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Abstract

We introduce stratification in first-order logic; then we discuss soundness,
conservativeness and completeness.

0. Introduction.

The various nature of the mathematical objects in what concerns their com-
plexity, our knowledge of them or the possibility to make them explicit (for
example, infinitesimal or ilimited real numbers) is a strong motivation to con-
sider their distribution into levels or strata. The stratification depends on the se-
lected property (or properties) of the mathematical objects that are the subject-
-matter of our study.

1. Stratified Models.
Along this article £ is a first-order language with equality, no constant sym-
bols, no function symbols and the logical symbols:

parentheses ), (;

variables Vs Vly-vvyUnyeno )

0-ary connective L (falsity, falsum, absurdum) ;
binary connective — (implication) ;

universal quantifier V.

The basic definitions and conventions of £ are as usual (see [2]); in particular,
=, o V1, o A and (Jv;) ¢ (v;) abbreviate, respectively, ¢ — L, = — ),
~(mp V=) and — (Vi) =g (v5)

TERM (L"), TERM¢c (L), ATOM (L), FORM (L), Sent (L"), At (L")
denote, respectively, the classes of the terms, the closed terms, the atomic formu-
lae, the formulae, the sentences and the atomic sentences of whatever first-order
language £’ we are using.

Definition 1.1. Let P be a set and < a total, dense, preordering relation
on P.

p < q and p =< q abbreviate, respectively:

p<gAh-g<pandp<qgAqg<p !, for each p,q € P.

1Underlined connectives, quantifiers or equality (meaning identity) belong to the metalan-
guage.



P has a < — minimal element O< and no < — maximal element; more
explicitely:

Vp€P) (pSOS —>p—§0§),

(o) (527) (0202

Consider a class valued function D defined on P such that, for each p € P,
D (p) is a non-empty class.
For P, <,D,0< as described above, an informal sequence F := (P, <, D, 0<)

is called a stratifying frame.
The elements of P are the nodes of F and for each p € P, D (p) is the domain
of Fatp.

Definition 1.2. Let F = (P, <, D,0<) be a stratifying frame.

To each a € D (p) we associate a constant symbol a (different constant
symbols for different elements of D (p)). If a € D (p) and a € D (q), then the
constant symbol associated with a is the same.

L., (L), (for each p € P) and (L), are first-order extensions of £ defined
as:

L, := L U{0,C}, where 0 is a constant symbol and C is a new binary

relation ;ymbol called precedence of level,
(Ls), =L U {a:aeD(p)};

(E*)+ :f ng (L*)p .

L, is the stratifying language associated with L .

So, the class of all closed terms of (L), is:

TERMc ((L4),) = {a : (Elp € P) a€ D(p)} U {0}.
For any terms t1,to € TERM ((E*)Jr) :

t1 C ty abbreviates t; T to A 0ty Tt .

(t1 C to and 1 C to must be read, respectively, as "t; precedes to" and "t;
strictly precedes t2").
Consider a function V defined on TERM¢ ((£.), ) and with values in P

such that V (0) =0<, a € D (V (a)) and for each p € P :
aED(p)—>V(a)§p/\<Vq€P) <q<V(a)—>—|aeD(q)>,

\% (a) must be thought as "the” 2 first level of interpretation of @ .

2The definite article refers to the binary relation =<.



Consider a function ¥ defined on P such that, for eachp € P, ¥ (p) C At ((E*)p) ,
where At ((ﬁ*)p) is the class of all atomic sentences of (L), .

Y (p) establish, for each p € P, the "basic truths" at p .
D, ¥ and V satisfy the following conditions:
1)p<q— D(p) S D(q),

2) (Vp€P>ﬁJ_€E(p),

3)p<q— 3(p) CT(q),

4) 61:&;6 S(p)«— V(a1) <pAV(a2) <pAai=as,
5)aiCas € (p) e V(a1) <V (as)<p,

6) If R; is a n;-ary relation symbol of L, ay,...,ap,,b1,...,b,, € D(p) and
a1 =b1,...,a,, = by, , then:

Ri (a1, ,an) €S(p) — R (b1 by, ) €S (0).
(Evidently, if R; is a n;-ary relation symbol of £ and R; (&1, e ,Zzni) € ¥ (p), then:
A% (&1) <pA---AV (&m) < p, since X (p) C At ((L’*)p)).

Definition 1.3. For P,<,D, ¥, V,0< as described in definition 1.1 and
definition 1.2, let 7 = (P, <, D,0<) be a stratifying frame.
A stratified model for L, is an informal sequence S, := (F, 32, V,0) such that

1) 0 D(0<),
2) 0 is identified with 0.
The nodes of S, and the domain of S, at each p € P are those of F.

Remark 1.4. If S, = (F,%,V,0) is a stratified model for L., then it is

easy to prove that P is an infinite set and, at each p € P, D and ¥ determine a
classical structure (see [1]) 2, such that |2(,| = D (p) and:

i)PSQ—’|ﬂp|g|mq|-

ii) The interpretations Rfl” of a m;-ary relation symbol R; of £ and C¥» of
C are: N
<(l],"‘ 7a’ni> S Rip A R’L (ala"' 7a’n1) S E(p)a

<a1,(l2> GEQ['PI<—> a1 Cag € E(p) .

So, we have
p<q— R"CR'ANCWC %,

iii) (Vp € P) (Va eD (p)) a’=a ; in particular, since 0 is 0 :

iv) <Vp € P) 0% :=0.



Proposition 1.5. Let S, = (F,%,V,0) be a stratified model for L, .
1) Ifay,--- ,a, € TERM&((E*L_) , then there is a p € P such that:
(%) a1, ,a, € D(p) A (VqGP) (a1,~~~ ,an € D(q) —>p§q>.

2) If ay,--- ,ap € TE]%_MCT((L*)+) , then thereis a p € P such that:

V(a1) <pA---AV (an) Sp/_\(YqGP) <V(al)§q/_\~~~/\V(an) gq—>p§q>.

3) If p1,p2 cP s;tisfy (%), then p; =< pa .

Proof.
1) We simply choose p as "the" greatest of all the V (&1) oo,V (an) .
2) is a reformulation of 1) and 3) is a direct consequence of (x). O

Definition 1.6. If S, = (F,%,V,0) is a stratified model for £, and

ai, - ,a, € TERMc ((E*)+) , we define V (al,--- ,Zzn) as "the" p , unique
modulo =< , satisfying (*) in proposition 1.5.
(V ((_11, e ,ﬁn) is "the" first level of interpretation of all the @y, - - ,Ez,n) .

2. Stratified Semantics
Proposition 2.1. Let S, = (F, 3, V,0) be a stratified model for £, . Then

there exists a unique function >*, defined on P, such that for each p € P,
Y (p) CX*(p) C Sent ((E*)p) and

i)pc (At((ﬁ*)p))éjweil(p)fj3062*(1?),

ii)gp—>¢€2*(p)<—>(@GE*(Z?)—WﬂEE*(p))’

i) (v0) o () € 3 ) — (Yo D) ¢ (0) €5 1),

Proof. We simply define ¢ € ¥* (p), for each p € P, by induction on ¢ . [J
Notation 3. We write p I- ¢ for p € X* (p) (read "p forces ¢").

So, we have, for each p € P :
i)pll—dlzag<—>V(al)§p/\V(dz)§p/\a1:a2 .
i) plFay Cag—— V(a) <V (@) <p.
fii) ~plk L.

iv)pll-go—>z/;<—><p|}—go—>p|}—w>.

v) p Ik (Yo;) ¢ (v;) = (Va €D (p)> plke(a).

3For a modal view of forcing, see [6].



Corollary 2.2.
) plk-pe——-plkep.

2) plk =g ——plk .
3) plk oV —plkoVplki .
4) plF oA plFAplFy .

) bl o () — (3a€ D))o (a),
6) V (a) IFa; <

7) V (a2) I- ay
8) plka1 C as —— V (a1) <V (a2) <p.

C
C

Proof. Quite straightforward. [

Definition 2.3. If S, = (F,X,V,0) is a stratified model for £, and

p € FORM (L,) *, we define:
plF @ pl-Cl(p) , where Cl () is the universal closure of ¢ .

Proposition 2.4. Let S, = (F, %, V,0) be a stratified model for £, . Then,

if v; and v; are different variables of £ :
1) plkv; C o, , for each p € P.

2) pl-v; C v s (Va,beD(p)>V(a) ZSV(b).

3)plFv;, C0:— (VaED(p))V(a) =< 0< .
4) plF 0 C v; , for each p € P.

Proof. Quite straightforward. O

Definition 2.5. Let F = (P, <,D,0<) be a stratifying frame.

The classes of the elemeﬂtary progressive and the elementary regressive sen-
tences of (£,), , denoted, respectively, by Prgy ((£.), ) and Rgry ((£.), ), are
defined inductively:

P1) If p € At ((£ )Jr),thengoeprgo((ﬁ )4)

P2) If ¢y, 05 € Prgg ((£.),), then oy Ay, 01 V oy € Prgg ((L4),)

R1) L € Rgry ((£.),) and if ¢ is an atomic sentence of (L.), , different
from L , then —p € Rgro ((£4)y)

R2) It ©1,95 € Rgrg ((£ *)+) then ) A @y, 01 V gy € Rgro ((L4),),

s (Yp e P) (Sent (£2) C Sent ((£2),) AFORM (L.) € FORM ((c*)p)) .



PR) If ¢, € Prg, ((£.),) and ¢, € Rgry ((£+), ), then ¢, — ¢, € Rgro ((£4),),
RP) If ¢, € Ryry ((E*)Jr) and ¢, € Pryg, ((L*)+), then p; — ¢, € Pryg, ((E*)+) .
We may now define the classes of the eztended elementary progressive and the
extended elementary regressive sentences of (L) 4 » denoted, respectively, by
Prg ((£.),) and Rgr ((£L.),) :
Pi) If p € Pry, ((E*)Jr), then ¢ € Prg ((E*)+) ,
Pii) If ¢ (v;) € FORM ((L.),) is such that for each p € P and a € D (p),
¢ (a) € Prgy ((£.),), then (3v;) ¢ (v;) € Prg ((L+),) .
Ri) If ¢ € Rgry ((L4), ), then p € Rgr ((£.),)
Rii) If ¢ (v;) € FORM ((L.). ) is such that for each p € P and a € D (p),
¢ (a) € Rgro ((£+),), then (Vv;) ¢ (v;) € Rgr ((£+),) -

Proposition 2.6 (Weak Monotonicity of IF).
Let S, = (F,%,V,0) be a stratified model for £, .

1) If pe Prgy (L4), then for each p,q € P:

pgq—><p||—(p—>q|}—ap>.

2) If ¢ € Rgry (L), then for each p,q € P :
p<qg— <q|}—gp—>p|}—gp>.

3) If o € Prg(L.) or p € Rgr (L.), then we also have weak monotonicity of
I as in 1) or 2), respectively.

Proof.
1), 2) We proceed by induction on ¢ .
Consider p < ¢ .
If o € At ((Ls),) N Prgy (Ly), then 1) is immediate by definition 1.2, 3)
and proposition 2.1.
Of course, 2) is satisfied by L and if ¢ € At ((£.),)\{L} , then the proof
of 2) for -y is immediate by definition 1.2, 3) and proposition 2.1.
If ¢ is ¢y A @y , where 1,0y € Prgy ((£.),) , then:
plEpi Aoy e—plE o AplEgy,  — gl AglE gy ——qlE @ Apy .
Ind.
Huyp.
If p is ¢ V ¢y , where pq, 9y € Prg, ((E*)Jr) , then:
plEp Ve e—plb o Vpltg, — qlb o Valk gy ——qlbo Vi, .
Ind.
Hyp.
If @ is ) Vipy or @ is o) Ay , where @y, 0y € Rgrg ((£4),) , then we proceed
in a similar manner to prove 2).



If ¢ is ¢, — ¢, , where ¢, € Rgr, ((£.),.) and @, € Prgy ((£4), ), then:
plEor — o AglE 1 —plE oy — @ AplE o — plEwy — g lF @, .
So: - - - - -
plFo—qlk .
Similarl;/, we prove 2) for ¢, — @y, where ; € Pry, ((£.),) and @, € Rgro ((£4),) -
3) Counsider p < gq .
If ¢ € Prg, ((E*)+), then we simply use 1).
If ¢ is (Jv;) ¢y (vi) , where ¢, (v;) € FORM ((L.), ) and for each r € P and
a € D(r), ¢ (EL) € Pryg, ((E*)+) , then:

p Ik (Fv;) ¢ (v;) — (Ela eD (p)> plk ¢ (a) — (Ha eD (q)> qlF ¢y (a) «—

1)
D (p) € D(q)

— qlF (Fv;) oy (v;).

It @ € Rgr ((ﬁ*)Jr) we proceed mutatis mutandis in the same manner. [J

Definition 2.7.
1) If p € Sent (L) and S, = (F,%,V,0) is a stratified model for L, , we

define S, IF ¢ (read "S, forces gz;" or "S. is a stratified model of ") as:

S Ik e— <Vp6P>pH—ga.

We also define IF ¢ (read "¢ is universally valid" or "¢ is valid") as:
IF ¢ — <VS*> S, IF ¢ , where the possible values of the metavariable S,

are all stratified models for L, .
If ¥ is a subset of Sent (L), we define S, IF X (read "S, forces X" or "S,
is a stratified model of L") as:

SilFX:ie— (VLpGZ)S* IFe.

2) If T U {¢} C Sent(L,), we define T' I- ¢ (read "¢ is a stratified logical
consequence of T'") as:

Tl <v5*> (S, FT — S, IF ).

T U{p} C FORM (L,)and FV (T U{p}) = {viy,...,v;,}, where FV (T' U {¢})
is the set of all free variables of ' U{p}, we define " IF ¢ (read "¢ is a stratified
logical consequence of T") as:

Dl i (\7&) (vpe P) (\ml,-. Jap € D(p)> (i1 () —plry (@),

where @ = <Zz1, ... ’an>, and p - T (ﬁ) abbreviates (Vw S F> p - (?) )



3. Soundness, Conservativeness and Completeness.

Before we investigate soundness, let us exhibit the rules of inference we are
using in a context of natural deduction (using the language L£.) and with the
usual notion of derivation °:

Introduction Rules

4
D (=Dl ° 2) (VD) gy
P
o — 1
Elimination Rules
o p—1 1
3) (— E) BT 4) (1) ”
(Vvi)
) (RA4) [-] 6) (V) 7
L
4

The axioms for = and C are also presented as rules of inference:

Equality Rules

7) (ER)) 8) ER, 9) (ERs)

v; = U; Vi =V — Vj =V 'Ui:Uj/\'Uj:'Uk—>vi:vk

10) (ER4) For each n;-ary relation symbol R; of L :

Vjy =y A AU, = Uk, AR, (Ujl,...,’l)jni) — R; (vkl,...,vkni)

11) (ER;)

Viy = U5y A Vi, = V5, AUy L v, — Vs c Uja

Precedence of Level Rules

13) (PLR,)
v; Uigvj/\ngvk—’vigvk

12) (PLR) ——

K3

14) (PLR 15) (PLR
) ( S)Uigvj\/ngvi ) ( 4)0E’Ui

Restrictions. In 2), v; does not occur free in any hypothesis on which ¢
depends and in 6), t € TERM (L,) is free for v; in ¢.

SRemember that, in particular, derivations are finite trees of formulae and I' may have
superfluous hypotheses.
6Hypotheses enclosed in square brackets are cancelable.



Theorem 3.1 (Soundness). f T U {p} C FORM (L.), then:

'y —TIlFy.

Proof. We use induction on the derivation D of ¢ from I'. During the proof,
we use an arbitrary stratified model S,.
If ¢ € T, then we certainly have, with FV (T U {¢}) = {vi,,..., v, }

(vpeP) <Va1,-~- ,aneD(p)) <p|FF<ﬁ>) T»pwgp(ﬁ’))

If the end of D is an application of a derivation rule, then we must examine
the rules of inference one by one. This is a quite uncomplicated, albeit tedious,
task; for instance:

~vVI): FV(T') = {viy, - ,vi, } and v; & {viy, -, 05, }-

Induction hypothesis:

(vpep) <Va1,-~~ ,an,beD(p)> <p|rr(i’> —>p+<p(i’,b)>.

Then:

(vpeP) <Ya1,-~~ ,aneD(p)) <p|FF<H>) . (\_fbeD(p))pw@(?,E)).

Fi_nally: R

<Vp€ P) (wl,--. L € D(p)) (mw(?) — plk (V) ¢) (6’)) .0

Theorem 3.2. f T U{p} C FORM (L), then:
1) (Conservativeness)

Mg e—TFg,

where I . ¢ abbreviates "
rules of inference 1) to 10)".

2) (Semantic Extension)

@ is derived from I', in the usual way, using the

F'Ee—Tle.

If ¢ is a classical logical consequence of I" then ¢ is also a stratified logical
consequence of .

Proof.

1) Immediate, because the rules of inference 1) to 10) and the notion of
derivation are the same in classical and in stratified first-order logic.

2) By classical completeness and soundness:

FEp«—Tlrap.
By stratified soundness:

ThFe——Tly.



Finally, using 1):

' —Tle.O

Definition 3.3.
P.(Sent (L)) := {E C Sent (L) : ¥ has a classical model — ¥ has a stratified model} .

Theorem 3.4 (Completeness). If T' is a consistent 7 subset of Sent (L)
and T'U {—p} € P. (Sent (L)), then:

Ty —TFop.

Proof. Let I'IF ¢ .
If -TF ¢, then:

I'U {—} is consistent.
So, I' U {—¢} has a classical model.
Since I'U {—¢} € P.(Sent (L)), ' U{—¢p} has a stratified model, S, .
But then, S, is a stratified model of {¢, =} and that is impossible.
We conclude that:
I'Fe.O

Conclusion.

The stratification presented in this work may be applied to any theory (in
the usual, informal sense, of this word) formalizable in a first-order language
like £. So, we may stratify ZFC & or even such theories as Nelson internal
set theory, IST, or Hrbacek set theory, HST, that are largely used in
nonstandard analysis (see [5]).
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