
CHAPTER 6

More scales and temperaments

6.1. Harry Partch's 43 tone and other just scales

Harry Partch playing the
bamboo marimba (Boo I)

In x5.5, we talked about just intonation in its
narrowest sense. This involved building up a scale
using ratios only involving the primes 2, 3 and 5, to
obtain a twelve tone scale. Just intonation can be
extended far beyond this limitation. The phrase su-
per just is sometimes used to denote a scale formed
with exact rational multiples for the intervals, but
using primes other than the 2, 3 and 5. Most of
these come from the twentieth century.

Harry Partch developed a just scale of 43 notes
which he used in a number of his compositions. The

tonic for his scale is G
0

. The scale is symmetric,

in the sense that every interval upwards from G
0

is

also an interval downwards from G
0

.
The primes involved in Partch's scale are 2, 3, 5, 7 and 11. The termi-

nology used by Partch to describe this is that his scale is based on the 11-
limit, while the Pythagorean scale is based on the 3-limit and the just scales
of x5.5 and x5.10 are based on the 5-limit. More generally, if p is a prime,
then a p-limit scale only uses rational numbers whose denominators and nu-
merators factor as products of prime numbers less than or equal to p (repe-
titions are allowed).
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158 6. MORE SCALES AND TEMPERAMENTS

Harry Partch's 43 tone scale

G
0

1:1 0.000 10:7 617.488

G
+1

81:80 21.506 16:11 648.682

33:32 53.273 D
�1

40:27 680.449

21:20 84.467 D
0

3:2 701.955

A[
+1

16:15 111.713 32:21 729.219

12:11 150.637 14:9 764.916

11:10 165.004 11:7 782.492

A
�1

10:9 182.404 E[
+1

8:5 813.686

A
0

9:8 203.910 18:11 852.592

8:7 231.174 E
�1

5:3 884.359

7:6 266.871 E
0

27:16 905.865

B[
0

32:27 294.135 12:7 933.129

B[
+1

6:5 315.641 7:4 968.826

11:9 347.408 F
0

16:9 996.090

B
�1

5:4 386.314 F
+1

9:5 1017.596

14:11 417.508 20:11 1034.996

9:7 435.084 11:6 1049.363

21:16 470.781 F]
�1

15:8 1088.269

C
0

4:3 498.045 40:21 1115.533

C
+1

27:20 519.551 64:33 1146.727

11:8 551.318 G
�1

160:81 1178.494

7:5 582.512 G
0

2:1 1200.000

Here are some other just scales. The Chinese L�u scale by Huai-nan-dsi
of the Han dynasty is the twelve tone just scale with ratios

1:1, 18:17, 9:8, 6:5, 54:43, 4:3, 27:19, 3:2, 27:17, 27:16, 9:5, 36:19, (2:1).

Wendy Carlos has developed several just scales. The \Wendy Carlos super
just intonation" is the twelve tone scale with ratios

1:1, 17:16, 9:8, 6:5, 5:4, 4:3, 11:8, 3:2, 13:8, 5:3, 7:4, 15:8, (2:1).

The \Wendy Carlos harmonic scale" also has twelve tones, with ratios

1:1, 17:16, 9:8, 19:16, 5:4, 21:16, 11:8, 3:2, 13:8, 27:16, 7:4, 15:8, (2:1).

A better way of writing this might be to multiply all the entries by 16:

16; 17; 18; 19; 20; 21; 22; 24; 26; 27; 28; 30; (32):

Lou Harrison has a 16 tone just scale with ratios

1:1, 16:15, 10:9, 8:7, 7:6, 6:5, 5:4, 4:3, 17:12,

3:2, 8:5, 5:3, 12:7, 7:4, 9:5, 15:8, (2:1).

Wilfrid Perret1 has a 19-tone 7-limit just scale with ratios

1:1, 21:20, 35:32, 9:8, 7:6, 6:5, 5:4, 21:16, 4:3, 7:5, 35:24,

3:2, 63:40, 8:5, 5:3, 7:4, 9:5, 15:8, 63:32, (2:1).

1W. Perret, Some questions of musical theory, W. He�er & Sons Ltd., Cambridge, 1926.
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John Chalmers also has a 19 tone 7-limit just scale, di�ering from this in just
two places. The ratios are

1:1, 21:20, 16:15, 9:8, 7:6, 6:5, 5:4, 21:16, 4:3, 7:5, 35:24,

3:2, 63:40, 8:5, 5:3, 7:4, 9:5, 28:15, 63:32, (2:1).

Michael Harrison has a 24 tone 7-limit just scale with ratios

1:1, 28:27, 135:128, 16:15, 243:224, 9:8, 8:7, 7:6, 32:27, 6:5, 135:112, 5:4,

81:64, 9:7, 21:16, 4:3, 112:81, 45:32, 64:45, 81:56, 3:2, 32:21, 14:9, 128:81,

8:5, 224:135, 5:3, 27:16, 12:7, 7:4, 16:9, 15:8, 243:128, 27:14, (2:1).

Harrison writes,

Beginning in 1986, I spent two years extensively modifying a
seven-foot Schimmel grand piano to create the Harmonic Piano.
It is the �rst piano tuned in Just Intonation with the exibil-
ity to modulate to multiple key centers at the press of a pedal.
With its unique pedal mechanism, the Harmonic Piano can dif-
ferentiate between notes usually shared by the same piano key
(for example, C-sharp and D-at). As a result, the Harmonic
Piano is capable of playing 24 notes per octave. In contrast to
the three unison strings per note of the standard piano, the Har-
monic Piano uses only single strings, giving it a \harp-like" tim-
bre. Special muting systems are employed to dampen unwanted
resonances and to enhance the instrument's clarity of sound.2

The Indian Shruti scale,3 commonly used to play ragas, is a 5-limit just scale
with 22 tones, but has some large numerators and denominators:

1:1, 256:243, 16:15, 10:9, 9:8, 32:27, 6:5, 5:4, 81:64, 4:3, 27:20, 45:32,

729:512, 3:2, 128:81, 8:5, 5:3, 27:16, 16:9, 9:5, 15:8, 243:128, (2:1).

Various notations have been designed for describing just scales. For
example, for 7-limit scales, a three-dimensional lattice of tetrahedra and oc-
tahedra can just about be drawn on paper. Here is an example of a twelve
tone 7-limit just scale drawn three dimensionally in this way.4

2From the liner notes to Harrison's From Ancient Worlds, for Harmonic Piano, see
Appendix R.

3Taken from B. Chaitanya Deva, The music of India [28], Table 9.2. Note that the
fractional value of note 5 given in this table should be 32/27, not 64/45, to match the other
information given in this table. This also matches the value given in Tables 9.4 and 9.8 of
the same work.

4This way of drawing the scale comes from Paul Erlich. According to Paul, the scale
was probably �rst written down by Erv Wilson in the 1960's.
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4:3 1:1 3:2

7:6 7:4 21:8

5:3 5:4 15:8

35:24 35:16 105:64
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The lines indicate major and minor thirds, perfect �fths, and three di�erent
septimal consonances 7:4, 7:5 and 7:6 (notes have been normalized to lie in-
side the octave 1:1 to 2:1). We return to the discussion of just intonation
in x6.8, where we discuss unison vectors and periodicity blocks. We put the
above diagram into context in x6.9.

Exercises

1. Taking 1:1 to be C
0

, write the Indian Shruti scale described in this section as an

array using Eitz's comma notation (like the scales in x5.10).

Further reading:

Harry Partch, Genesis of a music [89].

Joseph Yasser, A theory of evolving tonality [132].

Further listening: (See Appendix R)

Bill Alves, Terrain of possibilities.

Wendy Carlos, Beauty in the Beast.

Michael Harrison, From Ancient Worlds.

Harry Partch, Bewitched.

Robert Rich, Rainforest, Gaudi.

6.2. Continued fractions

e2�=5
�q

5+
p
5

2
�

p
5+1

2

�
= 1

1+

e�2�
1+

e�4�
1+

e�6�
1+

:::

Srinivasa Ramanujan

The modern twelve tone equal tempered scale is based around the fact
that

7=12 = 0:58333 : : :

is a good approximation to

log2(3=2) = 0:5849625007 : : : ;

so that if we divide the octave into twelve equal semitones, then seven semi-
tones is a good approximation to a perfect �fth. This suggests the follow-
ing question. Can log2(3=2) be expressed as a ratio of two integers, m=n? In
other words, is log2(3=2) a rational number? Since log2(3=2) and log2(3) dif-
fer by one, this is the same as asking whether log2(3) is rational.
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Lemma 6.2.1. The number log2(3) is irrational.

Proof. Suppose that log2(3) = m=n with m and n integers. Then

3 = 2m=n, or 3n = 2m. This is obviously impossible, as 3n is odd while 2m is
even. �

So the best we can expect to do is to approximate log2(3=2) by ratio-
nal numbers such as 7=12. There is a systematic theory of such rational ap-
proximations to irrational numbers, which is the theory of continued frac-
tions.5 A continued fraction is an expression of the form

a0 +
1

a1 +
1

a2 +
1

a3 + : : :

where a0; a1; : : : are integers, usually taken to be positive for i � 1. The ex-
pression is allowed to stop at some �nite stage, or it may go on for ever. For
typographic convenience, we write the continued fraction in the form

a0 +
1

a1+

1

a2+

1

a3+
: : :

For even greater compression of notation, this is sometimes written as

[a0; a1; a2; a3; : : : ]:

Every real number has a unique continued fraction expansion, and it stops
precisely when the number is rational. The easiest way to see this is as fol-
lows. If x is a real number, then the largest integer less than or equal to x
(the integer part of x) is written bxc.6 So bxc is what we take for a0. The
remainder x � bxc satis�es 0 � x � bxc < 1, so if it is nonzero, we now in-
vert it to obtain a number 1=(x � bxc) which is strictly larger than one.

Writing x0 = x, a0 = bx0c and x1 = 1=(x0 � bx0c), we have
x = a0 +

1

x1
:

Now just carry on going. Let a1 = bx1c, and x2 = 1=(x1 � bx1c), so that

x = a0 +
1

a1+

1

x2
:

Inductively, we set an = bxnc and xn+1 = 1=(xn � bxnc) so that

x = a0 +
1

a1+

1

a2+

1

a3+
: : :

This algorithm continues provided each xn 6= 0, which happens exactly when
x is irrational. Otherwise, if x is rational, the algorithm terminates to give

5The �rst mathematician known to have made use of continued fractions was Rafael
Bombelli in 1572. The modern notation for them was introduced by P. A. Cataldi in 1613.

6In some books, [x] is used instead.
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a �nite continued fraction. For irrational numbers the continued fraction ex-
pansion is unique. For rational numbers, we only have uniqueness if we stip-
ulate that the last an is larger than one.

As an example, let us compute the continued fraction expansion of

� = 3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164. . .

In this case, we have a0 = 3 and

x1 = 1=(� � 3) = 7:062513086 : : :

So a1 = 7, and
x2 = 1=(x1 � 7) = 15:99665 : : :

Continuing this way, we obtain

� = 3 +
1

7+

1

15+

1

1+

1

292+

1

1+

1

1+

1

1+

1

2+

1

1+

1

3+

1

1+

1

14+
: : :

In the more compressed (and tinier) notation, here are more terms:7

� = [3; 7; 15; 1; 292; 1; 1; 1; 2; 1; 3; 1; 14; 2; 1; 1; 2; 2; 2; 2; 1; 84; 2; 1; 1; 15; 3; 13;

1; 4; 2; 6; 6; 99; 1; 2; 2; 6; 3; 5; 1; 1; 6; 8; 1; 7; 1; 2; 3; 7; 1; 2; 1; 1; 12; 1; 1; 1; 3;

1; 1; 8; 1; 1; 2; 1; 6; 1; 1; 5; 2; 2; 3; 1; 2; 4; 4; 16; 1; 161; 45; 1; 22; 1; 2; 2; 1; 4;

1; 2; 24; 1; 2; 1; 3; 1; 2; 1; 1; 10; 2; 5; 4; 1; 2; 2; 8; 1; 5; 2; 2; 26; 1; 4; 1; 1; 8; 2;

42; 2; 1; 7; 3; 3; 1; 1; 7; 2; 4; 9; 7; 2; 3; 1; 57; 1; 18; 1; 9; 19; 1; 2; 18; 1; 3; 7; 30;

1; 1; 1; 3; 3; 3; 1; 2; 8; 1; 1; 2; 1; 15; 1; 2; 13; 1; 2; 1; 4; 1; 12; 1; 1; 3; 3; 28; 1; 10;

3; 2; 20; 1; 1; 1; 1; 4; 1; 1; 1; 5; 3; 2; 1; 6; 1; 4; 1; 120; 2; 1; 1; 3; 1; 23; 1; 15; 1; 3;

7; 1; 16; 1; 2; 1; 21; 2; 1; 1; 2; 9; 1; 6; 4; 127; 14; 5; 1; 3; 13; 7; 9; 1; 1; 1; 1; 1; 5;

4; 1; 1; 3; 1; 1; 29; 3; 1; 1; 2; 2; 1; 3; 1; 1; 1; 3; 1; 1; 10; 3; 1; 3; 1; 2; 1; 12; 1; 4; 1;

1; 1; 1; 7; 1; 1; 2; 1; 11; 3; 1; 7; 1; 4; 1; 48; 16; 1; 4; 5; 2; 1; 1; 4; 3; 1; 2; 3; 1; 2; 2;

1; 2; 5; 20; 1; 1; 5; 4; 1; 436; 8; 1; 2; 2; 1; 1; 1; 1; 1; 5; 1; 2; 1; 3; 6; 11; 4; 3; 1; 1; 1;

2; 5; 4; 6; 9; 1; 5; 1; 5; 15; 1; 11; 24; 4; 4; 5; 2; 1; 4; 1; 6; 1; 1; 1; 4; 3; 2; 2; 1; 1; 2;

1; 58; 5; 1; 2; 1; 2; 1; 1; 2; 2; 7; 1; 15; 1; 4; 8; 1; 1; 4; 2; 1; 1; 1; 3; 1; 1; 1; 2; 1; 1; 1;

1; 1; 9; 1; 4; 3; 15; 1; 2; 1; 13; 1; 1; 1; 3; 24; 1; 2; 4; 10; 5; 12; 3; 3; 21; 1; 2; 1; 34;

1; 1; 1; 4; 15; 1; 4; 44; 1; 4; 20776; 1; 1; 1; 1; 1; 1; 1; 23; 1; 7; 2; 1; 94; 55; 1; 1; 2; : : : ]

To get good rational approximations, we stop just before a large value of an.
So for example, stopping just before the 15, we obtain the well known ap-
proximation � � 22=7.8 Stopping just before the 292 gives us the extremely
good approximation

� � 355=113 = 3:1415929 : : :

which was known to the Chinese mathematician Chao Jung-Tze (or Tsu
Ch'ung-Chi, depending on how you transliterate the name) in 500 AD.

7Note that the values given in Hua [52], page 252, are erronious. The correct values
for the �rst 20,000,000 terms in the continued fraction expansion of � can be downloaded
from http://www.lacim.uqam.ca/piDATA/

8According to the bible, � is equal to 3. \Also, he made a molten sea of ten cubits
from brim to brim, round in compass, and �ve cubits the height thereof; and a line of thirty
cubits did compass it round about." I Kings 7:23.



6.2. CONTINUED FRACTIONS 163

The rational approximations obtained by truncating the continued frac-
tion expansion of a number are called the convergents. So the convergents
for � are

3

1
;
22

7
;
333

106
;
355

113
;
103993

33102
;
104348

33215
; : : :

There is an extremely eÆcient way to calculate the convergents from the con-
tinued fraction.

Theorem 6.2.2. De�ne numbers pn and qn inductively as follows:

p0 = a0; p1 = a1a0 + 1; pn = anpn�1 + pn�2 (n � 2) (6.2.1)

q0 = 1; q1 = a1; qn = anqn�1 + qn�2 (n � 2): (6.2.2)

Then we have

a0 +
1

a1+

1

a2+
: : :

1

an
=

pn
qn

:

Proof. (see Hardy and Wright [46], Theorem 149, or Hua [52], Theo-
rem 10.1.1).

The proof goes by induction on n. It is easy enough to check the cases
n = 0 and n = 1, so we assume that n � 2 and that the theorem holds for
smaller values of n. Then we have

a0 +
1

a1+

1

a2+
: : :

1

an�1+

1

an
= a0 +

1

a1+

1

a2+
: : :

1

an�1 +
1
an

:

So we can use the formula given by the theorem with n� 1 in place of n to
write this as

(an�1 +
1
an
)pn�2 + pn�3

(an�1 +
1
an
)qn�2 + qn�3

=
an(an�1pn�2 + pn�3) + pn�2
an(an�1qn�2 + qn�3) + qn�2

=
anpn�1 + pn�2
anqn�1 + qn�2

=
pn
qn

:

So the theorem is true for n, and the induction is complete. �

So in the above example for �, we have p0 = a0 = 3, q0 = 1,
p1 = a1a0 + 1 = 22, q1 = a1 = 7, we get

p2
q2

=
p0 + 15p1
q0 + 15q1

=
333

106

so that p2 = 333, q2 = 106,

p3
q3

=
p1 + p2
q1 + q2

=
355

113

so that p3 = 355, q3 = 113, and so on.
Examining the value of x2 in the case x = � above, it may look as

though it would be of advantage to allow negative as well as positive values
for an. However, this doesn't really help, because if xn is very slightly less
than an + 1 then an+1 will be equal to one, and from there on the sequence
as it would have been. In other words, the rational approximations obtained
this way are no better. A related observation is that if an+1 = 2 then it
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is worth examining the approximation given by replacing an by an + 1 and
stopping there.

The continued fraction expansion for the base of natural logarithms

e = 2:71828 18284 59045 23536 02874 71352 66249 77572 47093 : : :

= 2 +
1

1+

1

2+

1

1+

1

1+

1

4+

1

1+

1

1+

1

6+

1

1+

1

1+

1

8+

1

1+

1

1+
: : :

follows an easily described pattern, as was discovered by Leonhard Euler. The
continued fraction expansion of the golden ratio is even easier to describe:

� = 1
2
(1 +

p
5) = 1 +

1

1+

1

1+

1

1+

1

1+

1

1+
: : :

Although the continued fraction expansion of � is not regular in this way,
there is a closely related formula (Brouncker)

�

4
=

1

1+

1

3+

4

5+

9

7+

16

9+
: : :

which is a special case of the arctan formula

tan�1 z =
z

1+

z2

3+

4z2

5+

9z2

7+

16z2

9+
: : :

The tan formula

tan z =
z

1+

�z2
3+

�z2
5+

�z2
7+

: : :

can be used to show that � is irrational (Pringsheim).

How good are the rational approximations obtained from continued
fractions? This is answered by the following theorems. Recall that xn =
pn=qn denotes the nth convergent. In other words,

pn
qn

= a0 +
1

a1+

1

a2+
: : :

1

an�1+

1

an
:

Theorem 6.2.3. The error in the nth convergent of the continued frac-

tion expansion of a real number x is bounded by����pnqn � x

���� < 1

q2n
:

Proof. (see Hardy and Wright [46], Theorem 171, or Hua [52], Theo-
rem 10.2.6).

First, we notice that pn�1qn � pnqn�1 = (�1)n. This is easiest to see
by induction. For n = 1, we have p0 = a0, q0 = 1, p1 = a0a1 + 1, q1 = a1, so
p0a1 � p1a0 = �1. For n > 1, using equations (6.2.1) and (6.2.2) we have

pn�1qn � pnqn�1 = pn�1(qn�2 + anqn�1)� (pn�2 + anpn�1)qn�1

= pn�1qn�2 � pn�2qn�1

= �(pn�2qn�1 � pn�1qn�2)

= �(�1)n�1 = (�1)n:
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Now we use the fact that x lies between

pn�2 + anpn�1
qn�2 + anqn�1

and
pn�2 + (an + 1)pn�1
qn�2 + (an + 1)qn�1

or in other words between
pn
qn

and
pn + pn�1
qn + qn�1

. The distance between these

two numbers is����pn + pn�1
qn + qn�1

� pn
qn

���� =
����(pn + pn�1)qn � pn(qn + qn�1)

(qn + qn+1)qn

����
=

����pn�1qn � pnqn�1
q2n + qnqn�1

���� =
���� (�1)n
q2n + qnqn�1

���� < 1

q2n
: �

Notice that if we choose a denominator q at random, then the intervals
between the rational numbers of the form p=q are of size 1=q. So by choosing
p to minimize the error, we get jp=q � xj � 1=2q. So the point of the above
theorem is that the convergents in the continued fraction expansion are con-
siderably better than random denominators. In fact, more is true.

Theorem 6.2.4. Among the fractions p=q with q � qn, the closest to

x is pn=qn.

Proof. See Hardy and Wright [46], Theorem 181. �

It is not true that if p=q is a rational number satisfying jp=q�xj < 1=q2

then p=q is a convergent in the continued fraction expansion of x. However,
a theorem of Hurwitz (see Hua [52], Theorem 10.4.1) says that of any two
consecutive convergents to x, at least one of them satis�es jp=q�xj < 1=2q2.
Moreover, if a rational number p=q satis�es this inequality then it is a conver-
gent in the continued fraction expansion of x (see Hua [52], Theorem 10.7.2).

Distribution of the an

If we perform continued fractions on a transcendental number x, given
an integer k, how likely is it that an = k? It seems plausible that an = 1
is the most likely, and that the probabilities decrease rapidly as k increases,
but what is the exact distribution of probabilities?

Gauss answered this question in a letter addressed to Laplace, although
he never published a proof.9 Writing �f�g for the measure of a set f�g,
what he proved is the following. Given any t in the range (0; 1), in the limit
the measure of the set of numbers x in the interval (0; 1) for which xn�bxnc
is at most t is given by10

lim
n!1

�fx 2 (0; 1) j xn � bxnc � t g = log2(1 + t):

9According to A. Ya. Khinchin, Continued Fractions, Dover 1964, page 72, the �rst
published proof was by Kuz'min in 1928.

10If you don't know what measure means in this context, think of this as giving the
probability that a randomly chosen number in the given interval satis�es the hypothesis.
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The continued fraction process says that we should then invert xn � bxnc.
Writing u for 1=t, we obtain

lim
n!1

�fx 2 (0; 1) j 1

xn � bxnc � u g = log2(1 + 1=u):

Now we need to take the integer part of 1=(xn � bxnc) to obtain an+1. So if
k is an integer with k � 1 then

lim
n!1

�fx 2 (0; 1) j an = k g = log2(1 +
1

k
)� log2(1 +

1

k + 1
)

= log2

�
(k + 1)2

k(k + 2)

�
= log2

�
1 +

1

k(k + 2)

�
:

We now tabulate the probabilities given by this formula.

Value Limiting probability

of k that an = k as n!1
1 0:4150375

2 0:2223924

3 0:0931094

4 0:0588937

5 0:0406420

6 0:0297473

7 0:0227201

8 0:0179219

9 0:0144996

10 0:0119726

For large k, this decreases like 1=k2.

Multiple continued fractions

It is sometimes necessary to make simultaneous rational approxima-
tions for more than one irrational number. For example, in the equal tem-
pered scale, not only do seven semitones approximate a perfect �fth with ra-
tio 3:2, but also four semitones approximates a major third with ratio 5:4.
So we have

log2(3=2) � 7=12; log2(5=4) � 4=12:

A theorem of Dirichlet tells us how closely we should expect to be able to
approximate a set of k real numbers simultaneously.

Theorem 6.2.5. If �1, �2, . . .�k are real numbers, and at least one of

them is irrational, then the there exist an in�nite number of ways of choos-

ing a denominator q and numerators p1, p2, . . . , pk in such a way that the

approximations

p1=q � �1; p2=q � �2; : : : pk=q � �k
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have the property that the errors are all less than 1=q1+
1

k .

Proof. See Hardy and Wright [46], Theorem 200. �

The case k = 1 of this theorem is just Theorem 6.2.3. There is no
known method when k � 2 analogous to the method of continued fractions
for obtaining the approximations whose existence is guaranteed by this the-
orem. Of course, we can just work through the possibilities for q one at a
time, but this is much more tedious than one would like.

The power of q in the denominator in the above theorem (i.e., 1 + 1
k )

is known to be the best possible. Notice that the error term remains better
than the error term 1=2q which would result by choosing q randomly. But
the extent to which it is better diminishes to insigni�cant as k grows large.

Exercises

1. Investigate the convergents for the continued fraction expansion of the golden ra-
tio � = 1

2 (1+
p
5). What do these convergents have to do with the Fibonacci series?
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Coupled oscillators have a tendency to seek frequency ratios which can be ex-
pressed as rational numbers with small numerators and denominators. For exam-
ple, Mercury rotates on its axis exactly three times for every two rotations around
the sun, so that one Mercurial day lasts two Mercurial years. In a similar way, the
orbital times of Jupiter and the minor planet Pallas around the sun are locked in a
ratio of 18 to 7 (Gauss calculated in 1812 that this would be true, and observation
has con�rmed it). This is also why the moon rotates once around its axis for each
rotation around the earth, so that it always shows us the same face.

Among small frequency ratios for coupled oscillators, the golden ratio is the
least likely to lock in to a nearby rational number. Why?

2. Find the continued fraction expansion of
p
2. Show that if a number has a pe-

riodic continued fraction expansion then it satis�es a quadratic equation with inte-
ger coeÆcients. In fact, the converse is also true: if a number satis�es a quadratic
equation with integer coeÆcients then it has a periodic continued fraction expan-
sion. See for example Hardy and Wright [46], x10.12.
3. (Hua [52]) The synodic month is the period of time between two new moons, and
is 29:5306 days. When projected onto the star sphere, the path of the moon inter-
sects the ecliptic (the path of the sun) at the ascending and the descending nodes.
A draconic month is the period of time for the moon to return to the same node,
and is 27:2123 days. Show that the solar and lunar eclipses occur in cycles with a
period of 18 years 10 days.

4. In this problem, you will prove that � is not equal to 22
7 . This problem is not re-

ally relevant to the text, but it is interesting anyway.
Use partial fractions (actually, just the long division part of the algorithm) to

prove that Z 1

0

x4(1� x)4 dx

1 + x2
= 22

7 � �:

Deduce that � < 22
7 . Show thatZ 1

0

x4(1� x)4 dx = 1
630 ;

and use this to deduce that
1

1260 < 22
7 � � < 1

630 :

What would this sentence be like if � were 3?

If � were equal to 3, this sentence

w9uld l99k s9mething like this.

(Scott Kim/Harold Cooper, quoted from Douglas Hofstadter'sMetamagical Themas,
Basic Books, 1985).
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5. Show that if a and b have no common factor then loga(b) is irrational. Show that
if no pair among a, b and c has a common factor then loga(b) and loga(c) are ratio-
nally independent. In other words, there cannot exist nonzero integers n1, n2 and
n3 such that n1 loga(b) + n2 loga(c) = n3.

6. Find the continued fraction expansion for the rational number 531441=524288
which represents the frequency ratio for the Pythagorean comma. Explain in terms
of this example the relationship between the continued fraction expansion of a ra-
tional number and Euclid's algorithm for �nding highest common factors.

7. The Gaussian integers are the complex numbers of the form a+ bi where a and
b are in the rational integers Z. Develop a theory of continued fractions for simulta-
neously approximating two real numbers � and �, by considering the complex num-
ber � + �i. Explain why this method favors denominators which can be expressed
as a sum of two squares, so that it does not always �nd the best approximations.

8. A certain number is known to be a ratio of two 3-digit integers. Its decimal ex-

pansion, to nine signi�cant �gures, is 0:137637028. What are the integers?

Further reading:

Hardy and Wright, Number theory [46], chapter X.

Hua, Introduction to number theory [52], chapter 10.

Hubert Stanley Wall, Analytic theory of continued fractions. Chelsea, New York,
1948. ISBN 0828402078.

J. Murray Barbour, Music and ternary continued fractions, American Mathemati-
cal Monthly 55 (9) (1948), 545{555.

Viggo Brun,Music and ternary continued fractions, Norske Vid. Selsk. Forh., Trond-
heim 23 (1950), 38{40. This article is a response to the above article of Murray Bar-
bour.

Viggo Brun, Music and Euclidean algorithms, Nordisk Mat. Tidskr. 9 (1961), 29{
36, 95.

J. B. Rosser, Generalized ternary continued fractions, American Mathematical

Monthly 57 (8) (1950), 528{535. This is another response to Murray Barbour's ar-

ticle.

6.3. Fifty-three tone scale

The �rst continued fraction expansion of interest to us is the one for
log2(3=2). The �rst few terms are

log2(3=2) =
1

1+

1

1+

1

2+

1

2+

1

3+

1

1+

1

5+

1

2+

1

23+

1

2+

1

2+

1

1+
: : :

The sequence of convergents for the continued fraction expansion of log2(3=2)
is

1;
1

2
;
3

5
;
7

12
;
24

41
;
31

53
;
179

306
;
389

665
;
9126

15601
; : : :
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Bosanquet's harmonium

The bottoms of these fractions tell us how many equal notes to divide an
octave into, and the tops tell us how many of these notes make up one ap-
proximate �fth. The fourth of the above approximations give us our western
scale. The next obvious places to stop are at 31=53 and 389=665, just before
large denominators.

The �fty-three tone equally tempered scale is interesting enough to war-
rant some discussion. In 1876, Robert Bosanquet made a \generalized key-
board harmonium" with �fty-three notes to an octave.11 A photograph of this
instrument can be found on page 170. A discussion of this harmonium can be
found in the translator's appendix XX.F.8 (pages 479{481) in Helmholtz [48].
One way of thinking of the �fty-three note scale is that it is based around the
approximation which makes the Pythagorean comma equal to one �fty-third
of an octave, or 1200=53 = 22:642 cents, rather than the true value of 23:460
cents. So if we go around a complete circle of �fths, we get from C to a note

11Described in Bosanquet, Musical intervals and temperaments, Macmillan and Co.,
London, 1876. Reprinted with commentary by Rudolph Rasch, Diapason Press, Utrecht,
1986.
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which we may call B] 22:642 cents higher. This corresponds to the equation

12� 31� 7� 53 = 1;

which can be interpreted as saying that twelve 53-tone equal temperament
�fths minus seven octaves equals one step in the 53-tone scale.

The following table shows the �fty-three tone equivalents of the notes
on the Pythagorean scale:

note C B] D[ C] D E[ D] E F G[

degree 0 1 4 5 9 13 14 18 22 26

note F] G A[ G] A B[ A] C[ B C

degree 27 31 35 36 40 44 45 48 49 53

Thus the �fty-three tone scale is made up of �ve whole tones each of nine
scale degrees and two semitones each of four scale degrees, 5�9+2�4 = 53.
Flattening or sharpening a note changes it by �ve scale degrees. The perfect
�fth is extremely closely approximated in this scale by the thirty-�rst degree,
which is

31

53
� 1200 = 701:887

cents rather than the true value of 701:955.
The just major third is also closely approximated in this scale by the

seventeenth degree, which is

17

53
� 1200 = 384:906

cents rather than the true value of 386:314 cents. In e�ect, what is happen-
ing is that we are approximating both the Pythagorean comma and the syn-
tonic comma by a single scale degree in the 53 note scale, which is roughly
half way between them. So in Eitz's notation, we are identifying the note

G]
0

with A[
+1

, whose di�erence is one schisma. Similarly, we are identifying

the note B
�1

with C[
0

, B]
�1

with C
0

, and so on. We are also identifying the

note G
+2

with A[
�2
, whose di�erence is a diesis minus four commas, or

256

243

�
80

81

�4
=

22454

321
=

10485760000

10460353203
;

or about 4:200 cents. The e�ect of this is that the array notation introduced
in x5.9 becomes periodic in both directions, so that we obtain the diagram
on page 172. In this diagram, the top and bottom row are identi�ed with
each other, and the left and right walls are identi�ed with each other. The
resulting geometric �gure is called a torus, and it looks like a bagel, or a tire.

It appears that the Pythagoreans were aware of the 53 tone equally
tempered scale. Philolaus, a disciple of Pythagoras, thought of the tone as
being divided into two minor semitones and a Pythagorean comma, and took
each minor semitone to be four commas. This makes nine commas to the
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22 0 31 9 40 18 49 27 5

5 36 14 45 23 1 32 10 41 19

19 50 28 6 37 15 46 24 2 33

33 11 42 20 51 29 7 38 16 47

47 25 3 34 12 43 21 52 30 8

8 39 17 48 26 4 35 13 44 22

22 0 31 9 40 18 49 27 5

F
0

C
0

G
0

D
0

A
0

E
0

B
0

F]
0

C]
0

C]
0

A[
+1

E[
+1

B[
+1

F
+1

C
+1

G
+1

D
+1

A
+1

E
+1

E
+1

B
+1

F]
+1

C]
+1

A[
+2

E[
+2

B[
+2

F
+2

C
+2

G
+2

G
+2

D
+2

A
+2

E
+2

C
�2

G
�2

D
�2

A
�2

E
�2

B
�2

B
�2

F]
�2

C]
�2

A[
�1

E[
�1

B[
�1

F
�1

C
�1

G
�1

D
�1

D
�1

A
�1

E
�1

B
�1

F]
�1

C]
�1

A[
0

E[
0

B[
0

F
0

F
0

C
0

G
0

D
0

A
0

E
0

B
0

F]
0

C]
0

Torus of thirds and �fths in 53 tone equal temperament

whole tone and four commas to the minor semitone, for a total of 53 com-
mas to the octave. The Chinese theorist King Fâng of the third century b.c.
also seems to have been aware that the 54th note in the Pythagorean system
is almost identical to the �rst.

After 53, the next good denominator in the continued fraction expan-
sion of log2(3=2) is 665. The extra advantages obtained by going to an equally
tempered 665 tone scale, which is gives a remarkably good approximation
to the perfect �fth, are far outweighed by the fact that adjacent tones are
so close together (1:805 cents) as to be almost indistinguishable. If 53 tone
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equal temperament is thought of as the scale of commas, then 665 tone equal
temperament might be thought of as a scale of schismas.

6.4. Other equal tempered scales

Other divisions of the octave into equal intervals which have been used
for experimental tunings have included 19, 24, 31 and 43. The 19 tone scale
has the advantage of excellent approximations to the 6:5 minor third and the
5:3 major sixth as well as reasonable approximations to the 5:4 major third
and the 8:5 minor sixth. The eleventh degree gives an approximation to the
3:2 perfect �fth which is somewhat worse than in twelve tone equal temper-
ament, but still acceptable.

19-tone

name ratio cents degree cents

fundamental 1:1 0:000 0 0:000

minor third 6:5 315:641 5 315:789

major third 5:4 386:314 6 378:947

perfect �fth 3:2 701:955 11 694:737

minor sixth 8:5 813:687 13 821:053

major sixth 5:3 884:359 14 884:211

octave 2:1 1200:000 19 1200:000

Christiaan Huygens, in the late 17th century, seems to have been the
�rst to use the equally tempered 19 tone scale as a way of approximating just
intonation in a way that allowed for modulation into other keys. Yasser12 was
an important twentieth century proponent. The properties of 19 tone equal
temperament with respect to formation of a diatonic scale are very similar
to those for 12 tones. But accidentals and chromatic scales behave very dif-
ferently.

The main purpose I can see for the equally tempered 24 tone scale,
usually referred to as the quarter-tone scale, is that it increases the number
of tones available without throwing out the familiar twelve tones. It contains
no better approximations to the ratios 3:2 and 5:4 than the twelve tone scale,
but has a marginally better approximation to 7:4 and a signi�cantly better
approximation to 11:8. The two sets of twelve notes formed by taking ev-
ery other note from the 24 tone scale can be alternated with interesting ef-
fect, but using notes from both sets of twelve at once has a strong tendency
to make discords. Examples of works using the quarter-tone scale include
the German composer Richard Stein's Zwei Konzertst�ucke op. 26, 1906 for
cello and piano and Alois H�aba's Suite for String Orchestra, 1917.13 Twen-
tieth century American composers such as Howard Hanson and Charles Ives
have composed music designed for two pianos tuned a quarter tone apart.

12Joseph Yasser, A theory of evolving tonality, American Library of Musicology, New
York, 1932.

13It is said that H�aba practised to the point where he could accurately sing �ve divi-
sions to a semitone, or sixty to an octave.
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Appendix E contains a table of various equal tempered scales, quan-
tifying how well they approximate perfect �fths, just major thirds, and sev-
enth harmonics. An examination of this table reveals that the 31 tone scale
is unusually good at approximating all three at once. We examine this scale
in the next section.

Further reading:

Jim Aikin, Discover 19-tone equal temperament, Keyboard, March 1988, p. 74{80.

M. Yunik and G. W. Swift, Tempered music scales for sound synthesis, Computer

Music Journal 4 (4) (1980), 60{65.

Further listening: (See Appendix R)

Between the Keys, Microtonal masterpieces of the 20th century. This CD contains
recordings of Charles Ives' Three quartertone pieces, and a piece by Ivan Vyshne-
gradsky in 72 tone equal temperament.

Easley Blackwood Microtonal Compositions. This is a recording of a set of micro-
tonal compositions in each of the equally tempered scales from 13 tone to 24 tone.

Clarence Barlow's \OTOdeBLU" is in 17 tone equal temperament, played on two
pianos.

Neil Haverstick, Acoustic stick. Played on custum built acoustic guitars tuned in 19
and 34 tone equal temperament.

William Sethares, Xentonality, Music in 10-, 17- and 19-tet.

6.5. Thirty-one tone scale

The 31 tone equal tempered scale was �rst investigated by Nicola Vi-
centino14 and also later by Christiaan Huygens.15 It gives a better approxi-
mation to the perfect �fth than the 19 tone scale, but it is still worse than
the 12 tone scale.

31-tone

name ratio cents degree cents

fundamental 1:1 0:000 0 0:000

major third 5:4 386:314 10 387:097

perfect �fth 3:2 701:955 18 696:774

minor sixth 8:5 813:687 21 812:903

seventh harmonic 7:4 968:826 25 967:742

It also contains good approximations to the major third and minor sixth, as
well as the seventh harmonic.

The main reason for interest in 31-tone equal temperament is that note
18 of this scale is an unexpectedly good approximation to the meantone �fth
(696:579) rather than the perfect �fth. So the entire meantone scale can be

14Nicola Vicentino, L'antica musica ridotta alla moderna pratica, Rome, 1555. Trans-
lated as Ancient music adapted to modern practice, Yale University Press, 1996.

15Christiaan Huygens, Lettre touchant le cycle harmonique, Letter to the editor of the
journal Histoire des Ouvrage de S�cavans, Rotterdam 1691. Reprinted with English and
Dutch translation (ed. Rudolph Rasch), Diapason Press, Utrecht, 1986.



6.5. THIRTY-ONE TONE SCALE 175

approximated as shown in the table below. Fokker16 was an important twen-
tieth century proponent of the 31 tone scale.

note meantone 31-tone

C 0:000 0 0:000

C] 76:049 2 77:419

D 193:157 5 193:548

E[ 310:265 8 309:677

E 386:314 10 387:097

F 503:422 13 503:226

F] 579:471 15 580:645

G 696:579 18 696:774

A[ 813:686 21 812:903

A 889:735 23 890:323

B[ 1006:843 26 1006:452

B 1082:892 28 1083:871

C 1200:000 31 1200:000

The picture above shows a 31 tone equal tempered instrument, made by Vi-
tus Trasuntinis in 1606. This instrument is currently in the State Museum
in Bologna. Each octave has seven keys as usual where the white keys would
normally go, and �ve sets of four keys where the �ve black keys would nor-
mally go. Then there are two keys each between the white keys that would
normally not be separated by black keys, for a total of 7+4� 5+2� 2 = 31.

Let us examine the relationship between the meantone scale and 31
tone equal temperament in terms of continued fractions. Since the meantone
scale is generated by the meantone �fth, which represents a ratio of 4

p
5 : 1,

we should look at the continued fraction for log2(
4
p
5). We obtain

log2(
4
p
5) = 1

4
log2(5) = 0:580482024 : : :

=
1

1+

1

1+

1

2+

1

1+

1

1+

1

1+

1

1+

1

5+

1

1+
: : :

with convergents

0

1
;
1

1
;
1

2
;
3

5
;
4

7
;
7

12
;
11

19
;
18

31
;
101

174
;
119

205
; : : :

Cutting o� just before the denominator 5 gives the approximation 18=31,
which gives rise to the 31 tone equal tempered scale described above.

16See for example A. D. Fokker, The qualities of the equal temperament by 31 �fths

of a tone in the octave, Report of the Fifth Congress of the International Society for Mu-
sical Research, Utrecht, 3{7 July 1952, Vereniging voor Nederlandse Muziekgeschiedenis,
Amsterdam (1953), 191{192; Equal temperament with 31 notes, Organ Institute Quarterly
5 (1955), 41; Equal temperament and the thirty-one-keyed organ, Scienti�c Monthly 81
(1955), 161{166. Also M. Joel Mandelbaum, 31-Tone Temperament: The Dutch Legacy,
Ear Magazine East, New York, 1982/1983; Henk Badings, A. D. Fokker: new music with

31 notes, Zeitschrift f�ur Musiktheorie 7 (1976), 46{48.
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Exercises

1. Draw a torus of thirds and �fths, analogous to the one on page 172, for the 31
tone equal tempered scale, regarded as an approximation to meantone tuning.

2. In the text, the 31 tone equal tempered scale was compared with the usual (quar-
ter comma) meantone scale, using the observation that taking multiples of the �fth
generates a meantone scale, and then applying the theory of continued fractions to
approximate the �fth. Carry out the same process to make the following compar-
isons.

(i) Compare the 19 tone equal tempered scale with Salinas' 1
3 comma mean-

tone scale.

(ii) Compare the 43 tone equal tempered scale with the 1
5 comma meantone

scale of Verheijen and Rossi.

(iii) Compare the 50 tone equal tempered scale with Zarlino's 2
7 comma mean-

tone scale.

(iv) Compare the 55 tone equal tempered scale with Silbermann's 1
6 comma

meantone scale.

Appendix J has a diagram which is relevant to this question.

6.6. The scales of Wendy Carlos

The idea behind the alpha, beta and gamma scales of Wendy Carlos
is to ignore the requirement that there are a whole number of notes to an
octave, and try to �nd equal tempered scales which give good approxima-
tions to the just intervals 3:2 and 5:4 (perfect �fth and major third). Since
6=5 = 3=2�5=4, this automatically gives good approximations to the 6:5 mi-
nor third. This means that we need log2(3=2) and log2(5=4) to be close to
integer multiples of the scale degree. So we must �nd rational approxima-
tions to the ratio of these quantities.

We investigate the continued fraction expansion of the ratio:

log2(3=2)

log2(5=4)
=

ln(3=2)

ln(5=4)
= 1 +

1

1+

1

4+

1

2+

1

6+

1

1+

1

10+

1

135+
: : :

The sequence of convergents obtained by truncating this continued fraction is:

1; 2;
9

5
;
20

11
;
129

71
;
149

82
; : : :

Carlos' � (alpha) scale arises from the approximation 9=5 for the above
ratio. This means taking a value for the scale degree so that nine of them ap-
proximate a 3:2 perfect �fth, �ve of them approximate a 5:4 major third, and
four of them approximate a 6:5 minor third. In order to make the approxi-
mation as good as possible we minimize the mean square deviation. So if x
denotes the scale degree (taking the octave as unit) then we must minimize

(9x� log2(3=2))
2 + (5x� log2(5=4))

2 + (4x� log2(6=5))
2:
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Setting the derivative with respect to x of this quantity equal to zero, we ob-
tain the equation

x =
9 log2(3=2) + 5 log2(5=4) + 4 log2(6=5)

92 + 52 + 42
� 0:06497082462

Multiplying by 1200, we obtain a scale degree of 77.965 cents, and there are
15.3915 of them to the octave.17

Wendy Carlos

Carlos also considers the scale �0 ob-
tained by doubling the number of notes in
the octave. This gives the same approxima-
tions as before for the ratios 3:2, 5:4 and 6:5,
but the twenty-�fth degree of the new scale
(974.562 cents) is a good approximation to
the seventh harmonic in the form of the ra-
tio 7:4 (968.826 cents).

If instead we use the approximation

1 +
1

1+

1

5
=

11

6

we obtain Carlos' � (beta) scale. We choose
a value of the scale degree so that eleven of
them approximate a 3:2 perfect �fth, six of

them approximate a 5:4 major third, and �ve of them approximate a 4:3 mi-
nor third. Proceeding as before, we see that the proportion of an octave oc-
cupied by each scale degree is

11 log2(3=2) + 6 log2(5=4) + 5 log2(6=5)

112 + 62 + 52
� 0:05319411048:

Multiplying by 1200, we obtain a scale degree of 63.833 cents, and there are
18.7991 of them to the octave.18 One advantage of the beta scale over the
alpha scale is that the �fteenth scale degree (957.494 cents) is a reasonable
approximation to the seventh harmonic in the form of the ratio 7:4 (968.826
cents). Indeed, it may be preferable to include this approximation into the
above least squares calculation to get a scale in which the proportion of an
octave occupied by each scale degree is

15 log2(7=4) + 11 log2(3=2) + 6 log2(5=4) + 5 log2(6=5)

152 + 112 + 62 + 52
� 0:05354214235:

This gives a scale degree of 64.251 cents, and there are 18.677 of them to the
octave. The �fteenth scale degree is then 963.759 cents.

Going one stage further, and using the approximation 20=11, we ob-
tain Carlos'  (gamma) scale. We choose a value of the scale degree so that
twenty of them approximate a 3:2 perfect �fth, nine of them approximate a

17This actually di�ers very slightly from Carlos' �gure of 15.385 �-scale degrees to the
octave. This is obtained by approximating the scale degree to 78.0 cents.

18Carlos has 18.809 �-scale degrees to the octave, corresponding to a scale degree of
63.8 cents.
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5:4 major third, and eleven of them approximate a 4:3 minor third. The pro-
portion of an octave occupied by each scale degree is

20 log2(3=2) + 11 log2(5=4) + 9 log2(6=5)

202 + 112 + 92
� 0:02924878523:

Multiplying by 1200, we obtain a scale degree of 35.099 cents, and there are
34.1895 of them to the octave.19 This scale contains almost pure perfect �fths
and major thirds, but it does not contain a good approximation to the ratio
7:4.

name ratio cents � cents � cents  cents

fundamental 1:1 0.000 0 0.000 0 0.000 0 0.000

minor third 6:5 315.641 4 311.860 5 319.165 9 315.887

major third 5:4 386.314 5 389.825 6 382.998 11 386.084

perfect �fth 3:2 701.955 9 701.685 11 702.162 20 701.971

seventh harmonic 7:4 968.826 12 12 974.562 15 957.494 { | |

6.7. The Bohlen{Pierce scale

Jaja, unlike Stravinsky, has never been guilty of composing har-
mony in all his life. Jaja is pure absolute twelve tone. Never
tempted, like some of the French composers, to write with thir-
teen tones. Oh no. This, says Jaja, is the baker's dozen, the
\Nadir of Boulanger."

From Gerard Ho�nung's Interplanetary Music
Festival, analysis by two \distinguished teutonic
musicologists" of the work of a �ctitious twelve
tone composer, Bruno Heinz Jaja.

The Bohlen{Pierce scale is the thirteen tone scale described in the ar-
ticle of Mathews and Pierce, forming Chapter 13 of [74]. Like the scales of
Wendy Carlos, it is not based around the octave as the basic interval. But
whereas Carlos uses 3:2 and 5:4, Bohlen and Pierce replace the octave by an
octave and a perfect �fth (a ratio of 3:1). In the equal tempered version, this
is divided into thirteen equal parts. This gives a good approximation to a
\major" chord with ratios 3:5:7. The idea is that only odd multiples of fre-
quencies are used. Music written using this scale works best if played on an
instrument such as the clarinet, which involves predominantly odd harmonics,
or using specially created synthetic voices with the same property. We shall
pre�x all words associated with the Bohlen{Pierce scale with the letters BP
to save confusion with the corresponding notions based around the octave.

The basic interval of an octave and a perfect �fth, which is a ratio of
exactly 3:1 or an interval of 1901:955 cents, is called a BP-tritave. In the
equal tempered 13 tone scale, each scale degree is one thirteenth of this, or

19Carlos has 34.188 -scale degrees to the octave, corresponding to a scale degree of
35.1 cents.
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146:304 cents. It may be felt that the scale of cents is inappropriate for cal-
culations with reference to this scale, but we shall stick with it nonetheless
for comparison with intervals in scales based around the octave.

The Pythagorean approach to the division of the tritave begins with
a ratio of 7:3 as the analog of the �fth. We shall call this interval the per-
fect BP-tenth, since it will correspond to note ten in the BP-scale. The cor-
responding continued fraction is

log3(7=3) =
1

1+

1

3+

1

2+

1

1+

1

2+

1

4+

1

22+

1

32+
: : : ;

whose convergents are

0

1
;
1

1
;
3

4
;
7

9
;
10

13
;
27

35
;
118

153
; : : :

If we perform the same calculation for the 5:3 ratio, we obtain the con-
tinued fraction

log3(5=3) =
1

2+

1

6+

1

1+

1

1+

1

1+

1

3+

1

7+
: : :

with convergents
0

1
;
1

2
;
6

13
;
7

15
;
13

28
;
20

43
;
73

157
; : : : :

Comparing these continued fractions, it looks like a good idea to divide the
tritave into 13 equal intervals, with note 10 approximating the ratio 7:3, and
note 6 approximating the ratio 5:3.

note degree 7/3-Pythag Just

C 0 1:1 1:1

D 2 19683:16807 25:21

E 3 9:7 9:7

F 4 343:243 7:5

G 6 81:49 5:3

H 7 49:27 9:5

J 9 729:343 15:7

A 10 7:3 7:3

B 12 6561:2401 25:9

C 13 3:1 3:1

Basing a BP-Pythagorean scale around the ratio 7:3, we obtain a scale
of 13 notes in which the circle of BP-tenths has a BP 7/3-comma given by a
ratio of

713

323
=

96889010407

94143178827
or about 49:772 cents.

Using perfect BP-tenths to form a diatonic BP-Pythagorean scale, we
obtain the third column of the table to the left. Following Bohlen, we name
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the notes of the scale using the letters A{H and J. Note that our choice of
the second degree of the diatonic scale di�ers from the choice made by Math-
ews and Pierce, and gives what Bohlen calls the Lambda scale.

To obtain a major 3:5:7 triad, we introduce a just major BP-sixth with
a ratio of 5:3. This is very close to the BP 7/3-Pythagorean G, which gives
rise to an interval called the BP-minor diesis, expressing the di�erence be-
tween these two versions of G. This interval, namely the di�erence between
5:3 and 81:49, is a ratio of 245:243 or about 14:191 cents.

The BP version of Eitz's notation works in a similar way to the oc-
tave version. We start with the BP 7/3-Pythagorean values for the notes and
then adjust by a number of BP-minor dieses indicated by a superscript. So

G
0

denotes the 81:49 version of G, while G
+1

denotes the 5:3 version. The
just scale given in the table above is then described by the following array:

D
+2

B
+2

J
+1

G
+1

E
0

C
0

A
0

H
�1

F
�1

A reasonable way to �ll this in to a thirteen tone just scale is as follows:
BP Monochord

F]
+2

D
+2

B
+2

J
+1

G
+1

E
0

C
0

A
0

H
�1

F
�1

D[
�2

B[
�2

J[
�2

For comparison, here is a table of the scales discussed above, in cents
to three decimal places, and also in the BP version of Eitz's notation. The
column marked \discrepancy" gives the di�erence between the equal and just
versions.

BP 7/3-Pythag BP-just BP-equal discrepancy

C 0.000 0 0.000 0 0.000 0:000

D[ 161.619 0 133.238 �2 146.304 +13:066

D 273.465 0 301.847 +2 292.608 �9:239

E 435.084 0 435.084 0 438.913 +3:829

F 596.703 0 582.512 �1 585.217 +2:705

F] 708.550 0 736.931 +2 731.521 �5:410

G 870.168 0 884.359 +1 877.825 �6:534

H 1031.787 0 1017.596 �1 1024.130 +6:534

J[ 1193.405 0 1165.024 �2 1170.434 +5:410

J 1305.252 0 1319.443 +1 1316.738 �2:705

A 1466.871 0 1466.871 0 1463.042 �3:829

B[ 1628.490 0 1600.108 �2 1609.347 +9:239

B 1740.336 0 1768.717 +2 1755.651 �13:066

C 1901.955 0 1901.955 0 1901.955 0:000
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A number of the intervals in the BP scale approximate intervals in
the usual octave based scale, and some of these approximations are just far
enough o� to be disturbing to trained musicians. It is plausible that proper
appreciation of music written in the BP scale would involve learning to \for-
get" the accumulated experience of the perpetual bombardment by octave
based music which we receive from the world around us, even if we are not mu-
sicians. For this reason, it seems unlikely that such music will become popu-
lar. On the other hand, according to John Pierce (chapter 1 of [27]), Maureen
Chowning, a coloratura soprano, has learned to sing in the BP scale, Richard
Boulanger has composed a \considerable piece" using it, and two CDs by
Charles Carpenter are available which make extensive use of scale (see below).

Exercises

1. (Paul Erlich) Investigate the re�nement of the Bohlen{Pierce scale in which there

are 39 tones to the BP-tritave. What relevant ratios are approximated by scale de-

grees 5, 7, 11, 13, 16, 22, 28 and 34?

Further reading:

H. Bohlen, 13 Tonstufen in der Duodezeme. Acustica 39 (1978), 76{86.

M. V. Mathews and J. R. Pierce, The Bohlen{Pierce scale. Chapter 13 of [74].

M. V. Mathews, J. R. Pierce, A. Reeves and L. A. Roberts, Theoretical and experi-
mental explorations of the Bohlen{Pierce scale. J. Acoust. Soc. Am. 84 (1988),
1214{1222.

M. V. Mathews, L. A. Roberts and J. R. Pierce, Four new scales based on non-
successive-integer-ratio chords. J. Acoust. Soc. Am. 75 (1984), S10(A).

L. A. Roberts and M. V. Mathews, Intonation sensitivity for traditional and non-

traditional chords. J. Acoust. Soc. Am. 75 (1984), 952{959.

Further listening: (See Appendix R)

Charles Carpenter, Frog �a la Pêche and Splat are composed using the Bohlen{Pierce
scale, and played in a progressive rock/jazz style.

On the CD of examples accompanying Cook [17], track 62 demonstrates the Bohlen{
Pierce scale.

On the CD of examples accompanyingMathews and Pierce [74], tracks 71{74 demon-

strate the Bohlen{Pierce scale.

6.8. Unison vectors and periodicity blocks

In this section, we return to just intonation, and we describe Fokker's
periodicity blocks and unison vectors. The periodicity block corresponds to
what a mathematician would call a set of coset representatives, or a funda-

mental domain. The starting point is octave equivalence; notes di�ering by
a whole number of octaves are considered to be equivalent.

The Pythagorean scale is the one dimensional version of the theory.
We place the notes of the Pythagorean scale along a one dimensional lattice,
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with the origin at C
0

. We have labeled the vertices in three notations, namely
note names, ratios and cents, for comparison. Because of octave equivalence,
the value in cents is reduced or augmented by a multiple of 1200 as neces-
sary to put it in the interval between zero and 1200.

� � � � � � � � � � � �g
A[

0

128/81

792.180

E[
0

32/27

294.135

B[
0

16/9

996.090

F
0

4/3

498.045

C
0

1/1

0.000

G
0

3/2

701.955

D
0

9/8

203.910

A
0

27/16

905.865

E
0

81/64

407.820

B
0

243/128

1109.775

F]
0

729/512

611.731

C]
0

2187/2048

113.685

We write Z1 for this one dimensional lattice, to emphasize the fact that
the points in the lattice may be indexed using the integers. In fact, given the

choice of C
0

as the origin, there are two sensible ways to index with integers.

One makes G
0

correspond to 1, D
0

to 2, F
0

to �1, etc., and the other makes

F
0

correspond to 1, B[
0

to 2, G
0

to �1, etc. For the sake of de�niteness, we
choose the former.

The twelve tone Pythagorean scale comes from observing that in this

system, C
0

and B]
0

are close enough together in pitch that we may not want

both of them in our scale. Since B]
0

is the twelfth note, we say that (12) is a
unison vector. A periodicity block would then consist of a choice of 12 con-
secutive points on this lattice, to constitute a scale. Other choices of unison
vector would include (53) and (665) (cf. x6.3).

Just intonation, as we introduced it in x5.5, is really a 2-dimensional
lattice, which we write as Z2. In Eitz's notation (see x5.9), here is a small
part of the lattice with the origin circled.

F]
�2

C]
�2

G]
�2

D]
�2

D
�1

A
�1

E
�1

B
�1

F]
�1

B[
0

F
0

C
0

Æ
��

G
0

D
0

A
0

D[
+1

A[
+1

E[
+1

B[
+1

F
+1

C
+1

F[
+2

C[
+2

G[
+2

D[
+2

A[
+2

The same in ratio notation is as follows.

25
18

25
24

25
16

75
64

10
9

5
3

5
4

15
8

45
32

16
9

4
3

1
1
m 3

2
9
8

27
16

16
15

8
5

6
5

9
5

27
20

81
80

32
25

48
25

36
25

27
25

81
50

We can choose a basis for this lattice, and write everything in terms of vec-
tors with respect to this basis. This is the two dimensional version of our
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choice from two di�erent ways of indexing the Pythagorean scale by the in-
tegers, but this time there are an in�nite number of choices of basis.

For example, if our basis consists of G
0

and E
�1

(i.e., 3
2
and 5

4
) then

here is the same part of the lattice in vector notation.

(�2; 2) (�1; 2) ( 0; 2) ( 1; 2)

(�2; 1) (�1; 1) ( 0; 1) ( 1; 1) ( 2; 1)

(�2; 0) (�1; 0) ( 0; 0) ( 1; 0) ( 2; 0) ( 3; 0)

(�1;�1) ( 0;�1) ( 1;�1) ( 2;�1) ( 3;�1) ( 4;�1)

( 0;�2) ( 1;�2) ( 2;�2) ( 3;�2) ( 4;�2)

The de�ning property of a basis is that every vector in the lattice has a
unique expression as an integer combination of the basis vectors. The num-
ber of vectors in a basis is the dimension of the lattice.

Now we need to choose our unison vectors. The classical choice here is
(4;�1) and (12; 0), corresponding to the syntonic comma and the Pythagor-
ean comma. The sublattice generated by these unison vectors consists of all
linear combinations

m(4;�1) + n(12; 0) = (4m+ 12n;�4m)

with m;n 2 Z. This is called the unison sublattice.

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

d

�
�

�
�

�s

�
�p

�
�

�
�

�
�

In this diagram, the syntonic comma and Pythagorean comma are marked
with s and p respectively. Each vector (a; b) in the lattice may then be
thought of as equivalent to the vectors

(a; b) +m(4;�1) + n(12; 0) = (a+ 4m+ 12n; b� 4m)
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with m;n 2 Z, di�ering from it by vectors in the unison sublattice. So for
example, taking m = �3 and n = 1, we see that the vector (0; 3) is in the
unison sublattice. This corresponds to the fact that three just major thirds
approximately make one octave.

There are many ways of choosing unison vectors generating a given sub-
lattice. In the above example, (4;�1) and (0; 3) generate the same sublattice.

The set of vectors (or pitches) equivalent to a given vector is called a
coset. The number of cosets is called the index of the unison sublattice in the
lattice. It can be calculated by taking the determinant of the matrix formed
from the unison vectors. So in our example, the index of the unison sublat-
tice is ���� 4 �1

12 0

���� = 12:

The formula for the determinant of a 2� 2 matrix is���� a b
c d

���� = ad� bc:

If the determinant comes out negative, the index is the corresponding pos-
itive quantity. If two rows of a matrix are swapped, then the determinant
changes sign, so the sign of the determinant is irrelevant to the index. It has
to do with orientation, and will not be discussed here.

A periodicity block consists of a choice of one vector from each coset. In
other words, we �nd a �nite set of vectors with the property that each vector
in the whole lattice is equivalent to a unique vector from the periodicity block.
One way to do this is to draw a parallelogram using the unison vectors. We
can then tile the plane using copies of this parallelogram, translated along
unison vectors. In the above example, if we use the unison vectors (4;�1) and
(0; 3) to generate the unison sublattice, then the parallelogram looks like this.

. . . . .d
. . . . .

. . . .

�

�
�

XXXXXXXXXX

XXXXXXXXXX

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

This choice of periodicity block leads to the following just scale with twelve
tones.

G]
�2

D]
�2

A]
�2

E]
�2

E
�1

B
�1

F]
�1

C]
�1

C
0

G
0

D
0

A
0

Of course, there are many other choices of periodicity block. For example,
shifting this parallelogram one place to the left gives rise to Euler's mono-
chord, described on page 130.



6.8. UNISON VECTORS AND PERIODICITY BLOCKS 185

. .

. . . . . .d
. . . . . .

. . . . .

.

�

�
�
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Periodicity blocks do not have to be parallelograms. For example, we
can chop o� a corner of the parallelogram, translate it through a unison vec-
tor, and stick it back on somewhere else to get a hexagon. Each of the just
intonation scales in x5.10 may be interpreted as a periodicity block for the
above choice of unison sublattice.

Of course, there are other choices of unison sublattices. If we choose
the unison vectors (4;�1) and (�1; 5) for example, then we get a scale of���� 4 �1

�1 5

���� = 19

tones. This gives rise to just scales approximating the equal tempered scale
described at the beginning of x6.4. The choice of (4; 2) and (�1; 5) gives the
Indian scale of 22 Srutis described in x6.1, corresponding to the calculation���� 4 2

�1 5

���� = 22:

Taking the unison vectors (4;�1) and (3; 7) gives rise to 31 tone scales ap-
proximating 31 tone equal temperament, whose relationship with meantone
is described in x6.4. This corresponds to the calculation���� 4 �1

3 7

���� = 31

The vectors (8; 1) and (�5; 6) correspond in the same way to just scales ap-
proximating the 53 tone equal tempered scale described in x6.3, correspond-
ing to the calculation ���� 8 1

�5 6

���� = 53:

An example of a periodicity block for this choice of unison vectors can be
found on page 172.

When we come to study groups and normal subgroups in x9.11, we
shall make some more comments on how to interpret unison vectors and pe-
riodicity blocks in group theoretical language.

Further reading:

Paul Erlich, http://www.ixpres.com/interval/td/erlich/intropblock1.htm
Much of the material in this and the next section expresses ideas from Paul's online
article, together with the work of Fokker.
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A. D. Fokker, Selections from the harmonic lattice of perfect �fths and major thirds

containing 12, 19, 22, 31, 41 or 53 notes, Proc. Koninkl. Nederl. Akad. Wetenschap-

pen, Series B, 71 (1968), 251{266.

6.9. Septimal harmony

Septimal harmony refers to 7-limit just intonation; in other words, just
intonation involving the primes 2, 3, 5 and 7. Taking octave equivalence into
account, this means that we need three dimensions, or Z3 to represent the
septimal version of just intonation, to take account of the primes 3, 5 and 7.
It is harder to draw a three dimensional lattice, but it can be done. In ratio
notation, it will then look as follows.

32:21

40:21 10:7 15:14

8:7 12:7

4:3 1:1 3:2

7:6 7:4 21:8

5:3 5:4 15:8

35:24 35:16 105:64

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�

�

�

�

�

�

�

�
��

�

�
��

�� �� ��
�� �� ��

�� �� ��
�� �� ��

We take as our basis vectors the ratios 3
2
, 5
4
and 7

4
. So the vector (a; b; c) rep-

resents the ratio 3a:5b:7c, multiplied if necessary by a power of 2 so that it
is between 1 and 2 (octave equivalence). The septimal comma introduced in
x5.8 is a ratio of 64 : 63, which corresponds to the vector (�2; 0;�1). So it
would be reasonable to use the three commas (4;�1; 0) (syntonic), (12; 0; 0)
(Pythagorean), and (�2; 0;�1) (septimal) as unison vectors.

The determinant of a 3� 3 matrix0
@ a b c

d e f
g h i

1
A

is given by the formula������
a b c
d e f
g h i

������ = aei+ bfg + cdh� ceg � bdi� afh:

This can be visualized as three leading diagonals minus three trailing diago-
nals. If you have trouble visualizing these diagonals, it may help to think of
the matrix as wrapped around a cylinder. So you should write the �rst two
columns of the matrix again to the right of the matrix, and then the leading
and trailing diagonals really look diagonal.

With the three commas as unison vectors, the determinant is������
4 �1 0
12 0 0
�2 0 �1

������ = 0 + 0 + 0� 0� 12 � 0 = �12:
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vector ratio cents

(�7 4 1) 4375
4374 0.40

(�1 �2 4) 2401
2400 0.72

(�8 2 5) 420175
419904 1.12

( 9 3 �4) 2460375
2458624 1.23

( 8 1 0) 32805
32764 1.95

( 1 5 1) 65625
65536 2.35

( 0 3 5) 2100875
2097152 3.07

(�8 �6 2) 102760448
102515625 4.13

( 1 �3 �2) 6144
6125 5.36

( 0 �5 2) 3136
3125 6.08

(�7 �1 3) 10976
10935 6.48

( 2 2 �1) 225
224 7.71

( 8 �4 2) 321489
320000 8.04

(�5 6 0) 15625
15552 8.11

( 1 0 3) 1029
1024 8.43

( 3 7 0) 2109375
2083725 10.06

(�5 �2 �3) 2097152
2083725 11.12

( 3 �1 �3) 1728
1715 13.07

(�4 3 �2) 4000
3969 13.47

( 2 �3 1) 126
125 13.79

(�5 1 2) 245
243 14.19

( 10 �2 1) 413343
409600 15.75

( 3 2 2) 33075
32768 16.14

(�3 0 �4) 65536
64827 18.81

( 3 �6 �1) 110592
109375 19.16

(�4 �2 0) 2048
2025 19.55

( 5 1 �4) 2430
2401 20.79

( 4 �1 0) 81
80 21.51

(�3 3 1) 875
864 21.90

( 12 0 0) 531441
524288 23.46

( 5 4 1) 1063125
1048576 23.86

( 4 2 5) 34034175
33554432 24.58

(�3 �5 �2) 4194302
4134375 24.91

(�10 �1 �1) 2097152
2066715 25.31

( 5 �4 �2) 31104
30625 26.87

vector ratio cents

(�2 0 �1) 64
63 27.26

(�3 �2 3) 686
675 27.99

(�1 5 0) 3125
3072 29.61

(�2 3 4) 303125
294912 30.33

(�1 �3 �3) 131072
128625 32.63

(�8 1 �2) 327680
321989 33.02

(�9 �1 2) 100352
98415 33.74

( 0 2 �2) 50
49 34.98

(�1 0 2) 49
48 35.70

( 1 7 �1) 234375
229376 37.33

( 7 1 2) 535815
524288 37.65

( 0 5 3) 1071875
1048576 38.05

( 1 �1 �4) 12278
12005 40.33

( 0 �3 0) 128
125 41.06

(�7 1 1) 2240
2187 41.45

( 2 4 �1) 5625
5488 42.69

( 1 2 1) 525
512 43.41

( 0 0 5) 16807
16384 44.13

( 1 �6 �2) 786432
765625 46.42

(�6 �2 �1) 131072
127575 46.81

( 2 �1 �1) 36
35 48.77

(�6 1 4) 12005
11664 49.89

( 2 2 4) 540225
524288 51.84

( 2 �6 1) 16128
15625 54.85

(�5 �2 2) 6272
6075 55.25

( 4 1 �2) 405
392 56.48

( 3 �1 2) 1323
1280 57.20

(�4 3 3) 42875
42472 57.60

( 4 �4 0) 648
625 62.57

(�3 0 1) 28
27 62.96

(�1 2 0) 25
24 70.72

( 1 �1 1) 21
20 84.42

( 3 1 0) 135
128 92.23

(�3 3 1) 3584
3575 104.02

(�1 4 �2) 625
588 105.65
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Ignoring signs as usual, this tells us that we should expect the periodicity
block to have 12 elements. One choice of periodicity block gives the 7-limit
just intonation diagram on page 160.

There are many choices of unison vector in 7-limit just intonation. The
table on page 187, adapted from Fokker, gives some of the most useful ones.
Fokker also develops an elaborate system of notation for 7-limit just intona-
tion, in which he ends up with notes such as �f�� .

Further reading:

A. D. Fokker, Unison vectors and periodicity blocks in the three-dimensional (3-5-7-)

harmonic lattice of notes, Proc. Koninkl. Nederl. Akad. Wetenschappen, Series B,

72 (1969), 153{168.


