
Strati�ed Models in First-Order Logic

José Roquette

Departamento de Matemática

Instituto Superior Técnico, Lisbon, Portugal

jroquet@math:ist :utl :pt

Abstract

We introduce strati�cation in �rst-order logic; then we discuss soundness,
conservativeness and completeness.

0. Introduction.
The various nature of the mathematical objects in what concerns their com-

plexity, our knowledge of them or the possibility to make them explicit (for
example, in�nitesimal or ilimited real numbers) is a strong motivation to con-
sider their distribution into levels or strata. The strati�cation depends on the se-
lected property (or properties) of the mathematical objects that are the subject-
-matter of our study.

1. Strati�ed Models.
Along this article L is a �rst-order language with equality, no constant sym-

bols, no function symbols and the logical symbols:
parentheses ); ( ;
variables v0; v1; : : : ; vn; : : : ;
0-ary connective ? (falsity; falsum; absurdum) ;
binary connective �! (implication) ;
universal quanti�er 8 :
The basic de�nitions and conventions of L are as usual (see [2]); in particular,

:'; ' _  ; ' ^  and (9vi)' (vi) abbreviate, respectively, ' �! ?; :' �!  ;
: (:' _ : ) and : (8vi):' (vi) .

TERM (L0) ; TERMC (L0) ; ATOM (L0) ; FORM (L0) ; Sent (L0) ; At (L0)
denote, respectively, the classes of the terms, the closed terms, the atomic formu-
lae, the formulae, the sentences and the atomic sentences of whatever �rst-order
language L0 we are using.

De�nition 1.1. Let P be a set and � a total, dense, preordering relation
on P .

p < q and p =� q abbreviate, respectively:
p � q

_̂
:
_
q � p and p � q

_̂
q � p 1 , for each p; q 2 P:

1Underlined connectives, quanti�ers or equality (meaning identity) belong to the metalan-
guage.
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P has a � � minimal element 0� and no � � maximal element; more
explicitely:�

8
_
p 2 P

��
p � 0� �!

_
p =� 0�

�
;

:
_

�
9
_
q 2 P

��
8
_
p 2 P

��
q � p �!

_
p =� q

�
:

Consider a class valued function D de�ned on P such that, for each p 2 P ,
D (p) is a non-empty class.
For P;�; D; 0� as described above, an informal sequence F :=

_
(P;�; D; 0�)

is called a stratifying frame.
The elements of P are the nodes of F and for each p 2 P; D (p) is the domain

of F at p :

De�nition 1.2. Let F =
_
(P;�; D; 0�) be a stratifying frame.

To each a 2 D (p) we associate a constant symbol
_
a (di¤erent constant

symbols for di¤erent elements of D (p)). If a 2 D (p) and a 2 D (q), then the
constant symbol associated with a is the same.
L�; (L�)p(for each p 2 P ) and (L�)+ are �rst-order extensions of L de�ned

as:
L� :=

_
L [f0; vg ; where 0 is a constant symbol and v is a new binary

relation symbol called precedence of level ;
(L�)p :=_ L� [

�_
a : a 2 D (p)

	
;

(L�)+ :=_ [
p2P

(L�)p :

L� is the stratifying language associated with L :
So, the class of all closed terms of (L�)+ is:

TERMC

�
(L�)+

�
=
_

�
_
a :

�
9
_
p 2 P

�
a 2 D (p)

�
[ f0g :

For any terms t1; t2 2 TERM
�
(L�)+

�
:

t1 @ t2 abbreviates t1 v t2 ^ : t2 v t1 :

(t1 v t2 and t1 @ t2 must be read, respectively, as "t1 precedes t2" and "t1
strictly precedes t2").
Consider a function V de�ned on TERMC

�
(L�)+

�
and with values in P

such that V (0) = 0�; a 2 D
�
V
�_
a
��
and for each p 2 P :

a 2 D (p) �!
_
V
�_
a
�
� p

_̂

�
8
_
q 2 P

��
q < V

�_
a
�
�!
_
:
_
a 2 D (q)

�
:

V
�_
a
�
must be thought as "the" 2 �rst level of interpretation of

_
a :

2The de�nite article refers to the binary relation =� :
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Consider a function � de�ned on P such that, for each p 2 P , � (p) � At
�
(L�)p

�
;

where At
�
(L�)p

�
is the class of all atomic sentences of (L�)p :

� (p) establish, for each p 2 P; the "basic truths" at p :
D, � and V satisfy the following conditions:
1) p � q �!

_
D (p) � D (q) ;

2)
�
8
_
p 2 P

�
:
_
? 2 � (p) ;

3) p � q �!
_
� (p) � � (q) ;

4)
_
a1 =

_
a2 2 � (p) !

_
V
�_
a1
�
� p

_̂
V
�_
a2
�
� p

_̂
a1 =

_
a2 ;

5)
_
a1 v

_
a2 2 � (p) !

_
V
�_
a1
�
� V

�_
a2
�
� p ;

6) If Ri is a ni-ary relation symbol of L, a1; : : : ; ani ; b1; : : : ; bni 2 D (p) and
a1 =

_
b1; : : : ; ani =_

bni , then:

Ri
�_
a1; � � � ;

_
ani
�
2 � (p) �!

_
R
�_
b1; � � � ;

_

bni

�
2 � (p) :

(Evidently, ifRi is a ni-ary relation symbol of L andRi
�_
a1; � � � ;

_
ani
�
2 � (p) ; then:

V
�_
a1
�
� p

_̂
� � �

_̂
V
�_
ani
�
� p; since � (p) � At

�
(L�)p

�
):

De�nition 1.3. For P;�; D; �; V;0� as described in de�nition 1.1 and
de�nition 1.2, let F = (P;�; D; 0�) be a stratifying frame.
A strati�ed model for L� is an informal sequence S� :=

_
(F ;�;V;0) such that

1) 0 2 D (0�) ;
2)

_
0 is identi�ed with 0:

The nodes of S� and the domain of S� at each p 2 P are those of F .

Remark 1.4. If S� =
_
(F ;�;V;0) is a strati�ed model for L�; then it is

easy to prove that P is an in�nite set and, at each p 2 P; D and � determine a
classical structure (see [1]) Ap such that jApj =

_
D (p) and:

i) p � q �!
_
jApj � jAqj :

ii) The interpretations RApi of a ni-ary relation symbol Ri of L and vAp of
v are:
ha1; � � � ; anii 2 R

Ap
i : !

_
Ri
�_
a1; � � � ;

_
ani
�
2 � (p) ;

ha1; a2i 2vAp : !
_

_
a1 v

_
a2 2 � (p) :

So, we have
p � q �!

_
R
Ap
i � R

Aq
i _̂

vAp� vAp :

iii)
�
8
_
p 2 P

��
8
_
a 2 D (p)

�
_
a
Ap
:=
_
a ; in particular, since 0 is

_
0 :

iv)
�
8
_
p 2 P

�
0Ap :=

_
0 .
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Proposition 1.5. Let S� =
_
(F ;�;V;0) be a strati�ed model for L� .

1) If
_
a1; � � � ;

_
an 2 TERMC

�
(L�)+

�
; then there is a p 2 P such that:

(�) a1; � � � ; an 2 D (p)
_̂

�
8
_
q 2 P

��
a1; � � � ; an 2 D (q) �!

_
p � q

�
:

2) If
_
a1; � � � ;

_
an 2 TERMC

�
(L�)+

�
; then there is a p 2 P such that:

V
�_
a1
�
� p

_̂
� � �

_̂
V
�_
an
�
� p

_̂

�
8
_
q 2 P

��
V
�_
a1
�
� q

_̂
� � �

_̂
V
�_
an
�
� q �!

_
p � q

�
:

3) If p1; p2 2 P satisfy (�), then p1 =� p2 .

Proof.
1) We simply choose p as "the" greatest of all the V

�_
a1
�
; � � � ;V

�_
an
�
:

2) is a reformulation of 1) and 3) is a direct consequence of (�) : �

De�nition 1.6. If S� =
_
(F ;�;V;0) is a strati�ed model for L� and

_
a1; � � � ;

_
an 2 TERMC

�
(L�)+

�
; we de�ne V

�_
a1; � � � ;

_
an
�
as "the" p , unique

modulo =� , satisfying (�) in proposition 1.5.�
V
�_
a1; � � � ;

_
an
�
is "the" �rst level of interpretation of all the

_
a1; � � � ;

_
an
�
:

2. Strati�ed Semantics
Proposition 2.1. Let S� =

_
(F ;�;V;0) be a strati�ed model for L� . Then

there exists a unique function ��, de�ned on P , such that for each p 2 P;

� (p) � �� (p) � Sent
�
(L�)p

�
and

i) ' 2
�
At
�
(L�)p

��
_̂
:
_
' 2 � (p) �!

_
:
_
' 2 �� (p) ;

ii) ' �!  2 �� (p) !
_

�
' 2 �� (p) �!

_
 2 �� (p)

�
;

iii) (8vi)' (vi) 2 �� (p) !
_

�
8
_
a 2 D (p)

�
'
�_
a
�
2 �� (p) :

Proof. We simply de�ne ' 2 �� (p) ; for each p 2 P; by induction on ' : �

Notation 3 . We write p 
 ' for ' 2 �� (p) (read "p forces '").

So, we have, for each p 2 P :
i) p 


_
a1 =

_
a2  !

_
V
�_
a1
�
� p

_̂
V
�_
a2
�
� p

_̂
a1 =

_
a2 .

ii) p 

_
a1 v

_
a2  !

_
V
�_
a1
�
� V

�_
a2
�
� p .

iii) :
_
p 
 ? :

iv) p 
 ' �!   !
_

�
p 
 ' �!

_
p 
  

�
:

v) p 
 (8vi)' (vi) !
_

�
8
_
a 2 D (p)

�
p 
 '

�_
a
�
:

3For a modal view of forcing, see [6] :
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Corollary 2.2.
1) p 
 :' !

_
:
_
p 
 ' :

2) p 
 ::' !
_

p 
 ' :

3) p 
 ' _   !
_

p 
 ' _
_
p 
  .

4) p 
 ' ^   !
_

p 
 '
_̂
p 
  .

5) p 
 (9vi)' (vi) !
_

�
9
_
a 2 D (p)

�
p 
 '

�_
a
�
:

6) V
�_
a1
�


_
a1 v

_
a2  !

_
V
�_
a1
�
=� V

�_
a2
�
:

7) V
�_
a2
�


_
a1 v

_
a2  !

_
V
�_
a1
�
� V

�_
a2
�
:

8) p 

_
a1 @

_
a2  !

_
V
�_
a1
�
< V

�_
a2
�
� p :

Proof. Quite straightforward. �

De�nition 2.3. If S� =
_
(F ;�;V; 0) is a strati�ed model for L� and

' 2 FORM (L�) 4 , we de�ne:
p 
 ' : !

_
p 
 Cl (') , where Cl (') is the universal closure of ' :

Proposition 2.4. Let S� =
_
(F ;�;V; 0) be a strati�ed model for L� . Then,

if vi and vj are di¤erent variables of L :
1) p 
 vi v vi , for each p 2 P:
2) p 
 vi v vj : !

_

�
8
_
a; b 2 D (p)

�
V
�_
a
�
=� V

�_
b
�
:

3) p 
 vi v 0 : !
_

�
8
_
a 2 D (p)

�
V
�_
a
�
=� 0� :

4) p 
 0 v vi ; for each p 2 P:

Proof. Quite straightforward. �

De�nition 2.5. Let F =
_
(P;�; D; 0�) be a stratifying frame.

The classes of the elementary progressive and the elementary regressive sen-
tences of (L�)+ , denoted, respectively, by Prg0

�
(L�)+

�
and Rgr0

�
(L�)+

�
, are

de�ned inductively:
P1) If ' 2 At

�
(L�)+

�
, then ' 2 Prg0

�
(L�)+

�
;

P2) If '1; '2 2 Prg0
�
(L�)+

�
, then '1 ^ '2; '1 _ '2 2 Prg0

�
(L�)+

�
;

R1) ? 2 Rgr0
�
(L�)+

�
and if ' is an atomic sentence of (L�)+ , di¤erent

from ? , then :' 2 Rgr0
�
(L�)+

�
;

R2) If '1; '2 2 Rgr0
�
(L�)+

�
, then '1 ^ '2; '1 _ '2 2 Rgr0

�
(L�)+

�
;

4
�
8
_
p 2 P

��
Sent (L�) � Sent

�
(L�)p

�
_̂
FORM (L�) � FORM

�
(L�)p

��
:
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PR) If '1 2 Prg0
�
(L�)+

�
and '2 2 Rgr0

�
(L�)+

�
, then '1 �! '2 2 Rgr0

�
(L�)+

�
;

RP) If '1 2 Rgr0
�
(L�)+

�
and '2 2 Prg0

�
(L�)+

�
, then '1 �! '2 2 Prg0

�
(L�)+

�
:

Wemay now de�ne the classes of the extended elementary progressive and the
extended elementary regressive sentences of (L�)+ , denoted, respectively, by
Prg

�
(L�)+

�
and Rgr

�
(L�)+

�
:

Pi) If ' 2 Prg0
�
(L�)+

�
, then ' 2 Prg

�
(L�)+

�
;

Pii) If ' (vi) 2 FORM
�
(L�)+

�
is such that for each p 2 P and a 2 D (p) ;

'
�_
a
�
2 Prg0

�
(L�)+

�
, then (9vi)' (vi) 2 Prg

�
(L�)+

�
:

Ri) If ' 2 Rgr0
�
(L�)+

�
, then ' 2 Rgr

�
(L�)+

�
;

Rii) If ' (vi) 2 FORM
�
(L�)+

�
is such that for each p 2 P and a 2 D (p) ;

'
�_
a
�
2 Rgr0

�
(L�)+

�
, then (8vi)' (vi) 2 Rgr

�
(L�)+

�
:

Proposition 2.6 (Weak Monotonicity of 
).
Let S� =

_
(F ;�;V; 0) be a strati�ed model for L� :

1) If ' 2 Prg0 (L�), then for each p; q 2 P :

p � q �!
_

�
p 
 ' �!

_
q 
 '

�
:

2) If ' 2 Rgr0 (L�), then for each p; q 2 P :

p � q �!
_

�
q 
 ' �!

_
p 
 '

�
:

3) If ' 2 Prg (L�) or ' 2 Rgr (L�), then we also have weak monotonicity of

 as in 1) or 2), respectively.

Proof.
1), 2) We proceed by induction on ' :
Consider p � q :
If ' 2 At

�
(L�)+

�
\ Prg0 (L�), then 1) is immediate by definition 1.2, 3)

and proposition 2.1.
Of course, 2) is satis�ed by ? and if ' 2 At

�
(L�)+

�
n f?g , then the proof

of 2) for :' is immediate by definition 1.2, 3) and proposition 2.1.
If ' is '1 ^ '2 ; where '1; '2 2 Prg0

�
(L�)+

�
; then:

p 
 '1 ^ '2  !_ p 
 '1 _̂
p 
 '2 �!

_

Ind:
Hyp:

q 
 '1 _̂
q 
 '2  !_ q 
 '1 ^ '2 :

If ' is '1 _ '2 ; where '1; '2 2 Prg0
�
(L�)+

�
; then:

p 
 '1 _ '2  !_ p 
 '1 __ p 
 '2 �!
_

Ind:
Hyp:

q 
 '1 __ q 
 '2  !_ q 
 '1 _ '2 :

If ' is '1_'2 or ' is '1^'2 ; where '1; '2 2 Rgr0
�
(L�)+

�
; then we proceed

in a similar manner to prove 2).
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If ' is '1 �! '2 ; where '1 2 Rgr0
�
(L�)+

�
and '2 2 Prg0

�
(L�)+

�
, then:

p 
 '1 �! '2 _̂
q 
 '1 �!_ p 
 '1 �! '2 _̂

p 
 '1 �!_ p 
 '2 �!_ q 
 '2 :

So:
p 
 ' �!

_
q 
 ' :

Similarly, we prove 2) for '1 �! '2; where '1 2 Prg0
�
(L�)+

�
and '2 2 Rgr0

�
(L�)+

�
:

3) Consider p � q :
If ' 2 Prg0

�
(L�)+

�
, then we simply use 1).

If ' is (9vi)'1 (vi) ; where '1 (vi) 2 FORM
�
(L�)+

�
and for each r 2 P and

a 2 D (r) ; '1
�_
a
�
2 Prg0

�
(L�)+

�
; then:

p 
 (9vi)'1 (vi) !_

�
9
_
a 2 D (p)

�
p 
 '1

�_
a
�

�!
_

1)
D (p) � D (q)

�
9
_
a 2 D (q)

�
q 
 '1

�_
a
�
 !
_

 !
_

q 
 (9vi)'1 (vi) :

If ' 2 Rgr
�
(L�)+

�
we proceed mutatis mutandis in the same manner. �

De�nition 2.7.
1) If ' 2 Sent (L�) and S� =

_
(F ;�;V; 0) is a strati�ed model for L� ; we

de�ne S� 
 ' (read "S� forces '" or "S� is a strati�ed model of '") as:

S� 
 ' : !
_

�
8
_
p 2 P

�
p 
 ' .

We also de�ne 
 ' (read "' is universally valid" or "' is valid") as:

 ' : !

_

�
8
_
S�
�
S� 
 ' ; where the possible values of the metavariable S�

are all strati�ed models for L� .
If � is a subset of Sent (L�) ; we de�ne S� 
 � (read "S� forces �" or "S�

is a strati�ed model of �") as:

S� 
 � : !
_

�
8
_
' 2 �

�
S� 
 ' :

2) If � [ f'g � Sent (L�) ; we de�ne � 
 ' (read "' is a strati�ed logical
consequence of �") as:

� 
 ' : !
_

�
8
_
S�
�
(S� 
 � �!

_
S� 
 '):

If � [ f'g � FORM (L�) and FV (� [ f'g) = fvi1 ; : : : ; ving ; where FV (� [ f'g)
is the set of all free variables of �[f'g ; we de�ne � 
 ' (read "' is a strati�ed
logical consequence of �") as:

� 
 ' : !
_

�
8
_
S�
��
8
_
p 2 P

��
8
_
a1; � � � ; an 2 D (p)

�
(p 
 �

� _�!a � �!
_

p 
'
� _�!a � );

where
_�!a =

_


_
a1; � � � ;

_
an
�
; and p 
 �

� _�!a � abbreviates �8
_
 2 �

�
p 
  

� _�!a � :
7



3. Soundness, Conservativeness and Completeness.
Before we investigate soundness, let us exhibit the rules of inference we are

using in a context of natural deduction (using the language L�) and with the
usual notion of derivation 5 :

Introduction Rules

1) (�! I) ['] 6 2) (8I) '

(8vi)'...
 

' �!  

Elimination Rules

3) (�! E)
' ' �!  

 
4) (?) ?

'

5) (RAA) [:'] 6) (8E) (8vi)'
' [t=vi]

...
?
'

The axioms for = and v are also presented as rules of inference:

Equality Rules

7) (ER1)
vi = vi

8) ER2
vi = vj �! vj = vi

9) (ER3)
vi = vj ^ vj = vk �! vi = vk

10) (ER4) For each ni-ary relation symbol Ri of L :

vj1 = vk1 ^ : : : ^ vjni = vkni ^Ri
�
vj1 ; : : : ; vjni

�
�! Ri

�
vk1 ; : : : ; vkni

�
11) (ER5)

vi1 = vj1 ^ vi2 = vj2 ^ vi1 v vi2 �! vj1 v vj2

Precedence of Level Rules

12) (PLR1)
vi v vi

13) (PLR2)
vi v vj ^ vj v vk �! vi v vk

14) (PLR3)
vi v vj _ vj v vi

15) (PLR4)
0 v vi

Restrictions. In 2), vi does not occur free in any hypothesis on which '
depends and in 6), t 2 TERM (L�) is free for vi in ':

5Remember that, in particular, derivations are �nite trees of formulae and � may have
super�uous hypotheses.

6Hypotheses enclosed in square brackets are cancelable.
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Theorem 3.1 (Soundness). If � [ f'g � FORM (L�) ; then:

� ` ' �!
_
� 
 ' :

Proof. We use induction on the derivation D of ' from �. During the proof,
we use an arbitrary strati�ed model S�.
If ' 2 �, then we certainly have, with FV (� [ f'g) = fvi1 ; : : : ; ving:�
8
_
p 2 P

��
8
_
a1; � � � ; an 2 D (p)

��
p 
 �

� _�!a � �!
_

p 
 '
� _�!a �� :

If the end of D is an application of a derivation rule, then we must examine
the rules of inference one by one. This is a quite uncomplicated, albeit tedious,
task; for instance:
(8I) : FV (�) = fvi1 ; � � � ; ving and vi =2 fvi1 ; � � � ; ving :
Induction hypothesis:�
8
_
p 2 P

��
8
_
a1; � � � ; an; b 2 D (p)

��
p 
 �

� _�!a � �!
_

p 
 '
� _�!a ; _b�� :

Then:�
8
_
p 2 P

��
8
_
a1; � � � ; an 2 D (p)

��
p 
 �

� _�!a � �!
_

�
8
_
b 2 D (p)

�
p 
 '

� _�!a ; _b�� :
Finally:�
8
_
p 2 P

��
8
_
a1; � � � ; an 2 D (p)

��
p 
 �

� _�!a � �!
_

p 
 ((8vi)')
� _�!a �� : �

Theorem 3.2. If � [ f'g � FORM (L) ; then:
1) (Conservativeness)

� `cl ' !� � ` ';

where � `cl ' abbreviates "' is derived from �; in the usual way, using the
rules of inference 1) to 10)".
2) (Semantic Extension)

� j= ' �!
_
� 
 ' :

If ' is a classical logical consequence of � then ' is also a strati�ed logical
consequence of �:

Proof.
1) Immediate, because the rules of inference 1) to 10) and the notion of

derivation are the same in classical and in strati�ed �rst-order logic.
2) By classical completeness and soundness:

� j= ' !
�

� `cl ' :

By strati�ed soundness:

� ` ' �!
_
� 
 ' :
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Finally, using 1):

� j= ' �!
_
� 
 ' : �

De�nition 3.3.

Pc (Sent (L�)) :=
_

�
� � Sent (L�) : � has a classical model �!

_
� has a strati�ed model

�
:

Theorem 3.4 (Completeness). If � is a consistent 7 subset of Sent (L�)
and � [ f:'g 2 Pc (Sent (L�)) ; then:

� 
 ' �!
_
� ` ' :

Proof. Let � 
 ' :
If :
_
� ` ' ; then:

� [ f:'g is consistent.
So, � [ f:'g has a classical model.
Since � [ f:'g 2 Pc (Sent (L�)) ; � [ f:'g has a strati�ed model, S� :
But then, S� is a strati�ed model of f';:'g and that is impossible.
We conclude that:

� ` ' : �

Conclusion.
The strati�cation presented in this work may be applied to any theory (in

the usual, informal sense, of this word) formalizable in a �rst-order language
like L: So, we may stratify ZFC 8 or even such theories as Nelson internal
set theory, IST , or Hrbaµcek set theory, HST , that are largely used in
nonstandard analysis (see [5]).
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