and let \(* \in \mathcal{M}_X 0 \) be the base point. Then \(\omega(x, *) = x \).

(b) The map \(\mathcal{M}_X V \to \mathcal{M}_X (V \oplus W) \) given by \(x \mapsto \omega(x, *) \) is a homeomorphism onto a closed subset.

Proof. Property (a) is clear. We show property (b). Using for example the monad description of \(\mathcal{M}_X V \) in [3] we see that the map \(\mathcal{M}_X V \to \mathcal{M}_X (V \oplus W) \) embeds \(\mathcal{M}_X V \) as a close submanifold. Property (b) follows. Now we check commutativity. Fix bundles \(E_1, E_2 \) with the right ranks and let \(\psi : E_1 \oplus E_2 \to E_2 \oplus E_1 \) and \(\alpha : V_1 \oplus V_2 \to V_2 \oplus V_1 \) be the canonical isomorphisms. Let \(\tau \) be the canonical map \(A \times B \to B \times A \). We claim that the diagram

\[
\begin{array}{ccc}
\mathcal{C}(X, E_1, V_1) \times \mathcal{C}(X, E_2, V_2) & \xleftarrow{\tau} & \mathcal{C}(X, E_2, V_2) \times \mathcal{C}(X, E_1, V_1) \\
\downarrow {\omega_{V_1,V_2}} & & \downarrow {\omega_{V_2,V_1}} \\
\mathcal{C}(X, E_2 \oplus E_1, V_1 \oplus V_2) & \xrightarrow{\mathcal{M}_X \alpha} & \mathcal{C}(X, E_2 \oplus E_1, V_2 \oplus V_1)
\end{array}
\]

is commutative. This follows because, given \(\phi_1 : E_1 \| L_\infty \to L_\infty \times V_i \) we have \(\alpha (\phi_1 \oplus \phi_2) \circ \psi^{-1} = \phi_2 \oplus \phi_1 \). Commutativity of \(\omega \) then follows. Associativity follows from a similar argument.

We turn to the proof that \(\omega \) is a natural transformation. Consider isomorphisms \(\alpha : V \to W \) and \(\beta : V' \to W' \). Fix bundles \(E, E' \to X \) with convenient rank. Then the result follows from the commutativity of the diagram

\[
\begin{array}{ccc}
\mathcal{C}(X, E, V) \times \mathcal{C}(X, E', V') & \xrightarrow{\omega} & \mathcal{C}(X, E \oplus E', V \oplus V') \\
\downarrow {\mathcal{C}_E \circ \mathcal{C}_{E'}} & & \downarrow {\mathcal{C}_{E \oplus E'} \circ \omega} \\
\mathcal{C}(X, E, W) \times \mathcal{C}(X, E', W') & \xrightarrow{\omega} & \mathcal{C}(X, E \oplus E', W \oplus W')
\end{array}
\]
For general isometries $\alpha_0 : V_0 \to W_0$ and $\alpha_1 : V_1 \to W_1$ let $U_i = \alpha_i(V_i)$ and let $U_i^\perp, (U_0 \oplus U_1)^\perp$ be the orthogonal complements inside $W_i, W_0 \oplus W_1$ respectively. Then $U_0^\perp \oplus U_1^\perp = (U_0 \oplus U_1)^\perp$. The result then follows from the diagram

2.4. Pullback. We are now going to define a functor from \mathcal{C} to the category of \mathbf{L}_* functors. Let $I \in \mathcal{C}$. Recall that \mathbb{P}_I^2 is the blowup of $\mathbb{P}^2 = \mathbb{C}^2 \cup \mathbb{P}^1$ along I. Then we have a canonical rational curve $L_\infty = \mathbb{P}^1 \subset \mathbb{P}^2$. We associate to each $I \in \mathcal{C}$ the \mathbf{L}_* functor $(\mathcal{M}_{\mathbb{P}_I^2}, \omega)$, which we write simply as (\mathcal{M}_I, ω). Now let $J \subset I$. Fix a bundle $E \to \mathbb{P}_I^2$ with $\text{rk} E = \dim V$ and $c_2(E) = k$. We have a map $\pi_{JI} : \mathbb{P}_I^2 \to \mathbb{P}_J^2$ corresponding to blowing up \mathbb{P}_I^2 along $I \setminus J$, inducing a map $\tilde{\pi}_{JI} : \pi_{JI}^*E \to E$. We define a pullback map $\pi_{JI}^* : \mathcal{C}(\mathbb{P}_I^2, E, V) \to \mathcal{C}(\mathbb{P}_J^2, \pi_{JI}^*E, V)$ by

$$\pi_{JI}^*(\tilde{\delta}, \phi) = (\pi_{JI}^*\tilde{\delta}, \phi \circ \tilde{\pi}_{JI}).$$

This map descends to the quotient to give a map $\pi_{JI} : \mathcal{M}_I,kV \to \mathcal{M}_J,kV$.

Proposition 2.7. The assignments $I \to \mathcal{M}_I$ and $(J \subset I) \to \pi_{JI}^*$ define a functor from \mathcal{C} to the category of \mathbf{L}_* functors. Furthermore, this functor preserves cartesian squares and the maps π_{JI}^* are open embeddings.

Proof. We have to show that π_{JI}^* are morphisms in the category of \mathbf{L}_*-functors. Let $\alpha : V \to W$ be an isometry. Let $\epsilon_{\alpha,J} = \alpha(V)^\perp \times \mathbb{P}_J^2, \epsilon_{\alpha,I} = \alpha(V)^\perp \times \mathbb{P}_I^2$ be the trivial bundles. Fix a bundle $E \to \mathbb{P}_J^2$ with the right rank. Then we have the commutative diagram

$$\begin{array}{ccc}
\mathcal{C}(\mathbb{P}_J^2, E, V) & \xrightarrow{\pi_{JI}^*(V)} & \mathcal{C}(\mathbb{P}_I^2, \pi_{JI}^*E, V) \\
\downarrow \scriptstyle{\mathcal{C}_E \alpha} & & \downarrow \scriptstyle{\mathcal{C}_{\pi_{JI}^*\epsilon_{\alpha}}} \\
\mathcal{C}(\mathbb{P}_J^2, E \oplus \epsilon_{\alpha,J}, W) & \xrightarrow{\pi_{JI}^*(W)} & \mathcal{C}(\mathbb{P}_I^2, \pi_{JI}^*E \oplus \epsilon_{\alpha,I}, W)
\end{array}$$

which shows that π_{JI}^* is a natural transformation. Now we show that it commutes with ω. Given vector spaces V, W, we pick bundles $E_V, E_W \to \mathbb{P}_J^2$ with the right
Then we have a canonical isomorphism \(\psi : \pi^*_j E_V \oplus \pi^*_j E_W \to \pi^*_j (E_V \oplus E_W) \) and the commutative diagram

\[
\begin{array}{ccl}
C(\mathbb{P}_j^2, E_V, V) \times C(\mathbb{P}_j^2, E_W, W) & \xrightarrow{\pi_j^*} & C(\mathbb{P}_j^2, \pi^*_j E_V, V) \times C(\mathbb{P}_j^2, \pi^*_j E_W, W) \\
\downarrow(\psi) & & \downarrow(\omega) \\
C(\mathbb{P}_j^2, \pi^*_j E_V \oplus \pi^*_j E_W, V \oplus W) & \xrightarrow{\pi_j^*} & C(\mathbb{P}_j^2, \pi^*_j (E_V \oplus E_W), V \oplus W)
\end{array}
\]

which shows \(\pi^*_j \) commutes with \(\omega \). Finally we show that, given \(K \subset J \subset I \) we have \(\pi^*_j \circ \pi^*_K = \pi^*_I \). Given a vector space \(V \) we fix a bundle \(E \to \mathbb{P}_I^2 \) with the right rank. Then we have a canonical isomorphism of bundles \(\psi : \pi^*_I E \to \pi^*_J \pi^*_K E \) and a commutative diagram

\[
\begin{array}{ccl}
C(\mathbb{P}_I^2, E, V) & \xrightarrow{\pi^*_I} & C(\mathbb{P}_I^2, \pi^*_I E, V) \\
\downarrow(\psi) & & \downarrow(\omega) \\
C(\mathbb{P}_I^2, \pi^*_I \pi^*_K E, V) & \xrightarrow{\pi^*_J} & C(\mathbb{P}_I^2, \pi^*_J E, V)
\end{array}
\]

This completes the proof. For the last 2 statements see [12]. \(\square \)

We finish this section, we define a functor \(\mathcal{M} \mathcal{H} \) from \(\mathcal{E} \) to the category of \(\mathcal{L} \)-spaces by setting \(\mathcal{M}_I \mathcal{H} = \lim_{\to} \mathcal{M}_I \mathcal{V} \).

3. Modules of topological spaces

We are now going to introduce the space \(\mathcal{B}_I \) and the map \(h_I : \mathcal{B}_I \to \mathcal{M}_I \mathcal{H} \) (see equations (1) and (2)). We follow [5]. A topological category \(\mathcal{E} \) is a small category with topologized morphism sets such that composition is continuous and the inclusion \(ob \mathcal{E} \subset mor \mathcal{E} \) is a closed cofibration. An equivalence of topological categories is a continuous functor which is the identity on objects and a homotopy equivalence on morphism spaces. Let \(\mathcal{R} \) be the category whose objects are the pairs \((\mathcal{E}, X)\) where \(\mathcal{E} \) is a topological category and \(X \) is a continuous contravariant functor from \(\mathcal{E} \) to the category \((Top)\) of topological spaces, and a morphism from \((\mathcal{E}, X)\) to \((\mathcal{R}, Y)\) is a pair \((a, b)\) where \(a : \mathcal{R} \to \mathcal{E} \) is an equivalence of topological categories and \(b : X \circ a \to Y \) is a natural transformation.

\[
\begin{array}{ccc}
\mathcal{E} & \xrightarrow{X} & \mathcal{R} \\
\downarrow{a} & \cong & \downarrow{b} \\
\mathcal{R} & \xrightarrow{Y} & \mathcal{R}
\end{array}
\]

Given two morphisms \((a_1, b_1) : (\mathcal{R}, Y) \to (\mathcal{E}, Z)\) and \((a_2, b_2) : (\mathcal{E}, X) \to (\mathcal{R}, Y)\), composition is given by \((a_1, b_1) \circ (a_2, b_2) = (a_2 \circ a_1, b_1 \circ a_1^* b_2)\). We now define a "geometrical realization" functor from \(\mathcal{R} \) to the homotopy category \(hTop \). Given \((\mathcal{E}, X) \in \mathcal{R} \), we define \(|(\mathcal{E}, X)|\) as the homotopy colimit \(B(X, \mathcal{E}, \ast) \). Given a
morphism \((a, b) : (\mathcal{C}_1, X_1) \to (\mathcal{C}_2, X_2)\) we have induced maps
\[
B(X_1, \mathcal{C}_1, *) \xrightarrow{a} B(X_1 \circ a, \mathcal{C}_2, *) \xrightarrow{b} B(X_2, \mathcal{C}_2, *)
\]
Let \(a^{-1}\) denote the homotopy inverse of \(a\). We define \([a, b]\) = \(b \circ a^{-1}\).

We will now define two functors \(\mathcal{I}, \mathcal{P}\) from \(\mathcal{C}\) to \(\mathfrak{R}\), and a natural transformation \(\mathcal{H} : \mathcal{I} \to \mathcal{P}\). The geometrical realization of \(\mathcal{I}\) will induce the functor \(B : \mathcal{C} \to hTop\) from equation (1) and we will show that there is a weak equivalence \(|\mathcal{I}| \simeq \mathfrak{R}\).

Then \(\mathcal{H}\) induces the natural transformation \(h : B \to |\mathcal{P}| \simeq \mathfrak{M}\) from equation (2). Given an object \(I \in \mathcal{C}\) we will define a category \(\Delta_I\), functors \(S_I, T_I : \Delta_I \to Top\) and a natural transformation \(\eta_I : S_I \to T_I\), and set
\[
\mathcal{I}(I) = (\Delta_I, S_I) \quad \mathcal{P}(I) = (\Delta_I, T_I) \quad \mathcal{H}(I) = (1, \eta_I)
\]

Given a morphism \(i : J \to I\), we will define \(\mathcal{I}(I) = (a_i, s_i)\), \(\mathcal{P}(I) = (a_i, t_i)\) (see the diagram bellow).

3.1. Objects: the category \(\Delta_I\). Let \(\Delta\) denote the topological category whose
objects are the sets \([n] = \{0, 1, \ldots, n\} \subset \mathbb{Z}\) and the morphisms are the order
preserving maps \(\mu : [m] \to [n]\). We now define the category \(\Delta_I\). It has the same
objects as \(\Delta\). To define the morphisms we introduce some notation. Recall that
\(\mathcal{L}(j) = \mathcal{L}(\mathbb{H}^{1+j}, \mathbb{H})\). Given \(I \in \mathcal{C}\) we let
\[
\mathbb{H}^{1+j} = \mathbb{H} \oplus \left(\bigoplus_{x \in I} \mathbb{H} \right)^{\otimes j} \quad \mathcal{L}(1 + jI) = \mathcal{L}(\mathbb{H}^{1+j}, \mathbb{H})
\]

Given a topological space \(X\) we will write
\[
X^{jI} = \left(\prod_{x \in I} X \right)^{\times j}
\]

We proceed to defining the morphisms. Let \([m], [n] \in \text{Ob}(\Delta_I)\). Then we set
\[
\Delta_I([m], [n]) = \prod_{\mu \in \Delta([m], [n])} \Delta_{I, \mu}([m], [n])
\]
where
\[
\Delta_{I, \mu}([m], [n])
\]
\[
= \mathcal{L}(1 + \mu(0)I) \times \left(\prod_{\alpha=-1}^{m} \mathcal{L}(\mu(\alpha) - \mu(\alpha - 1)) \right) \times \mathcal{L}(n - \mu(m) + 1)I
\]
Composition of morphisms is defined as follows: for each \(\mu \in \Delta([m], [n])\) and each \(\nu \in \Delta([n], [p])\) we define a map
\[
\Delta_{I, \mu}([n], [p]) \times \Delta_{I, \nu}([m], [n]) \to \Delta_{I, \nu \circ \mu}([m], [p])
\]
by using the operad maps

\[
\left(\mathcal{L}(\nu(0)I + 1) \times \prod_{\beta=1}^{\mu(0)} \mathcal{L}(\nu(\beta) - \nu(\beta - 1))^I \right) \times \mathcal{L}(\mu(0)I + 1)
\]

\[
\rightarrow \mathcal{L} \left(\mathbb{H}^{\nu(0)I + 1} \oplus \bigoplus_{\beta=1}^{\mu(0)} \mathbb{H}^{\nu(\beta) - \nu(\beta - 1)} \mathbb{H}^{I}, \mathbb{H} \right) = \mathcal{L}(\nu(0)I + 1)
\]

\[
\left(\prod_{\beta=\mu(\alpha-1)+1}^{\mu(\alpha)} \mathcal{L}(\nu(\beta) - \nu(\beta - 1)) \right) \times \mathcal{L}(\mu(\alpha) - \mu(\alpha - 1))
\]

\[
\rightarrow \mathcal{L} \left(\bigoplus_{\beta=\mu(\alpha-1)+1}^{\mu(\alpha)} \mathbb{H}^{\nu(\beta) - \nu(\beta - 1)} \mathbb{H}^{I}, \mathbb{H} \right) = \mathcal{L}(\nu(\alpha) - \nu(\alpha - 1))
\]

\[
\left(\mathcal{L}(p - \nu(n) + 1) \times \prod_{\beta=\mu(m)+1}^{n} \mathcal{L}(\nu(\beta) - \nu(\beta - 1)) \right) \times \mathcal{L}(n - \mu(m) + 1)
\]

\[
\rightarrow \mathcal{L} \left(\mathbb{H}^{p - \nu(n) + 1} \oplus \bigoplus_{\beta=\mu(m)+1}^{n} \mathbb{H}^{\nu(\beta) - \nu(\beta - 1)} \mathbb{H}^{I}, \mathbb{H} \right) = \mathcal{L}(p - \nu(m) + 1)
\]

Associativity then follows from the properties of the operad. The connected components \(\Delta_{I,\mu}([m], [n])\) of \(\Delta_I([m], [n])\) are contractible and in one to one correspondence with the morphisms \(\Delta([m], [n])\). Hence the categories \(\Delta_I, \Delta\) are equivalent.

3.2. Objects: The functors \(S_I\) and \(T_I\).

To each \([m] \in Ob(\Delta_I)\) we associate the \(\mathcal{L}\)-spaces

\[
S_I([m]) = \mathfrak{M}_0 \mathbb{H} \times (\mathfrak{M}_0 \mathbb{H})^m \times \prod_{x \in I} \mathfrak{M}_x \mathbb{H}
\]

\[
T_I([m]) = \mathfrak{M}_I(\mathbb{H}) \times \mathfrak{M}_I(\mathbb{H})^m \times \mathfrak{M}_I(\mathbb{H})^I
\]

Now let \(\mu \in \Delta([m], [n])\) and observe that

\[
S_I([n]) = \left(\mathfrak{M}_0 \times \mathfrak{M}_0^{(0)I} \right) \times \left(\prod_{\alpha} \mathfrak{M}_0^{\mu(\alpha) - \mu(\alpha - 1)} \right) \times \left(\prod_{x \in I} \mathfrak{M}_x^{n - \mu(m)} \right)
\]

\[
T_I([n]) = \left(\mathfrak{M}_I \times \mathfrak{M}_I^{(0)I} \right) \times \left(\prod_{\alpha} \mathfrak{M}_I^{\mu(\alpha) - \mu(\alpha - 1)} \right) \times \left(\mathfrak{M}_I^{n - \mu(m)} \times \mathfrak{M}_I^I \right)
\]

(where we dropped the \(\mathbb{H}\) to shorten the notation). Given \(f \in \Delta_{I,\mu}([m], [n])\) we write \(f = \left(f_0, (f_{\alpha x})_{x \in I}^{\alpha=1,\ldots,m}, (f_x)_{x \in I} \right)\) with

\[
f_0 \in \mathcal{L}(\mu(0)I + 1)
\]

\[
(f_{\alpha x})_{x \in I} \in \mathcal{L}(\mu(\alpha) - \mu(\alpha - 1))^I \quad (\alpha = 1, \ldots, m)
\]

\[
(f_x)_{x \in I} \in \mathcal{L}(n - \mu(m) + 1)^I
\]
Using the action of the operad \mathcal{L} on \mathbb{H} we get maps
\[
\begin{align*}
f_0 & : \mathbb{M}_0^{\mathbb{H}} \times (\mathbb{M}_0^{\mathbb{H}})^{\mu(0)} I \to \mathbb{M}_0^{\mathbb{H}} \\
\prod_{x \in I} f_{ax} & : (\mathbb{M}_0^{\mathbb{H}})^{(\mu(\alpha) - \mu(\alpha - 1)) I} \to (\mathbb{M}_0^{\mathbb{H}})^I \\
\prod_{x \in I} f_x \circ \pi_{0,x}^* & : \prod_{x \in I} (\mathbb{M}_0^{\mathbb{H}})^{n - \mu(m)} \times \mathbb{M}_0^{\mathbb{H}} \to \prod_{x \in I} (\mathbb{M}_0^{\mathbb{H}})^{n - \mu(m) + 1} \to \prod_{x \in I} \mathbb{M}_0^{\mathbb{H}} \\
\prod_{x \in I} f_x & : (\mathbb{M}_I^{\mathbb{H}})^{(n - \mu(m)) I} \times (\mathbb{M}_I^{\mathbb{H}})^I \to (\mathbb{M}_I^{\mathbb{H}})^I
\end{align*}
\]
These maps define the desired morphisms $S_I(f) : S_I([n]) \to S_I([m])$ and $T_I(f) : T_I([n]) \to T_I([m])$.

3.3. Morphisms

Now consider a morphism $i : J \to I$ in \mathcal{C}. We will define two morphisms
\[
\begin{align*}
\mathcal{F}(i) &= (a_i, s_i) : (\Delta_J, S_J) \to (\Delta_I, S_I) \\
\mathcal{F}(i) &= (a_i, t_i) : (\Delta_J, T_J) \to (\Delta_I, T_I)
\end{align*}
\]
where the functor $a_i : \Delta_I \to \Delta_J$ is the identity on objects and on morphisms is induced by the maps
\[
\begin{align*}
\mathcal{L}(\mu(0) I + 1) & \to \mathcal{L}(\mu(0) J + 1) \\
\mathcal{L}(\mu(\alpha) - \mu(\alpha - 1))^I & \to \mathcal{L}(\mu(\alpha) - \mu(\alpha - 1))^J \\
\mathcal{L}(n + 1 - \mu(m))^I & \to \mathcal{L}(n + 1 - \mu(m))^J
\end{align*}
\]
where the first map is the adjoint to the inclusion $\mathbb{H}^{\mu(0) J + 1} \to \mathbb{H}^{\mu(0) I + 1}$ and the second and third maps are the projections. The verification that this is indeed a functor is straightforward.

It remains to define the natural transformations $s_i : S_J \circ a_i \to S_I$ and $t_i : T_J \circ a_i \to T_I$. Let $\iota : (\mathbb{M}_I^{\mathbb{H}})^I \to (\mathbb{M}_J^{\mathbb{H}})^I$ be the canonical inclusion. Then for each $[m] \in \Delta_I$, we let $s_i(m), t_i(m)$ be the maps
\[
\begin{align*}
s_i(m) & : S_J \circ a_i(m) = \mathbb{M}_0 \times \mathbb{M}_0^{m J} \times \prod_{x \in J} \mathbb{M}_x \xrightarrow{\iota} \mathbb{M}_0 \times \mathbb{M}_0^{m I} \times \prod_{x \in I} \mathbb{M}_x = S_I(m) \\
t_i(m) & : T_J \circ a_i(m) = \mathbb{M}_J \times \mathbb{M}_J^{m J} \times \prod_{x \in I} \mathbb{M}_x \xrightarrow{\pi_{0,x}^*} \mathbb{M}_I \times \mathbb{M}_I^{m I} \times \prod_{x \in I} \mathbb{M}_x = T_I(m)
\end{align*}
\]
We now check that s_i, t_i are natural transformations. Let $\mu \in \Delta([m], [n])$, $f \in \Delta_I, \mu([m], [n])$. Write $f = \left(f_0, (f_{ax})_{x \in I}, (f_x)_{x \in I} \right)$. Then each one of the following diagrams
\[
\begin{align*}
S_J \circ a_i(n) & \xrightarrow{s_i(n)} S_I(n) \\
S_J \circ a_i(n) & \xrightarrow{S_J \circ a_i(f)} S_I(f) \\
S_J \circ a_i(m) & \xrightarrow{s_i(m)} S_I(m)
\end{align*}
\]
\[
\begin{align*}
T_J \circ a_i(n) & \xrightarrow{t_i(n)} T_I(n) \\
T_J \circ a_i(n) & \xrightarrow{S_J \circ a_i(f)} T_I(f) \\
T_J \circ a_i(m) & \xrightarrow{t_i(m)} T_I(m)
\end{align*}
\]
splits into three diagrams. For s_i we have the diagrams

$$
\begin{align*}
\mathcal{M}_0 \times \mathcal{M}_0^{I(0)} \xrightarrow{\imath} \mathcal{M}_0 \times \mathcal{M}_0^{I(0)} & \quad \mathcal{M}_0^{(\mu(\alpha)-\mu(\alpha-1))I} \xrightarrow{\imath} \mathcal{M}_0^{(\mu(\alpha)-\mu(\alpha-1))I} \\
\mathcal{M}_0 \xrightarrow{a_0(f_0)} \mathcal{M}_0 & \quad \mathcal{M}_0 \xrightarrow{f_0} \mathcal{M}_0^{I(0)} \\
\Pi f_{ax} & \quad \Pi f_{ax} \\
P. \end{align*}
$$

and for T:

$$
\begin{align*}
\mathcal{M}_I \times \mathcal{M}_I^{I(0)} \xrightarrow{\imath} \mathcal{M}_I \times \mathcal{M}_I^{I(0)} & \quad \mathcal{M}_I^{(\mu(\alpha)-\mu(\alpha-1))I} \xrightarrow{\imath} \mathcal{M}_I^{(\mu(\alpha)-\mu(\alpha-1))I} \\
\mathcal{M}_I \xrightarrow{\pi_{I,I}} \mathcal{M}_I & \quad \mathcal{M}_I \xrightarrow{f_0} \mathcal{M}_I^{I(0)} \\
\Pi f_{ax} & \quad \Pi f_{ax} \\
P. \end{align*}
$$

It is straightforward to check that these diagrams are commutative.

3.4. The natural transformation. We now want to define a natural transformation $\mathcal{S} : \mathcal{K} \to \mathcal{T}$. Let $I \in \mathcal{C}$. Then we set

$$
\mathcal{S}(I) = (1, \eta_I) : (\Delta_I, S_I) \to (\Delta_I, T_I)
$$

where the natural transformation $\eta_I : S_I \to T_I$ is defined as follows: for each $[n] \in ob(\Delta_I)$ we let $\eta_I : S_I([n]) \to T_I([n])$ be the map

$$
\eta_I = \pi_{0,I}^* \times (\pi_{0,I}^*)^m \times \Pi x_1^* : \mathcal{M}_0 \times \mathcal{M}_0^m \times \Pi \mathcal{M}_x \to \mathcal{M}_I \times \mathcal{M}_I^m \times \mathcal{M}_I
$$

Lemma 3.1. η_I is a natural transformation.

Proof. Let $[m], [n] \in \Delta$, $\mu \in \Delta([m], [n])$ and let $f \in \Delta_{I, \mu}([m], [n])$. Write, as usual, $f = (f_0, (f_{ax})_{x \in I, \alpha = 1, \ldots, m}, (f_x)_{x \in I})$. Then the diagram

$$
\begin{align*}
S_I([n]) \xrightarrow{\eta_I} T_I([n]) \\
\downarrow S_I(f) & \quad \downarrow T_I(f) \\
S_I([m]) & \xrightarrow{\eta_I} T_I([m])
\end{align*}
$$

The proof follows from the commutativity of the above diagrams. We refer to the diagram above to explain the notations.
Proof. Given a morphism \(\Proposition 3.2. H \pi \) splits into the three diagrams

\[
\begin{array}{ccc}
\mathcal{M}_0 \times \mathcal{M}_0^{\mu(0)} & \xrightarrow{\pi_0,\pi} & \mathcal{M}_I \times \mathcal{M}_I^{\mu(0)} \\
\downarrow f_0 & & \downarrow f_0 \\
\mathcal{M}_0^n & \xrightarrow{\pi_0^n} & \mathcal{M}_I^n \\
\end{array}
\]

These diagrams commute since \(t \) commutes. That is, we need to check the equality of the natural transformations \(\pi_0^n \circ \pi_0^n = \pi_0^n \).

Proposition 3.2. \(\mathcal{H} \) is a natural transformation between \(\mathcal{J} \) and \(\mathcal{T} \).

Proof. Given a morphism \(i : J \to I \) in \(\mathcal{C} \), we need to check that the diagram

\[
\begin{array}{ccc}
(\Delta_J, S_J) & \xrightarrow{(1, \eta_J)} & (\Delta_J, T_J) \\
\downarrow (a_i, s_i) & & \downarrow (a_i, t_i) \\
(\Delta_I, S_I) & \xrightarrow{(1, \eta_I)} & (\Delta_I, T_I) \\
\end{array}
\]

commutes. That is, we need to check the equality of the natural transformations \(t_i \circ a_i^* \eta_J \) and \(\eta_I \circ s_i \).

This boils down to checking, for each \([n] \in \Delta\), the commutativity of the diagram

\[
\begin{array}{ccc}
\Delta_I & \xrightarrow{t_i \circ a_i^* \eta_J} & \mathcal{T}_I \\
\downarrow T_I & & \downarrow T_I \\
\end{array}
\]

which commutes due to the functoriality of \(\pi^* \). \(\square \)

\(\mathcal{H} \) induces a natural transformation between the geometrical realizations:

Conjecture. The natural transformation \(h : \mathcal{B} = |\mathcal{J}| \to |\mathcal{T}| \) induced by \(\mathcal{H} \) is a weak equivalence.

3.5. Geometrical realization. The objective of this section is to prove two results: \(h_T : B(S_I, \Delta_I, *) \to B(T_I, \Delta_I, *) \) is a homotopy equivalence and \(|\mathcal{T}|, \mathcal{M}_H : \mathcal{C} \to \hTop \) are weakly equivalent, that is, for any \(I \in \mathcal{C}, B(T_I, \Delta_I, *) \simeq \mathcal{M}_I \).

Before we begin the proof we need some lemmas. Let \(\Delta \) be the category whose objects are the objects of \(\Delta \) plus an extra object which we will denote by \([-1]\), and such that \(\Delta([m], [n]) \subset \Delta([m + 1], [n + 1]) \) as the morphisms which send \(m + 1 \) to...
n + 1. Clearly restriction gives an isomorphism \(\bar{\Delta}([m], [n]) \cong \Delta([m], [n + 1]) \) hence we can see \(\bar{\Delta} \) as a subcategory of \(\bar{\Delta} \). It’s easily seen that \([-1] \in \Delta \) is an initial (and final) object. Furthermore we have

Lemma 3.3. The inclusion functor \(F: \Delta^{op} \to \bar{\Delta}^{op} \) is cofinal.

Proof. To prove this, it is enough to show that, for any \([n] \in \bar{\Delta}\), the undercategory \([n] \downarrow F\) has a final element. This is the element \([n] \overset{I}{\to} [n + 1] \) with \(I \in \Delta^{op}([n], [n + 1]) \) the morphism that sends \(n + 2 \) to \(n + 1 \) and is the identity on the remaining elements. Indeed, given an element \([n] \overset{\mu}{\to} [m] \) with \(\bar{\mu} \in \Delta^{op}([n], [m]) \), there is a unique morphism \(\mu \in \Delta^{op}([n + 1], [m]) \), namely \(\mu \) corresponds to \(\bar{\mu} \) under the isomorphism \(\Delta([m], [n]) \cong \Delta([m], [n + 1]) \). \(\square \)

Now we define a category \(\bar{\Delta}_I \) equivalent to \(\bar{\Delta} \). Therefore the category \(\bar{\Delta}_I \) has the same objects as \(\Delta \). Given \([m], [n] \in \text{ob}(\Delta_I)\), the morphisms are given by

\[
\bar{\Delta}_I([m], [n]) = \prod_{\mu \in \Delta([m], [n])} \bar{\Delta}_I,\mu([m], [n])
\]

where

\[
\bar{\Delta}_I,\mu([m], [n]) = \mathcal{L}(1 + \mu(0)I) \times \left(\prod_{\alpha=1}^{m} \mathcal{L}(\mu(\alpha) - \mu(\alpha - 1))I \right) \times \mathcal{L}(n - \mu(m) + 1)I
\]

Lemma 3.4. The inclusion functor \(\iota_I: \Delta^{op}_I \to \bar{\Delta}^{op}_I \) is cofinal.

Proof. We have to show that \(B(\iota_I^* \bar{\Delta}_I, \bar{\Delta}_I, *) \simeq * \). Consider the functors

\[
\begin{array}{ccc}
\Delta_I & \xrightarrow{F} & \Delta \\
\iota_I \downarrow & & \downarrow \iota_I \\
\bar{\Delta}_I & \xrightarrow{F} & \bar{\Delta}
\end{array}
\]

Let \(\bar{F}_h, \bar{\Delta}_I = B(\bar{\Delta}_I, \bar{\Delta}_I, \bar{\Delta}) \) denote Segal’s pushdown. Since \(\bar{F} \) is an equivalence of categories,

\[
B(\iota_I^* \bar{\Delta}_I, \bar{\Delta}_I, *) \simeq B(\iota^* \bar{F}^* \bar{F}_h, \Delta_I, \Delta_I, *) = B(\bar{F}^* \iota^* \bar{F}_h, \Delta_I, \Delta_I, *)
\]

Since \(F \) is an equivalence of categories, \(\iota \) is cofinal and \(\bar{F}_h, \bar{\Delta}_I \simeq \bar{\Delta} \), we get

\[
B(F^* \iota^* \bar{F}_h, \Delta_I, \Delta_I, *) \simeq B(\bar{F}_h, \Delta_I, \Delta, *) \simeq B(\Delta, \Delta, *) \simeq *
\]

\(\square \)

Lemma 3.5. The functor \(T_I: \Delta_I \to \text{Top} \) can be extended to a functor \(\bar{T}_I: \bar{\Delta}_I \to \text{Top} \).

Proof. We define \(\bar{T}_I([-1]) = \mathfrak{M}_I \mathbb{H} \). We now define the functor on morphisms. Let \(\mu \in \bar{\Delta}([m], [n]) \) and observe that

\[
\bar{T}_I([n]) = \left(\mathfrak{M}_I \times \mathfrak{M}_I^{(0)I} \right) \times \left(\prod_{\alpha} \mathfrak{M}_I^{(\mu(\alpha) - \mu(\alpha - 1))I} \right) \times \left(\mathfrak{M}_I^{(n - \mu(m) + 1)I} \right)
\]

Hence, given \(f \in \Delta_I,\mu([m], [n]) \), the linear isometry operad action on \(\mathfrak{M}_I \mathbb{H} \) induces, as before, a map \(\bar{T}_I(f): \bar{T}_I([n]) \to \bar{T}_I([m]) \). \(\square \)
We can now prove

Proposition 3.6. The maps

\[
|\mathcal{F}| = B(T_I, \Delta_I, *) \xrightarrow{i_I} B(\bar{T}_I, \bar{\Delta}_I, *) \xrightarrow{[-1]} \bar{T}_I(-1) = \mathcal{M}_I
\]

are homotopy equivalences.

Proof. \(i_I : \Delta_I \to \bar{\Delta}_I\) is cofinal and \(T_I = \bar{T}_I \circ i_I\) hence the first map is a homotopy equivalence. To prove that the second map is a homotopy equivalence we consider the composition

\[
\begin{align*}
B(\bar{T}_I, \bar{\Delta}_I, *) & \xrightarrow{\simeq} B(1^*1_*\bar{T}_I, \bar{\Delta}_I, *) \\
\bar{T}_I(-1) & \xrightarrow{\simeq} 1^*1_*\bar{T}_I(-1) \xrightarrow{\simeq} \bar{F}_h\bar{T}_I(-1)
\end{align*}
\]

Since \([-1]\) is a final object in \(\Delta\), the right vertical map is a homotopy equivalence. Hence the left vertical map is a homotopy equivalence. \(\Box\)

Theorem 4. \(h_x : B(S_x, \Delta_x, *) \to B(T_x, \Delta_x, *)\) is a homotopy equivalence.

This shows that conjecture 3.4 holds for \(#I = 1\).

Proof. The proof follows the same lines. This time we define a category \(\hat{\Delta}\) with the same objects as \(\Delta\) but whose morphisms \(\Delta([m], [n])\) are the order preserving maps \(\mu : \{-1, \ldots, m\} \to \{-1, \ldots, n\}\) which fix \(-1\). We define a category \(\hat{\Delta}_x\) by setting

\[
\hat{\Delta}_x([m], [n]) = \prod_{\mu \in \hat{\Delta}([m], [n])} \hat{\Delta}_{x, \mu}([m], [n])
\]

with

\[
\hat{\Delta}_{x, \mu}([m], [n])
= \mathcal{L}(1 + \mu(0)) \times \left(\prod_{\alpha=1}^{m} \mathcal{L}(\mu(\alpha) - \mu(\alpha - 1)) \right) \times \mathcal{L}(n - \mu(m) + 1)
\]

Then \(\Delta_x \to \hat{\Delta}_x\) is cofinal, both \(S_x\) and \(T_x\) can be extend to functors \(\hat{S}_x, \hat{T}_x : \hat{\Delta}_x \to \text{Top}\) by setting \(\hat{S}_x([-1]) = \hat{T}_x([-1]) = \mathcal{M}_x\) and the natural transformation \(h_x\) induces a natural transformation \(h_x : \hat{S}_x \to \hat{T}_x\). Then we have the commutative diagram

\[
\begin{align*}
B(S_x, \Delta_x, *) & \xrightarrow{\simeq} B(\hat{S}_x, \hat{\Delta}_x, *) \xrightarrow{\simeq} \hat{S}_x(-1) \\
\downarrow h_x & \quad \quad \quad \downarrow \hat{h}_x \\
B(T_x, \Delta_x, *) & \xrightarrow{\simeq} B(\hat{T}_x, \hat{\Delta}_x, *) \xrightarrow{\simeq} \hat{T}_x(-1)
\end{align*}
\]

which shows that \(h_x\) is a homotopy equivalence. \(\Box\)
4. Grading

The objective of this section is to prove theorem 1. For any \([n] \in \Delta_I\), the topological spaces \(S_I(n)\) and \(T_I(n)\) are naturally graded as products of graded spaces and given \(f \in \Delta_I([m],[n])\), the maps \(S_I(f)\) and \(T_I(f)\) preserve this grading. Hence we can define functors \(S_{I,k}, T_{I,k} : \Delta_I \to \text{Top}\) such that \(S_{I,k}(n), T_{I,k}(n)\) are the \(k\)th components of \(S_I(n), T_I(n)\). The natural transformation \(\eta\) also preserve the grading so we get natural transformations \(\eta_{I,k} : S_{I,k} \to T_{I,k}\) inducing maps \(h_{I,k} : B(S_{I,k}, \Delta_I,*) \to \mathfrak{M}_{I,k}^k\).

We now fix \(I \in \mathfrak{C}\). Let \(\mathfrak{C}_I \subset \mathfrak{C}\) be the subcategory whose objects are the subsets of \(I\). Then \(\mathcal{F}\) induces a functor \(\mathcal{F}_I : \mathcal{C}_I \times \Delta_I^{op} \to \text{Top}\) defined as follows: On objects \(\mathcal{F}_I(J,[n]) = S_I(n)\). Given morphisms \(i : J \to J\) and \(f : [m] \to [m']\), we let \(j : J \to I\) and \(j' : J' \to I\) be the unique morphisms. Then we have the diagram

\[
\begin{align*}
S_I(m) & \xrightarrow{(S_I\circ a_j)(f)} S_I(m') \\
S_I(m) & \xrightarrow{(S_I \circ a_j)(f)} S_I(m')
\end{align*}
\]

which commutes since \(s_i\) is a natural transformation and \(a_j = a_i \circ a_{j'}\). We define \(\mathcal{F}_I(i,f) = s_i(m') \circ (S_I \circ a_j)(f) = (S_I \circ a_j)(f) \circ s_i(m)\). In a similar way, the functor \(\mathcal{F} : \mathfrak{C} \to \mathfrak{M}\) induces a functor \(\mathcal{F}_I : \mathcal{C}_I \times \Delta_I^{op} \to \text{Top}\) and the natural transformation \(\mathfrak{M}_I\) induces a natural transformation \(\mathfrak{M}_I : \mathcal{F}_I \to \mathcal{F}_I\). Consider the functor \(B(\mathcal{F}_I, \Delta_I,*) : \mathcal{C}_I \to \text{Top}\).

Proposition 4.1. The functors

\[
\begin{array}{ccc}
\mathcal{C}_I & \xrightarrow{B(\mathcal{F}_I, \Delta_I,*)} & \text{Top} \\
\xrightarrow{|} & & \xrightarrow{|} \\
\mathfrak{C}_I & \xrightarrow{\mathcal{F}_I} & \mathfrak{M}_I
\end{array}
\]

are weakly equivalent.

Proof. The assignment \(B(S_I, \Delta_I,*) \xrightarrow{\simeq} B(S_J, \Delta_J,*) (J \in \mathfrak{C}_I)\) provides the natural transformation. \(\square\)

We define functors \(\mathcal{F}_{I,k}, \mathcal{F}_{I,k} : \mathfrak{C}_I \times \Delta_I^{op} \to \text{Top}\) by setting \(\mathcal{F}_{I,k}(J,n) = S_{I,k}(n), \mathcal{F}_{I,k}(J,n) = T_{I,k}(n)\) and a natural transformation \(\mathfrak{M}_{I,k} = (1, \eta_{I,k}) : \mathcal{F}_{I,k} \to \mathcal{F}_{I,k}\).

Let \(J \in \mathfrak{C}_I\) and let \(j : J \to I\) be the unique morphism. Then we get a map \(s_j : \mathcal{F}_I(J,n) = S_I(n) \to S_I(n)\) and together these maps define a map \(s : B(*, \mathfrak{C}_I, \mathcal{F}_I) \to S_I\) of right \(\Delta_I\)-modules. Let \(\mathfrak{C}_{I,k}\) be the subcategory of \(\mathfrak{C}_I\) whose objects are the subsets \(J \subset I\) with cardinality \# \(J \leq k\).

Proposition 4.2. The map \(s : B(*, \mathfrak{C}_{I,k}, \mathcal{F}_{I,k}) \to S_{I,k}\) is a weak equivalence of \(\Delta_I\) modules.

Proof. The basic observation is that given a morphism \(i : J \to J\), the maps \(s_i(n) : S_J(n) \to S_J(n)\) restricted to each component of \(S_J(n)\) are homeomorphisms onto a component of \(S_J(n)\). Fix \([n] \in \Delta_I\) and let \(Z_{I,k} \subset \mathbb{Z} \times \mathbb{Z}^{nI} \times \mathbb{Z}^I\) be the subset of the tuples on non-negative integers whose sum is \(k\). We write an element \(\bar{k} \in Z_{I,k}\) as \(\bar{k} = (k_0, (k_\alpha)_{\alpha = 1, \ldots, n}, (k_x)_{x \in I})\). To each \(\bar{k} \in Z_{I,k}\) we associate an
object $J_k \in \mathcal{C}_{I,k}$ by setting

$$J_k = \{ x \in I \mid k_x \neq 0 \text{ or } \exists \alpha : k_{\alpha x} \neq 0 \}$$

We define a functor $S_{k,n} : \mathcal{C} \to \text{Top}$ as follows: on objects

$$S_{k,n}(J) = \begin{cases} 0 \times \left(\prod_{\alpha=1}^{\ldots, n} M_{b,k_{\alpha x}} \right) \times \left(\prod_{x \in J} M_{x,k_x} \right) & \text{if } J_k \not\subset J \\
\prod_{k \in Z_{I,k}} S_{k,n}(J) & \text{if } J_k \subset J
\end{cases}$$

Then $S_{k,n}(J) \subset S_{I,k}(n)$ and, given a morphism $i : J \to J'$ in \mathcal{C}, we define $S_{k,n}(i)$ as the restriction of $s_i(n) : S_J(n) \to S_{J'}(n)$ to $S_{k,n}(J)$, which is a homeomorphism onto $S_{k,n}(J')$ whenever $J_k \subset J$. Then, for any $J \subset I$,

$$\mathcal{J}_{I,k}(J,n) = S_{I,k}(n) = \prod_{k \in Z_{I,k}} S_{k,n}(J)$$

and, given morphisms $i : J \to J'$, $1 : [n] \to [n]$,

$$\mathcal{J}_{I,k}(i,1) = s_i(n) = \prod_{k \in Z_{I,k}} S_{k,n}(i)$$

Hence,

$$B(\ast, \mathcal{C}_{I,k}, \mathcal{J}_{I,k})([n]) \cong \prod_{k \in Z_{I,k}} B(\ast, \mathcal{C}_{I,k}, S_{k,n})$$

Now consider the subcategory $\mathcal{C}_{I,k}$ of $\mathcal{C}_{I,k}$ whose objects are the sets J such that $J_k \subset J \subset I$ and $\#J \leq k$. Then $B(\ast, \mathcal{C}_{I,k}, S_{k,n}) \cong B(\ast, \mathcal{C}_{I,k}, S_{k,n})$. The maps $s_j : S_J \to S_I$ induce homeomorphisms $B(\ast, \mathcal{C}_{I,k}, S_{I,k}) \cong B(\ast, \mathcal{C}_{I,k}, S_{I,k}(I))$ and since $\mathcal{C}_{I,k}$ has an initial object (J^k), we have

$$B(\ast, \mathcal{C}_{I,k}, S_{I,k}(I)) \cong B(\ast, \mathcal{C}_{I,k}, \ast) \otimes S_{I,k}(I) \simeq S_{I,k}(I)$$

This shows that the map $s : B(\ast, \mathcal{C}_{I,k}, S_{I,k}) \to S_I$ is a weak equivalence.

As a corollary we can now prove theorem 1:

Theorem 1. Let $I \subset \mathbb{C}^2$ and suppose that, for any $J \in \mathcal{C}_{I,k}$, $h_{I,k}$ is a homotopy equivalence. Then $h_{I,k}$ is a homotopy equivalence.

Proof. Let $M_{I,k} : \mathcal{C}_{I,k} \to \text{Top}$ denote the functor given by $M_{I,k}(J) = M_{I,k}(J^k)$. The pullback maps $\pi_{I,k}^* M_{I,k}(J) \to M_{I,k}(J^k)$ induce a map $\pi : B(\ast, \mathcal{C}_{I,k}, M_{I,k}) \to M_{I,k}(J^k)$. We have a commutative diagram

$$B(S_{I,k}, \Delta_I, \ast) \xrightarrow{h_{I,k}} M_{I,k}(J^k) \xrightarrow{\pi} B(\ast, \mathcal{C}_{I,k}, M_{I,k})$$

$$\xrightarrow{s}$$

$$B(\ast, \mathcal{C}_{I,k}, \mathcal{J}_{I,k}, \Delta_I, \ast) \xrightarrow{\cong} B(\ast, \mathcal{C}_{I,k}, B(\mathcal{J}_{I,k}, \Delta_I, \ast))$$

where h is induced by the maps h_J, for $J \in \mathcal{C}_{I,k}$. Hence h is a homotopy equivalence. So we only need to show that π is a homotopy equivalence. It was shown in [12] that $M_{I,k}$ and the maps $\pi^*_{I,J}$ provide the nerve of a cover of M_I by Zariski open sets. The result follows.

From theorem 4 we get as an immediate corollary theorem 2 for $k = 1$:

\[\]
Corollary 4.3. $h_{I,1}$ is a homotopy equivalence.

5. The case $k = 2$

We now prove theorem 2 for $k = 2$. By theorem 1, it is enough to consider the case when $\# I = 2$. So in this section we fix $I = \{x, y\} \in \mathcal{C}$. We will show in appendix A that there is an open cover $\{A_x, A_y, N_2\}$ of $\mathfrak{M}_{I,2}V$, together with spaces $N'_2, N''_2 \subset \mathfrak{M}_{I,1}V$ and a homeomorphism $\boxplus : N'_2 \times N''_2 \to N_2$ such that, if we let $A_0 = A_x \cap A_y$ and $N'_0 = N'_2 \cap N''_2$, there are homeomorphisms

$$
\begin{align*}
A_0 & \cong \mathfrak{M}_{x, 0}V \\
N'_0 & \cong \mathfrak{M}_{x, 1}V \\
N''_0 & \cong \mathfrak{M}_{y, 1}V \\
N'_0 \times N''_0 & \cong A_0 \cong N_0 \\
\end{align*}
$$

Hence we have maps

$$
(\mathfrak{M}_0V \times \mathfrak{M}_0V)_k \to \mathfrak{M}_0V_k \\
(\mathfrak{M}_0V \times \mathfrak{M}_0V)_k \to \mathfrak{M}_0V_k
$$

where \cdots_k denotes the degree k component, $k = 0, 1, 2$. We define the graded simplicial spaces $M, N : \Delta^{op} \to \text{Top}$ by setting

$$
MV(n)_k = (\mathfrak{M}_xV \times (\mathfrak{M}_0V)^n \times \mathfrak{M}_yV)_k \\
NV(n)_k = (\mathfrak{M}_xV \times (\mathfrak{M}_0V)^n \times \mathfrak{M}_yV)_k \quad (k = 0, 1, 2)
$$

and defining morphisms in the usual way. Let $\nabla : \Delta \to \text{Top}$ be the functor which assigns to $[n]$ the affine n-simplex. Write $|MV| = MV \otimes_\Delta \nabla$, $|NV| = NV \otimes_\Delta \nabla$ for the geometrical realizations. NV is just the nerve of the cover $\{A_x, A_y, N_2\}$. Then the natural maps $|MV| \to \mathfrak{M}_{x,2}V$ and $|NV| \to \mathfrak{M}_{y,2}V$ are homotopy equivalences. Now consider the bi-simplicial space $FV : \Delta^{op} \times \Delta^{op} \to \text{Top}$ given by

$$
FV(n, m) = (\mathfrak{M}_xV \times (\mathfrak{M}_0V)^n \times \mathfrak{M}_yV \times (\mathfrak{M}_0V)^m \times \mathfrak{M}_yV)_2
$$

The morphisms are defined as follows: given morphisms $i : n_1 \to n_2$ and $j : m_1 \to m_2$, $FV(i, j) : FV(n_1, m_1) \to FV(n_2, m_2)$ is induced by the maps

$$
MV(i) : \mathfrak{M}_x \times (\mathfrak{M}_0)^{n_1} \times \mathfrak{M}_y) \to (\mathfrak{M}_x \times (\mathfrak{M}_0)^{n_2} \times \mathfrak{M}_y)_k \\
MV(j) : (\mathfrak{M}_0 \times (\mathfrak{M}_0)^{m_1} \times \mathfrak{M}_y) \to (\mathfrak{M}_0 \times (\mathfrak{M}_0)^{m_2} \times \mathfrak{M}_y)_k
$$

The maps (3) induce a map $\tilde{h}_V : FV \otimes_\Delta \nabla \times \nabla \to \mathfrak{M}_{x,2}V$. Taking the direct limit over all subspaces $V \subset \mathbb{H}$, we define functors $M \mathbb{H}, N \mathbb{H}, F \mathbb{H}$ and a map $\tilde{h}_\mathbb{H}$.

Proposition 5.1. $\tilde{h}_\mathbb{H}$ is a homotopy equivalence.

Proof. Let $F \mathbb{H}_m$ be the simplicial space obtained from $F \mathbb{H}$ by fixing m. Then

$$
F \mathbb{H} \otimes_\Delta \nabla \times \nabla \cong (F \mathbb{H}_m \otimes_\Delta \nabla) \otimes_\Delta \nabla
$$

The simplicial space $F \mathbb{H}_m \otimes_\Delta \nabla$ is isomorphic to the simplicial space

$$
[m] \to (M \mathbb{H} \otimes_\Delta \nabla) \times (\mathfrak{M}_0\mathbb{H})^m \times \mathfrak{M}_y\mathbb{H}
$$

We have then a weak equivalence $\tilde{h} : F \mathbb{H}_m \otimes_\Delta \nabla \to N \mathbb{H}$. \tilde{h} induces a map between the spectral sequences associated with these simplicial spaces. These spectral sequences collapse at the E_2 term (see [12]) and it easily follows that the induced map on geometrical realizations $[\tilde{h}] : [F \mathbb{H}_m \otimes_\Delta \nabla] \to [N \mathbb{H}]$ is an isomorphism in homology. Since the spaces are simply-connected, $[\tilde{h}]$ is a homotopy equivalence. Since $\tilde{h}_\mathbb{H}$ is
the composition $|F\mathbb{H}_m \otimes \Delta \nabla| \rightarrow |N\mathbb{H}| \rightarrow M_{I,2}\mathbb{H}$ we conclude that \tilde{h}_H is a homotopy equivalence. \hfill \square

Now let $d : \Delta \rightarrow \Delta \times \Delta$ be the diagonal inclusion. Then

$$(FV \circ d) \otimes \Delta \nabla \cong FV \otimes_{\Delta \times \Delta} \nabla \times \nabla$$

We can represent the main morphisms of $FV \circ d$ with the diagram

![Diagram](image)

Direct inspection of the open cover $\{A_x, A_y, N_2\}$ shows that the spaces $|FV \circ d|$ and $B(FV \circ d, \Delta, *)$ are homotopically equivalent (or we can show that we have an isomorphism in homology in the limit over $V \subset \mathbb{H}$). Hence, theorem 2 will follow from

Proposition 5.2. There is a homotopy equivalence

$$B(S_{I,\infty}, \Delta_I, *) \xrightarrow{\cong} B(F\mathbb{H} \circ d, \Delta, *)$$

such that the diagram

$$\begin{align*}
B(S_{I,2}, \Delta_I, *) & \xrightarrow{h_{\Delta_I}} B(T_{I,2}, \Delta_I, *) \xrightarrow{\pi} B(T_{I,2}, \Delta_I, *) \\
\cong & \\
B(F\mathbb{H} \circ d, \Delta, *) & \xrightarrow{\tilde{h}_H} M_{I,2}\mathbb{H}
\end{align*}$$

(4)

is homotopy commutative.

Proof. The functors $S_{I,2}$ and $F\mathbb{H} \circ d$ are equal on objects. Given $f \in \mathcal{Z}(1)$, we define $\boxplus f : (M_I\mathbb{H} \times M_I\mathbb{H})_2 \rightarrow M_{I,2}\mathbb{H}$ by

$$m \boxplus f m' = Mf(m) \boxplus Mf(m') = Mf(m \boxplus m')$$

Let $\Delta_{\mathcal{X}}$ denote the category with same objects as Δ and whose morphisms are $\Delta_{\mathcal{X}}(m, n) = \Delta(m, n) \times \mathcal{Z}(1)$. Let $F\mathbb{H}_{\mathcal{X}} : \Delta_{\mathcal{X}} \rightarrow \text{Top}$ be the functor which coincides with $F\mathbb{H} \circ d$ and $S_{I,2}$ on objects, and on morphisms is induced by $\boxplus f$. Notice that, since the maximum degree is 2, morphisms involve at most one non-trivial product $\boxplus f$. The canonical inclusion $\Delta \rightarrow \Delta_{\mathcal{X}}$ is an equivalence of categories
so it induces a homotopy equivalence $B(F \mathcal{H} \circ d, \Delta, *) \to B(\mathcal{H} \mathcal{H}^\ast, \Delta^\ast, *)$. Now consider the isometry $\alpha_t \in L(H, H \oplus H)$ defined by $\alpha_t(v) = (\sin tv, \cos tv)$.

Fix $f \in L(2)$ and consider the composition

$$
\mathcal{H} \times \mathcal{H} \xrightarrow{\alpha_0 \times \alpha_t} \mathcal{H}(H \oplus H) \times \mathcal{H}(H \oplus H) \xrightarrow{f} \mathcal{H}(H \oplus H)
$$

For $t = 0$ this map equals $\oplus f_{\alpha_0}$, and for $t = 1$ it equals the operad action of f on \mathcal{H} (see appendix A). So we have a homotopy equivalence $B(S^I, 2, \Delta^I, *) \simeq B(F \mathcal{H}^\ast, \Delta^\ast, *)$. It is then straightforward to check that diagram (4) is homotopy commutative.

6. The limit when $k \to \infty$

Let $n = \#I$ and let $r = \dim V$. In [2], [9] it was shown that $\mathcal{M}_{i,k} V$ is isomorphic to the moduli space of charge k $SU(V)$ instantons over a connected sum X_n of n copies of P_2, based at a point $x_\infty \in X_n$. We represent this moduli space by $\mathcal{M}_{i,k}(X_n)$. In [14] Taubes described, for $k' > k$ gluing maps $\mathcal{M}_{i,k}(X_n) \to \mathcal{M}_{i,k'}(X_n)$ and showed that in the direct limit when $k \to \infty$, we have a homotopy equivalence

$$
\mathcal{M}_\infty^r(X_n) \simeq Map_0(X_n, BSU(V))
$$

Let K be the homotopy fiber of the map $(\mathcal{M}_{i,k} V)^I \xrightarrow{\omega} \mathcal{M}_{i,\infty} V$.

Theorem 5. There is a commutative diagram

$$
\begin{array}{ccc}
K & \to & K \\
\downarrow & & \downarrow \\
(\mathcal{M}_{i,\infty} V)^I & \xrightarrow{\pi^*} & \prod_{x \in I} \mathcal{M}_{x,\infty} V \\
\omega & & \omega \circ \pi^*
\end{array}
$$

where the horizontal and vertical lines are fiber sequences.

Proof. X_n is a connected sum of n copies of $X_1 = P^2$ so we have a cofibration $\bigvee_{n-1} S^3 \to X_n$ with quotient $\bigvee X_1$. On the other hand the inclusion of the 2-skeleton gives a cofiber sequence $\bigvee S^2 \to X_n \to S^4$. We have the diagram

$$
\begin{array}{ccc}
\bigvee S^3 & \to & \bigvee S^3 \\
\downarrow & & \downarrow \\
\bigvee S^2 & \to & X_n \\
\downarrow & & \downarrow \\
\bigvee S^2 & \to & \bigvee X_1 & \to & \bigvee S^4
\end{array}
$$

Applying the functor $Map(\cdot, BSU(V))$ we get the desired diagram of fiber sequences.

□
Taking the direct limit over all subspaces \(V \subset H \), and applying Bott periodicity, we get \(\mathcal{M}_{I,\infty} H = \lim_{\rightarrow} \mathcal{M}_{I,\infty} V \simeq BU \times BU^I \).

Theorem 3. The map \(h_{I,\infty} : B(S_{I,\infty}, \Delta_I, *) \rightarrow B(T_{I,\infty}, \Delta_I, *) \) is a homotopy equivalence.

Proof. In [13], homotopy equivalences \(f_I : \mathcal{M}_{\infty}(P_I^n, V) \rightarrow BU \times BU^I \) were described with the following property: if we let \(d : BU \rightarrow BU^I \) be the diagonal inclusion, then the following diagrams

\[
\begin{array}{ccc}
\mathcal{M}_{0,\infty} H & \xrightarrow{f_0} & BU \\
\downarrow \pi _I & & \downarrow \pi _I \\
\mathcal{M}_{I,\infty} H & \xrightarrow{f_I} & BU \times BU^I
\end{array}
\quad
\begin{array}{ccc}
\mathcal{M}_{0,\infty} H & \xrightarrow{f_0} & BU \\
\downarrow \pi _I & & \downarrow \pi _I \\
\mathcal{M}_{I,\infty} H & \xrightarrow{f_I} & BU \times BU^I
\end{array}
\]

are commutative. Let \(\xi _I : BU \times BU^I \rightarrow BU \times BU^I \) be the map defined by

\[
\xi _I(a, (a_x)_{x \in I}) = (a, (a_x - a)_{x \in I})
\]

and let \(* \in \Omega ^2 BSU\) be the basepoint. Then we have the commutative diagrams

\[
\begin{array}{ccc}
\mathcal{M}_{0,\infty} H & \xrightarrow{f_0} & BU \\
\downarrow \pi _I & & \downarrow \pi _I \\
\mathcal{M}_{I,\infty} H & \xrightarrow{f_I} & BU \times BU^I
\end{array}
\quad
\begin{array}{ccc}
\mathcal{M}_{0,\infty} H & \xrightarrow{f_0} & BU \\
\downarrow \pi _I & & \downarrow \pi _I \\
\mathcal{M}_{I,\infty} H & \xrightarrow{f_I} & BU \times BU^I
\end{array}
\]

Given an \(\mathcal{Z} \)-space \(X \) we define the functor \(T_I(X) : \Delta_I \rightarrow \text{Top} \) by assigning to each \([n]\) the space \(X \times X^{n_I} \times X^I \), and defining morphisms just as for \(T_I \). Then there are weak equivalences

\[
S_{I,\infty} \simeq T_I(BU) \times BU^I \quad T_{I,\infty} \simeq T_I(BU) \times T_I(BU^I) \circ d
\]

where \(d : \Delta_I \rightarrow \Delta_I \times \Delta_I \) is the diagonal. \(h_{I,\infty} \) induces a natural transformation

\[
(1, k) : T_I(BU) \times BU^I \rightarrow T_I(BU) \times T_I(BU^I) \circ d
\]

that assigns to each \([n]\) \(\in \Delta_I \) the map \(k(n) : BU^I \rightarrow T_I(BU^I) \)(n) given by

\[
k(n) : (a_x)_{x \in I} \mapsto (*, *, (b_{xy})_{x,y \in I}) \in BU^I \times BU^{n(I \times I)} \times BU^{I \times I}
\]

where

\[
b_{xy} = \begin{cases} a_x & x = y \\ * & x \neq y \end{cases}
\]

Consider the category \(\tilde{\Delta}_I \) introduced in section 3. \(T_I(X) \) can be extended to \(\tilde{T}_I(X) : \tilde{\Delta}_I \rightarrow \text{Top} \) just as \(T_I \). So we get functors

\[
\tilde{T}_I(BU) \times BU^I, \tilde{T}_I(BU) \times \tilde{T}_I(BU^I) \circ d : \tilde{\Delta}_I \rightarrow \text{Top}
\]

For any \(f \in \tilde{\Delta}_I(n, -1) \), the composition

\[
BU^I \xrightarrow{k_n} BU^I \times BU^{n(I \times I)} \times BU^{I \times I} \xrightarrow{f} BU^I
\]
is the identity, so we can extend the natural transformation k by setting $k(-1) = 1 : BU^I \to BU^I$. We thus have a commutative diagram (compare with the proof of theorem 4)

$$
\begin{array}{ccc}
B(T_I(BU), \Delta_I, *) \times BU^I & \xrightarrow{(1,k)} & B(T_I(BU) \times T_I(BU^I), \Delta_I, *) \\
\cong & & \cong \\
B(\bar{T}_I(BU), \bar{\Delta}_I, *) \times BU^I & \xrightarrow{(1,k)} & B(\bar{T}_I(BU) \times \bar{T}_I(BU^I), \bar{\Delta}_I, *)
\end{array}
$$

which shows that $(1,k)$ is a homotopy equivalence. It follows that $h_{t,\infty}$ is a homotopy equivalence. \hfill \Box

\section*{Appendix A. Monads}

Fix $I = \{x, y\} \in \mathcal{C}$. In this appendix we describe the open cover $\{A_x, A_y, N_2\}$ of $\mathcal{M}_{1,2} V$ the spaces N_x^y, N_y^x, and the map $\mathbb{M} : N_x^y \times N_y^x \to N_2$. The maps $\pi_{x,y}^*, \pi_{y,x}^*$ are open embeddings (see [12]) and we let $A_x = \text{Im}(\pi_{x,y}^*)$, $A_y = \text{Im}(\pi_{y,x}^*)$. To describe the other spaces we need the modul description of the moduli spaces introduced in [4], [6], which we briefly review here.

Let W_0, W_1 be rank k complex vector spaces. Let \mathcal{R} be the space of 4-tuples (a_1, a_2, b, c) where $a_i \in \text{End}(W_1)$, $b \in \text{Hom}(V, W_1)$ and $c \in \text{Hom}(W_1, V)$, obeying the integrability condition $[a_1, a_2] + bc = 0$. Let \mathcal{R}' be the space of 5-tuples (a_1', a_2', d', b', c') where $a_i' \in \text{Hom}(W_1, W_0)$, $d' \in \text{Hom}(W_0, W_1)$, $b' \in \text{Hom}(W, V)$ and $c' \in \text{Hom}(W_1, V)$, such that $a_1'(W_1) + a_2'(W_1) + b'(V) = W_0$, obeying the integrability condition $a_1'da_2 - a_2'da_1 + bc = 0$. $Gl(W_1)$ and $Gl(W_0) \times Gl(W_1)$ act by composition on \mathcal{R} and \mathcal{R}' respectively. A 4-tuple (a_1, a_2, b, c) is called nondegenerate if, for any subspace $U_1 \subset W_1$

1. $\text{Im} b \subset U_1$ and $a_i(U_1) \subset U_1 (i = 1, 2) \implies U_1 = W_1$
2. $U_1 \subset \text{Ker} a_i$ and $a_i(U_1) \subset U_1 (i = 1, 2) \implies U_1 = \emptyset$

A 5-tuple (a_1', a_2', d', b', c') is called nondegenerate if, for any subspaces $U_0 \subset W_0$ and $U_1 \subset W_1$ such that $\dim U_0 = \dim U_1$ we have

1. $\text{Im} b' \subset U_0$ and $d'(U_0) \subset U_1$ and $a_i'(U_1) \subset U_0 (i = 1, 2) \implies U_i = W_i (i = 1, 2)$
2. $U_1 \subset \text{Ker} c'$ and $d'(U_0) \subset U_1$ and $a_i'(U_1) \subset U_1 (i = 1, 2) \implies U_i = \emptyset (i = 1, 2)$

Let $\mathcal{R}_{\text{reg}}, \mathcal{R}'_{\text{reg}}$ denote the subspaces of nondegenerate configurations.

\textbf{Theorem} (Donaldson [4], King [6]). \textit{The actions of $Gl(W_1)$ and $Gl(W_0) \times Gl(W_1)$ on $\mathcal{R}_{\text{reg}}, \mathcal{R}'_{\text{reg}}$ are free and we have isomorphisms}

$$
\mathcal{R}_{\text{reg}}/Gl(W_1) \cong \mathcal{M}_{0,k} V \quad \mathcal{R}'_{\text{reg}}/(Gl(W_0) \times Gl(W_1)) \cong \mathcal{M}_{x,h} V
$$

The algebraic quotients $\mathcal{R}/Gl(W_1)$, $\mathcal{R}'/Gl(W_0) \times Gl(W_1)$ are isomorphic to the Donaldson-Uhlenbeck completions $\mathcal{M}_{0,k} V$, $\mathcal{M}_{x,h} V$ of $\mathcal{M}_{0,k} V$ and $\mathcal{M}_{x,h} V$ respectively.
Given an isometry $\alpha \in \mathcal{L}(V_1, V_2)$, we get a dual map $\alpha^* : V_2^* \cong V_2 \to V_1^* \cong V_1$. The map $\mathfrak{M}_0 : \mathfrak{M}_1 \to \mathfrak{M}_2$ is induced by $b \mapsto b \circ \alpha^*$, $c \mapsto \alpha \circ c$. Whitney sum $\omega : \mathfrak{M}_0 \times \mathfrak{M}_1 \to \mathfrak{M}_2$ is induced by direct sum: let $a_i \in \text{End}(W_1)$, $b, c \in \text{Hom}(W_1, V)$, and let $a_{1i} \in \text{End}(W_1)$, $b' \in \text{Hom}(V, W_1)$, then

$$\omega([a_1, a_2, b, c], [a'_1, a'_2, b', c']) = [a_1 \oplus a'_1, a_2 \oplus a'_2, b \oplus b', c \oplus c']$$

Corresponding results hold for Whitney sum on $\mathfrak{M}_x, \mathfrak{M}_y$. Now write $x = (x_1, x_2) \in \mathbb{C}^2$ and fix an isomorphism $d : W_0 \to W_1$. Then the map $\pi_{0, x}^* : \mathfrak{M}_{0, k} V \to \mathfrak{M}_{x, k} V$ is given by

$$\pi_{0, x}^*([a_1, a_2, b, c]) = [d^{-1}(a_1 - x_1 1), d^{-1}(a_2 - x_2 1), d, d^{-1} b, c]$$

Fix $\delta > 0$ and let

$$N'_x = \{[a_1, a_2, b', c'] \in \mathfrak{M}_{x, 1} V : |d'a'_1| < \delta\}$$

$$N'_0(x) = \{[a_1, a_2, b, c] \in \mathfrak{M}_{0, 1} V : |a_1 - x_1| < \delta\}$$

Proposition A.1. There are homeomorphisms $N'_0 \cong \mathfrak{M}_{0, 1} V$, $N'_x \cong \mathfrak{M}_{x, 1} V$.

Proof. Let M_0 be the space of orthogonal vectors $u, v \in V$ modulo the action of \mathbb{C}^* given by $g(u, v) = (gu, g^{-1} v)$ and let M_x be the space of orthogonal vectors $(u, v) \in V$ modulo the action of $\mathbb{C}^* \times \mathbb{C}^*$ given by $(g_0, g_1)(u, v) = (g_0 u, g_1^{-1} v)$. Then $\mathfrak{M}_{0, 1} V = \mathbb{C}^2 \times M_0$ and the projection $\mathfrak{M}_{x, 1} \to M_x$ given by $[a_1, a_2, b', c'] \to [b', c']$ is a fibre bundle with fiber \mathbb{C}^3. The result easily follows. \square

Now consider the map $\boxplus_0 : N'_0(x) \times N'_0(y) \to \mathfrak{M}_{0, 2} V$ given by

$$[a_{1x}, a_{2x}, b_{x}, c_x] \boxplus_0 [a_{1y}, a_{2y}, b_{y}, c_y] = \left[\begin{array}{cc}
a_{1x} & 0 \\
0 & a_{1y}
\end{array}\right], \left(\begin{array}{c}
a_{2x} \\
\frac{b_{x} c_y}{a_{2y}}
\end{array}\right), \left(\begin{array}{c}
\frac{b_x}{a_{2y}} \\
b_y
\end{array}\right), \left(\begin{array}{c}
c_x \\
c_y
\end{array}\right)$$

and the map $\boxplus_x : N'_x \times N'_0(y) \to \mathfrak{M}_{x, 2} V$ given by

$$[a'_1, a'_2, b', c'] \boxplus_x [a_{1z}, a_{2z}, b_z, c_z] = \left[\begin{array}{cc}
a'_1 & 0 \\
0 & a'_2
\end{array}\right], \left(\begin{array}{c}
a'_2 \\
\frac{b_{z} c'_{y}}{a_{2y}}
\end{array}\right), \left(\begin{array}{c}
0 & 0 \\
\frac{b_y}{a_{2y}}
\end{array}\right), \left(\begin{array}{c}
c' \\
c''
\end{array}\right)$$

where $[a'_1, a'_2, b', c''] = \pi_{0, y}^*[a_{1y}, a_{2y}, b_y, c_y]$. Now, straightforward computations show that

Proposition A.2.

1. There is a commutative diagram

$$\begin{array}{ccc}
N'_0 \times N'_0 & \boxplus_0 & \mathfrak{M}_{0, 2} \\
\pi_{0, x} \times 1 \downarrow & & \downarrow \pi_{0, c} \\
N'_x \times N'_0 & \boxplus_x & \mathfrak{M}_{x, 2}
\end{array}$$
(2) Let \(\alpha \in \mathcal{L}(V, V') \). Then we have a commutative diagram

\[
\begin{array}{ccc}
\mathcal{M}V \times \mathcal{M}V & \xrightarrow{\oplus} & \mathcal{M}V \\
\downarrow{\pi_\alpha \times \pi_\alpha} & & \downarrow{\pi_\alpha} \\
\mathcal{M}V' \times \mathcal{M}V' & \xrightarrow{\oplus} & \mathcal{M}V'
\end{array}
\]

(3) Let \(i : V \to V \oplus V' \), \(i' : V' \to V \oplus V' \) be the canonical inclusions. Then \(\omega \) equals the composition

\[
\mathcal{M}V \times \mathcal{M}V' \xrightarrow{x \times y} \mathcal{M}(V \oplus V') \times \mathcal{M}(V \oplus V') \xrightarrow{\oplus} \mathcal{M}(V \oplus V')
\]

The maps \(\mathbb{H}_x, \mathbb{H}_y, \mathbb{H}_b \) are open embeddings (see [12], proposition 4.5). Let \(C = \mathfrak{M}_{1,2}V \setminus (A_x \cup A_y) \). We define \(N_2 = \pi_{x,1}^*\text{Im}(\mathbb{H}_x) \cup \pi_{y,1}^*\text{Im}(\mathbb{H}_y) \cup C \).

Proposition A.3. There is a homeomorphism \(\mathbb{H} : N'_x \times N'_y \to N_2 \) which extends \(\mathbb{H}_x, \mathbb{H}_y \).

Proof. The proof follows the same lines as the proof of proposition 4.9 in [12]. We sketch the proof here, referring to [12] for more details. Let \(\pi_{x,1} : \mathbb{P}_x^2 \to \mathbb{P}^2 \), \(\pi_{y,1} : \mathbb{P}_y^2 \to \mathbb{P}^2 \) be the blowup at \(y \), and let \(\pi_{y,1} : \mathbb{P}_y^2 \to \mathbb{P}^2, \pi_{0,1} : \mathbb{P}_x^2 \to \mathbb{P}^2 \) be the blowup at \(x \). Taking the direct image of the bundles we get maps

\[
\begin{align*}
(\pi_{x,1})_* : \mathfrak{M}_{1,2}V & \to \mathfrak{M}_{x,1}V \\
(\pi_{y,1})_* : \mathfrak{M}_{1,2}V & \to \mathfrak{M}_{y,2}V
\end{align*}
\]

where the bar denotes the Donaldson-Uhlenbeck completion of the moduli space.

Given \(m_x \in N'_x, m_y \in N'_y \), we define \(m_x \boxplus m_y \) as the only solution of the system of equations

\[
\begin{align*}
(\pi_{x,1})_*(m_x \boxplus m_y) &= m_x \boxplus (\pi_{y,1})_*m_y \\
(\pi_{y,1})_*(m_x \boxplus m_y) &= (\pi_{y,1})_*m_x \boxplus m_y
\end{align*}
\]

To check existence and uniqueness we let \(S_0 N'_x = N'_x \setminus \pi_{x,1}^*N_0', S_0 N'_y = N'_y \setminus \pi_{y,1}^*N_0' \) and observe that

\[
N'_x \times N'_y = (N'_x \times \pi_{y,1}^*N_0') \cup (\pi_{x,1}^*N_0' \times N'_y) \cup (S_0 N'_x \times S_0 N'_y)
\]

Outside \(S_0 N'_x \times S_0 N'_y \) we can solve the equations and get

\[
m_x \boxplus \pi_{y,1}^*m = \pi_{x,1}^*(m_x \boxplus m) \quad \pi_{y,1}^*m \boxplus m_y = \pi_{y,1}^*(m \boxplus m_y)
\]

If \((m_x, m_y) \in S_0 N'_x \times S_0 N'_y \) then \((\pi_{x,1})_* (m_x \boxplus m_y) \in \mathfrak{M}_{x,2}V \) is the ideal instanton determined by \(x \in \mathfrak{M}_{x,1}V \) and a delta at \(y \), and \((\pi_{y,1})_* (m_x \boxplus m_y) \in \mathfrak{M}_{y,2}V \) is the ideal instanton determined by \(y \in \mathfrak{M}_{y,1}V \) and a delta at \(x \). By proposition 4.3 in [12], this completely determines \(m_x \boxplus m_y \). Continuity is proved exactly as in [12], proposition 4.9.

Finally we observe that the results of proposition A.2 extend to \(\mathbb{H} \) by continuity since \(N_0' \) is dense in \(N'_x \).

Acknowledgements. The author would like to thank Gustavo Granja for several fruitful discussions.
References

Instituto Superior Técnico