
Differential Geometry of Curves and Surfaces

Abbreviated lecture notes

1. Curves

1. If U ⊂ Rn is an open set then a smooth map (or a differentiable map) F : U → Rm is
a C∞ map. If D ⊂ Rn is any set then F : D → Rm is smooth if there exist an open set
U ⊃ D and a smooth map G : U → Rm such that G|D = F.

2. A curve in Rn is a smooth map c : I → Rn, where I ⊂ R is an interval. The curve is
called regular if ċ(t) 6= 0 for all t ∈ I.

3. If c : I → Rn is a curve and t0 ∈ I then the arclength measured from t0 is

s(t) =

∫ t

t0

‖ċ(u)‖du.

If c is regular then s(t) is invertible, and we write c(s) = c(t(s)) (slightly abusing the
notation). In this case we have ‖c′(s)‖ = 1.

4. If c : I → R2 is a regular curve parameterized by arclength, we define the positive
orthonormal frame {e1(s), e2(s)} by taking e1(s) = c′(s) (tangent to the curve) and
e1(s) = Rπ

2
e2(s), where Rπ

2
=
(
0 −1
1 0

)
is a rotation by 90◦ in the positive direction.

The curvature of c is the smooth function k : I → R such that c′′(s) = k(s)e2(s). We
have e′1(s)

e′2(s)

 =

 0 k(s)

−k(s) 0

e1(s)
e2(s)

 .
5. If k(s0) 6= 0 then r(s0) = 1

|k(s0)| is the radius of the circle that approximates c(s) to second

order at s0 (radius of curvature). We have

c̈(t) = s̈(t)e1(s(t))±
ṡ2(t)

r(s(t))
e2(s(t))

6. A positive isometry of R2 is a map F : R2 → R2 of the form F(x) = Ax + b, where
A ∈ SO(2) is a rotation matrix, that is, A =

(
cosα − sinα
sinα cosα

)
for some α ∈ R.

7. Two regular plane curves are related by a positive isometry if and only if their curvatures
coincide.
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8. If c : I → R2 is a curve (not necessarily parameterized by its arclength) then its curvature
is given by

k(t) =
ẋ(t)ÿ(t)− ẏ(t)ẍ(t)[
(ẋ(t))2 + (ẏ(t))2

] 3
2

,

where c(t) = (x(t), y(t)).

9. A regular plane curve c : [a, b] → R2 is said to be closed if c(a) = c(b) and moreover
c(n)(a) = c(n)(b) for any n ∈ N (so that it can be extended to a periodic curve c : R→ R2).
A closed curve c : [a, b] → R2 is said to be simple if its restriction to the interval [a, b) is
injective. A simple closed curve is said to be convex if it bounds a convex set. A vertex
of a simple closed curve is a critical point (maximum, minimum or inflection point) of its
curvature.

10. Four Vertex Theorem: Every simple closed plane curve has at least four vertices.

11. The rotation index of a closed plane curve c : [a, b]→ R2, parameterized by its arclength,
with curvature k : [a, b]→ R, is the integer

m =
1

2π

∫ b

a
k(s)ds.

12. A (free) homotopy by closed regular curves bewteen two closed regular plane curves
c0, c1 : [a, b]→ R2 is a smooth map H : [a, b]× [0, 1]→ R2 such that:

(i) H(t, 0) = c0(t) for all t ∈ [a, b];

(ii) H(t, 1) = c1(t) for all t ∈ [a, b];

(iii) cu(t) = H(t, u) is a closed regular curve for all u ∈ [0, 1].

13. If two closed regular plane curves are homotopic by closed regular curves then they have
the same rotation index.

14. The total curvature of a closed plane curve c : [a, b]→ R2, parameterized by its arclength,
with curvature k : [a, b]→ R, is

µ =

∫ b

a
|k(s)|ds.

15. The total curvature µ of a closed regular curve satisfies µ ≥ 2π, and µ = 2π if and only if
the curve is convex.

16. The curvature of a space curve c : I → R3 parameterized by arclength is

k(s) = ‖c′′(s)‖ ≥ 0.

If k(s) 6= 0 we define the normal vector as

e2(s) =
1

k(s)
c′′(s),

and the binormal vector as
e3(s) = e1(s)× e2(s),

where
e1(s) = c′(s)

is the unit tangent vector.
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17. Frenet-Serret formulas:
e′1(s)

e′2(s)

e′3(s)

 =


0 k(s) 0

−k(s) 0 τ(s)

0 −τ(s) 0



e1(s)

e2(s)

e3(s)

 ,
where the function τ(s) is called the torsion of the curve.

18. A regular space curve c : I → R3 with nonvanishing curvature has zero torsion if and only
if it lies on a plane.

19. A positive isometry of R3 is a map F : R3 → R3 of the form F(x) = Ax + b, where
A ∈ SO(3) is a rotation matrix, that is, AtA = I and detA = 1.

20. Two regular space curves with nonvanishing curvature are related by a positive isometry if
and only if their curvatures and torsions coincide.

21. Frenchel’s Theorem: Let c : [a, b] → R3 be a closed regular space curve parameterized
by arclength, with curvature k(s) = ‖c′′(s)‖. Then∫ b

a
k(s)ds ≥ 2π,

and the equality holds if and only if c is a plane convex curve.

22. A simple closed regular curve in R3 is called a knot. Two knots are called equivalent if
they are homotopic (up to reparameterization) by simple closed regular curves. A knot is
called trivial if it is equivalent to the circle.

23. Let c : [a, b] → R3 be a knot parameterized by arclength, with curvature k(s) = ‖c′′(s)‖.
Then ∫ b

a
k(s)ds ≥ 4π.

2. Differentiable manifolds

1. A set M ⊂ Rn is said to be a differentiable manifold of dimension m ∈ {1, . . . , n− 1}
if for any point a ∈ M there exists an open neighborhood U 3 a and a smooth function
f : V ⊂ Rm → Rn−m such that

M ∩ U = Graph(f) ∩ U

for some ordering of the Cartesian coordinates of Rn. We also define a manifold of dimension
0 as a set of isolated points, and a manifold of dimension n as an open set.

2. M ⊂ Rn is a differentiable manifold of dimension m if and only if for each point a ∈ M
there exists an open set U 3 a and a smooth function F : U → Rn−m such that:

(i) M ∩ U = {x ∈ U : F(x) = 0};
(ii) rankDF(a) = n−m.

3. A vector v ∈ Rn is said to be tangent to a set M ⊂ Rn at the point a ∈M if there exists
a smooth curve c : R→ M such that c(0) = a and ċ(0) = v. A vector v ∈ Rn is said to
be orthogonal to M at the point a if it is orthogonal to all vectors tangent to M at a.
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4. If M ⊂ Rn is a manifold of dimension m then the set TaM of all vectors tangent to M
at the point a ∈ M is a vector space of dimension m, called the tangent space to M at
a. Its orthogonal complement T⊥a M is a vector space of dimension (n − m), called the
normal space to M at a.

5. Let M ⊂ Rn be an m-manifold, a ∈M , U 3 a an open set and F : U → Rn−m such that
M ∩ U = {x ∈ U : F(x) = 0} with rankDF(a) = n−m. Then TaM = kerDF(a).

6. A parameterization of a given m-manifold M ⊂ Rn is a smooth injective map g : U →M ,
with U ⊂ Rm open, such that rankDg(t) = m for all t ∈ U . We have

Tg(t)M = span

{
∂g

∂t1
(t), . . . ,

∂g

∂tm
(t)

}
.

7. Given a smooth map g : U → Rn, with U ⊂ Rm open, such that rankDg(t) = m for all
t ∈ U , and given any point t0 ∈ U , there exists an open set U0 ⊂ U with t0 ∈ U0 such
that g(U0) is an m-manifold.

3. Differential forms

1. The dual vector space to Rn is

(Rn)∗ = {α : Rn → R : α is linear}.

The elements of (Rn)∗ are called covectors.

2. The covectors dx1, . . . , dxn ∈ (Rn)∗ defined through

dxi(ej) =

{
1 if i = j

0 if i 6= j

form a basis for (Rn)∗, whose dimension is then n.

3. A (covariant) k-tensor T is a multilinear map T : (Rn)k → R, i.e.

(i) T (v1, . . . ,vi + wi, . . . ,vk) = T (v1, . . . ,vi, . . . ,vk) + T (v1, . . . ,wi, . . . ,vk);

(ii) T (v1, . . . , λvi, . . . ,vk) = λT (v1, . . . ,vi, . . . ,vk).

4. A k-tensor α is said to be alternanting, or a k-covector, if

α(v1, . . . ,vi, . . . ,vj . . . ,vk) = −α(v1, . . . ,vj , . . . ,vi . . . ,vk).

We denote by Λk (Rn) the vector space of all k-covectors.

5. Given i1, . . . , ik ∈ {1, . . . , n}, we define dxi1 ∧ . . . ∧ dxik ∈ Λk (Rn) as

dxi1 ∧ . . . ∧ dxik(v1, . . . ,vk) = det


dxi1(v1) . . . dxi1(vk)

. . . . . . . . .

dxik(v1) . . . dxik(vk)

 .
The set

{
dxi1 ∧ . . . ∧ dxik

}
1≤i1<...<ik≤n

is a basis for Λk (Rn), whose dimension is then(
n
k

)
. Since

(
n
0

)
= 1, we define Λ0 (Rn) = R.
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6. If α ∈ Λk (Rn) and β ∈ Λl (Rn),

α =
∑

i1<...<ik

αi1...ik dx
i1 ∧ . . . ∧ dxik , β =

∑
j1<...<jl

βj1...jl dx
j1 ∧ . . . ∧ dxjl ,

we define their wedge product α ∧ β ∈ Λk+l (Rn) as

α ∧ β =
∑

i1<...<ik
j1<...<jl

αi1...ik βj1...jl dx
i1 ∧ . . . ∧ dxik ∧ dxj1 ∧ . . . ∧ dxjl .

If α is a 0-covetor (real number), its wedge product by α is simply the product by a scalar.

7. Properties of the wedge product:

(i) α ∧ (β + γ) = α ∧ β + α ∧ γ;

(ii) α ∧ β = (−1)klβ ∧ α if α ∈ Λk (Rn) , β ∈ Λl (Rn);

(iii) α ∧ (β ∧ γ) = (α ∧ β) ∧ γ.

8. A differential form of degree k in Rn is a smooth function ω : Rn → Λk(Rn). We denote
by Ωk(Rn) the set of k-forms in Rn.

9. If f : Rn → Rm is smooth and ω ∈ Ωk(Rm) then the pull-back of ω by f is the k-form
f∗ω ∈ Ωk(Rn) defined by

(f∗ω)(x)(v1, . . . ,vk) = ω(f(x))(Df(x)v1, . . . , Df(x)vk).

10. Properties of the pull-back:

(i) f∗(ω + η) = f∗ω + f∗η;

(ii) f∗(ω ∧ η) = f∗ω ∧ f∗η;

(iii) (g ◦ f)∗(ω) = f∗(g∗ω).

11. If ω ∈ Ωk(Rn),

ω =
∑

i1<...<ik

ωi1...ik(x) dxi1 ∧ . . . ∧ dxik ,

then its exterior derivative is the (k + 1)-form dω ∈ Ωk+1(Rn) defined by

dω =
∑

i1<...<ik

n∑
i=1

∂ωi1...ik
∂xi

dxi ∧ dxi1 ∧ . . . ∧ dxik .

12. Properties of the exterior derivative:

(i) d(ω + η) = dω + dη;

(ii) d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη if ω ∈ Ωk (Rn);

(iii) d(dω) = 0;

(iv) f∗(dω) = d(f∗ω).

13. We say that ω ∈ Ωk (Rn) is:

(i) closed if dω = 0;

(ii) exact if ω = dη for some η ∈ Ωk−1 (Rn) (called a potential for ω).

14. If ω ∈ Ωk (Rn) is exact then ω is closed.
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15. Poincaré Lemma: If ω ∈ Ωk (U) is closed and the open set U is star-shaped then ω is
exact.

16. If g : U ⊂ Rm → M and h : V ⊂ Rm → M are parameterizations of the m-manifold
M ⊂ Rn then h−1 ◦ g is a diffeomorphism (smooth bijection with smooth inverse).

17. We say that two parameterizations g : U ⊂ Rm → M and h : V ⊂ Rm → M of the
m-manifold M ⊂ Rn induce the same orientation if detD(h−1 ◦ g) > 0, and opposite
orientations if detD(h−1 ◦ g) < 0. The manifold M is called orientable if it is possible
to choose parameterizations whose images cover M and induce the same orientation. An
orientation on an orientable manifold is a choice of a maximal family of parameterizations
under these conditions, which are said to be positive. An orientable manifold with a choice
of orientation is said to be oriented.

18. If g : U ⊂ Rm → M is a positive parameterization of the oriented m-manifold M ⊂ Rn
and ω ∈ Ωm (Rn), we define the integral of ω along g(U) (assumed bounded) as∫

g(U)
ω =

∫
U
ω(g(t))

(
∂g

∂t1
, . . . ,

∂g

∂tm

)
dt1 . . . dtm

=

∫
U
g∗ω (e1, . . . , em) dt1 . . . dtm.

19. If we think of an open set U ⊂ Rn as an n-manifold parameterized by the identity map
(which we take to be positive), then∫

U
f(x) dx1 ∧ . . . ∧ dxn =

∫
U
f(x) dx1 . . . dxn,

and so ∫
g(U)

ω =

∫
U
g∗ω.

20. The integral of a m-form on the image of a positive parameterization of an m-manifold is
well defined, that is, it is independent of the choice of parameterization.

21. If M ⊂ Rn is a bounded, oriented m-manifold and ω ∈ Ωm (Rn), we define∫
M
ω =

N∑
i=1

∫
gi(Ui)

ω,

where gi : Ui → M are positive parameterizations whose images are disjoint and cover M
except for a finite number of manifolds of dimension smaller than m. It can be shown that
it is always possible to obtain a finite number of parameterizations of this kind, and that
the definition above does not depend on the choice of these parameterizations.

22. Informally, an m-manifold with boundary is a subset M ⊂ N of an m-manifold N ⊂ Rn
delimited by an (m−1)-manifold ∂M ⊂M , called the boundary of M , such that M \∂M
is again an m-manifold. We say that M is orientable if N is orientable. If M is oriented,
the induced orientation on ∂M is defined as follows: if g : U ∩{t1 ≤ 0} →M is a positive
parameterization of M such that h(t2, . . . , tm) = g(0, t2, . . . , tm) is a parameterization of
∂M , then h is positive. Moreover, if ω ∈ Ωm(Rn), we define∫

M
ω =

∫
M\∂M

ω.
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23. Stokes Theorem: If M ⊂ Rn is a compact, oriented m-manifold with boundary and
ω ∈ Ωm−1 (Rn) then ∫

M
dω =

∫
∂M

ω,

where ∂M has the induced orientation.

24. If M is an oriented compact m-manifold (without boundary) and ω ∈ Ωm−1 (Rn) then∮
M
dω = 0.

4. Surfaces

1. A surface is a 2-dimensional differentiable manifold S ⊂ R3.

2. The first fundamental form of a surface S parameterized by g : U ⊂ R2 → S is the
quadratic form

I = dg · dg = Edu2 + 2Fdu dv +Gdv2,

where E F

F G

 =

∂g∂u · ∂g∂u ∂g
∂u ·

∂g
∂v

∂g
∂v ·

∂g
∂u

∂g
∂v ·

∂g
∂v


is a positive definite matrix of functions, called the matrix of the metric.

3. The squared length of a vector tangent to a surface S parameterized by g : U ⊂ R2 → S is∥∥∥∥v1∂g∂u + v2
∂g

∂v

∥∥∥∥2 = I(v1, v2) = E(v1)2 + 2Fv1v2 +G(v2)2.

In particular, the length of a curve c : [a, b]→ S given by c(t) = g(u(t), v(t)) is∫ b

a

√
I(u̇(t), v̇(t)) dt =

∫ b

a

√
Eu̇2 + 2Fu̇v̇ +Gv̇2 dt

4. The second fundamental form of a surface S parameterized by g : U ⊂ R2 → S is the
quadratic form

II = −dg · dn = Ldu2 + 2Mdudv +Ndv2,

where

n =
∂g
∂u ×

∂g
∂v∥∥∥∂g∂u × ∂g
∂v

∥∥∥
is a unit normal vector to S andL M

M N

 = −

∂g∂u · ∂n∂u ∂g
∂u ·

∂n
∂v

∂g
∂v ·

∂n
∂u

∂g
∂v ·

∂n
∂v

 =

 ∂2g
∂u2
· n ∂2g

∂u∂v · n
∂2g
∂v∂u · n

∂2g
∂v2
· n

 .
5. At a point where the second fundamental form is definite (LN −M2 > 0) the surface is

convex (i.e. it lies on the same side of the tangent plane); at a point where the second
fundamental form is indefinite (LN −M2 < 0) the surface is not convex (i.e. it lies on both
sides of the tangent plane).
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6. Gauss’s equations:

∂2g

∂u2
= Γuuu

∂g

∂u
+ Γvuu

∂g

∂v
+ Ln;

∂2g

∂u∂v
= Γuuv

∂g

∂u
+ Γvuv

∂g

∂v
+Mn;

∂2g

∂v∂u
= Γuvu

∂g

∂u
+ Γvvu

∂g

∂v
+Mn;

∂2g

∂v2
= Γuvv

∂g

∂u
+ Γvvv

∂g

∂v
+Nn,

where the functions Γuuu,Γ
u
uv = Γuvu,Γ

u
vv,Γ

v
uu,Γ

v
uv = Γvvu,Γ

v
vv are called the Christoffel

symbols.

7. Weingarten’s equations:

∂n

∂u
=
FM −GL
EG− F 2

∂g

∂u
+
FL− EM
EG− F 2

∂g

∂v
;

∂n

∂v
=
FN −GM
EG− F 2

∂g

∂u
+
FM − EN
EG− F 2

∂g

∂v
.

8. The normal curvature of a curve c : I → S on a surface S, parameterized by arclength,
is kn(s) = c′′(s) · n, where n is a unit normal vector to S at c(s). If g : U ⊂ R2 → S is a
parameterization and c(s) = g(u(s), v(s)) then kn(s) = II(u′(s), v′(s)).

9. The maximum and the minimum of II(v1, v2) subject to the constraint I(v1, v2) = 1 are
called the principal curvatures of S at the point under consideration. The directions of the
corresponding unit tangent vectors are called the principal directions of S at that point.
If the principal curvatures are different then the principal directions are orthogonal.

10. The mean curvature of a surface S at a given point is

H =
1

2
(k1 + k2) =

EN +GL− 2FM

2(EG− F 2)
,

where k1 and k2 are the principal curvatures at that point. The Gauss curvature of S at
the same point is

K = k1k2 =
LN −M2

EG− F 2
.

S is said to be minimal if H ≡ 0, and flat if K ≡ 0.

11. If k1 = k2 at some point then that point is called umbillic. Moreover, we call the point
elliptic if K > 0, hyperbolic if K < 0, and parabolic if K = 0. The surface is convex at
elliptic points, and is not convex at hyperbolic points.

12. If g : U ⊂ R2 → S is a parameterization then the area of g(U) ⊂ S is

A =

∫∫
U

∥∥∥∥∂g∂u × ∂g

∂v

∥∥∥∥ dudv =

∫∫
U

√
EG− F 2dudv.

13. If g : U ⊂ R2 → S is a parameterization then

∂n

∂u
× ∂n

∂v
= K

∂g

∂u
× ∂g

∂v
.
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In particular, if K(u0, v0) 6= 0 then

|K(u0, v0)| = lim
ε→0

A′(ε)

A(ε)
,

where A(ε) is the area of g(Bε(u0, v0)) ⊂ S and A′(ε) is the area of n(Bε(u0, v0)) ⊂ S2.

14. If g : U ⊂ R2 → S is a parameterization,

gε(u, v) = g(u, v) + εf(u, v)n(u, v)

is a small deformation of g and A(ε) is the area of gε(U) then

dA

dε
(0) = −2

∫∫
U
fH
√
EG− F 2dudv.

In particular, if S has minimal area then H ≡ 0.

15. If g : U ⊂ R2 → S is a parameterization, {e1, e2, e3 = n} is an orthonormal frame and
θ1, θ2 ∈ Ω1(U) are such that

dg = θ1e1 + θ2e2

then the first fundamental form is

I = (θ1)2 + (θ2)2.

Moreover, if ω j
i ∈ Ω1(U) are such that

dei =

3∑
j=1

ω j
i ej ,

we have
ω j
i = −ω i

j .

Defining the symmetric 2× 2 matrix B through{
ω 3
1 = b11θ

1 + b12θ
2

ω 3
2 = b21θ

1 + b22θ
2

,

we have

II =

2∑
i,j=1

bijθ
iθj .

In particular,

H =
1

2
trB and K = detB

(that is, the eigenvalues of B are k1 and k2).

16. First structure equations: dθi =
2∑
j=1

θj ∧ ω i
j ⇔

{
dθ1 = θ2 ∧ ω 1

2

dθ2 = θ1 ∧ ω 2
1

.

17. Second structure equation: dω 1
2 = Kθ1 ∧ θ2.
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5. Geometry of surfaces

1. Given a first fundamental form (also called a Riemannian metric) I = ds2 on some open
set U ⊂ R2 (not necessarily obtained from a parameterization of a surface in R3, or even
of a general 2-manifold in Rn), and given 1-forms {θ1, θ2} such that

ds2 = (θ1)2 + (θ2)2,

we define the connection form associated to {θ1, θ2} as the unique 1-form ω 1
2 such that{

dθ1 = θ2 ∧ ω 1
2

dθ2 = −θ1 ∧ ω 1
2

,

and the Gauss curvature as the function K such that

dω 1
2 = Kθ1 ∧ θ2.

It turns out that the Gauss curvature is well defined, that is, it does not depend on the
choice of {θ1, θ2}.

2. Gauss’s Theorema Egregium: The Gauss curvature of a surface S ⊂ R3 depends only on
its first fundamental form.

3. If the first fundamental form is of the type

ds2 = E
(
du2 + dv2

)
then

K = − 1

2E

(
∂2

∂u2
+

∂2

∂v2

)
logE.

4. To keep track of the coordinates, we identify a vector v ∈ R2 with the derivative operator
along v:

v = v1
∂

∂x1
+ v2

∂

∂x2
.

5. If ds2 = (θ1)2 + (θ2)2 then the dual basis {e1, e2} to {θ1, θ2} is an orthonormal frame
with respect to the inner product 〈·, ·〉 induced by the first fundamental form through the
formula I(v + w) = I(v) + I(w) + 2〈v,w〉. If ds2 = Edu2 + 2Fdu dv + Gdv2 then this
inner product is given by

〈
v1

∂

∂u
+ v2

∂

∂v
, w1 ∂

∂u
+ w2 ∂

∂v

〉
=
[
v1 v2

]E F

F G

w1

w2

 .
6. If S ⊂ R3 is a surface and c : I → S is a curve then a vector field along c is a function

V : I → R3 such that V(t) ∈ Tc(t)S for all t ∈ I, and the covariant derivative of V
along c is the vector field defined by

DV

dt
(t) =

dV

dt
(t)−

(
dV

dt
(t) · n

)
n,

where n is a unit normal vector to S at c(t).
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7. Given a Riemannian metric ds2 = (θ1)2 + (θ2)2 on a open set U ⊂ R2, and a curve
(u, v) : I → U , we define the covariant derivative of the vector field V : I → R2, given
by

V = V 1(t)e1(u(t), v(t)) + V 2(t)e2(u(t), v(t)),

as the vector field

DV

dt
=

(
dV 1

dt
+ V 2ω 1

2 (u̇, v̇)

)
e1 +

(
dV 2

dt
− V 1ω 1

2 (u̇, v̇)

)
e2,

where {e1, e2} is the orthonormal frame dual to {θ1, θ2} and ω 1
2 is the connection form

associated to {θ1, θ2}. It turns out that the covariant derivative is well defined, that is, it
does not depend on the choice of {θ1, θ2}.

8. If V : I → R2 and W : I → R2 are vector fields along a curve then

d

dt
〈V,W〉 =

〈
DV

dt
,W

〉
+

〈
V,

DW

dt

〉
.

9. A vector field V is said to be parallel along a given curve if DV
dt = 0 along that curve.

If V and W are both parallel along a curve then 〈V,W〉 is constant along that curve; in
particular, I(V), I(W) and <)(V,W) are constant along the curve.

10. If c : I → S is a curve on a surface S ⊂ R3, parameterized by arclength, then we have
decomposition c′′(s) = kg(s) + kn(s), where kg(s) ∈ Tc(s)S is the geodesic curvature

vector and kg(s) ∈ T⊥c(s)S is the normal curvature vector. We have

kg(s) =
Dc′

ds
(s) and kn(s) = II(u′(s), v′(s))n.

11. A geodesic on a Riemannian surface is a curve whose velocity vector is parallel along the
curve. In particular, the length of the velocity vector is constant, and so the parameter is
an affine function of the arclength (affine parameter).

12. Curves with minimal length (among all curves connecting two given points) are necessarily
geodesics (up to reparameterization).

13. The geodesic equations for a surface S ⊂ R3 can be written as{
ü+ Γuuuu̇

2 + 2Γuuvu̇v̇ + Γuvvv̇
2 = 0

v̈ + Γvuuu̇
2 + 2Γvuvu̇v̇ + Γvvvv̇

2 = 0
.

In particular, the Christoffel symbols can only depend on the first fundamental form, and
are indeed given byΓuuu Γuuv Γuvv

Γvuu Γvuv Γvvv

 =

E F

F G

−1  1
2
∂E
∂u

1
2
∂E
∂v

∂F
∂v −

1
2
∂G
∂u

∂F
∂u −

1
2
∂E
∂v

1
2
∂G
∂u

1
2
∂G
∂v

 .
14. If c(s) is a geodesic parameterized by arclength then its length between c(s0) and c(s1) is

minimal (among all curves connecting c(s0) and c(s1)) provided that s1 is sufficiently close
to s0.
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6. Gauss-Bonnet Theorem

1. If c(s) is a curve parameterized by arclength on an oriented surface then its (scalar) geodesic
curvature is the function

kg(s) =

〈
Dc′

ds
(s),n(s)

〉
,

where
n(s) = −

〈
c′(s), e2

〉
e1 +

〈
c′(s), e1

〉
e2

is the unit normal to the curve obtained by rotating c′(s) by 90◦ in the positive direction.
Here {e1, e2} is a positive orthonormal frame, that is, du ∧ dv(e1, e2) > 0, where the
coordinate system (u, v) is assumed to be positive.

2. A domain on R2 is a compact 2-dimensional manifold with boundary, that is, a compact
set A ⊂ R2 whose boundary ∂A is a 1-dimensional manifold. Informally, a domain with
corners is a generalization where we allow ∂A to have a finite number of vertices.

3. If ds2 = Edu2 + 2Fdu dv + Gdv2 =
(
θ1
)2

+
(
θ2
)2

is the line element of an oriented
Riemannian surface, where {θ1, θ2} is dual to a positive orthonormal frame, then

θ1 ∧ θ2 =
√
EG− F 2 du ∧ dv.

The area of a domain A is

area(A) =

∫
A
θ1 ∧ θ2.

4. Gauss-Bonnet Theorem for domains: If A is a simply connected domain on an oriented
Riemannian surface with metric ds2 =

(
θ1
)2

+
(
θ2
)2

, with {θ1, θ2} dual to a positive
orthonormal frame, then ∫

A
Kθ1 ∧ θ2 +

∫
∂A
kg(s)ds = 2π,

where ∂A has the induced orientation.

5. Gauss-Bonnet Theorem for domains with corners: If A is a simply connected domain
with corners on an oriented Riemannian surface with metric ds2 =

(
θ1
)2

+
(
θ2
)2

, with
{θ1, θ2} dual to a positive orthonormal frame, then∫

A
Kθ1 ∧ θ2 +

∫
∂A
kg(s)ds+

n∑
i=1

εi = 2π,

where ∂A has the induced orientation and ε1, . . . , εn are the angles by which the velocity
vector rotates at each corner.

6. A triangle on a compact 2-manifold (surface) S ⊂ Rn is the image of an Euclidean triangle
by a parameterization g : U ⊂ R2 → S. A triangulation of S is a decomposition of S
into a finite number of triangles such that the intersection of any two triangles is precisely
a common edge. The Euler characteristic of S is the integer χ(S) = V − E + F , where
V , E and F are the total numbers of vertices, edges and triangles on any triangulation.

7. Gauss-Bonnet Theorem for compact surfaces: If S ⊂ Rn is a compact (orientable)
surface then ∫

S
K = 2πχ(S).
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8. We consider compact surfaces up to homeomorphism (i.e. continuous deformation), which
preserves the Euler characteristic. The connected sum S1#S2 of two surfaces S1 and S2
is the surface obtained by removing a small disk on both surfaces and gluing them along
the disk’s boundary. We have χ(S1#S2) = χ(S1) + χ(S2)− 2.

9. Any orientable surface is homeomorphic to either the sphere S2 or a connected sum of g
tori T 2, and so its Euler characteristic is 2− 2g (with g = 0 for the sphere). The integer g
is known as the genus of the surface.

10. Examples of non-orientable surfaces are the Klein bottle K2 and the projective plane
P 2. We have χ(K2) = 0 and χ(P 2) = 1. In fact, K2 = P 2#P 2, and any non-orientable
surface is homeomorphic to a connected sum of projective planes.

7. Minimal surfaces

1. The graph of a smooth function f : U ⊂ R2 → R is a minimal surface (i.e. has vanishing
mean curvature) if and only if[

1 +

(
∂f

∂y

)2
]
∂2f

∂x2
+

[
1 +

(
∂f

∂x

)2
]
∂2f

∂y2
− 2

(
∂f

∂x

)(
∂f

∂y

)
∂2f

∂x∂y
= 0,

or, equivalently,
∂

∂x

(
1

W

∂f

∂x

)
+

∂

∂y

(
1

W

∂f

∂y

)
= 0,

where

W =

[
1 +

(
∂f

∂x

)2

+

(
∂f

∂y

)2
] 1

2

.

2. Scherk’s minimal surface is the graph of the function

f(x, y) = log
(cos y

cosx

)
,

defined on the open set⋃
m,n∈Z
m+n∈2Z

{
(x, y) ∈ R2 : |x−mπ| < π

2
, |y − nπ| < π

2

}
.

It can be extended to a connected surface via the complex parameterization

x = arg

(
w + i

w − i

)
, y = arg

(
w + 1

w − 1

)
, z = log

∣∣∣∣w2 + 1

w2 − 1

∣∣∣∣ ,
with w ∈ C ∪ {∞} \ {1, i,−1,−i}.

3. A coordinate system (u, v) on a Riemannian surface is called isothermal if the metric
in these coordinates has the form ds2 = E(du2 + dv2) (so that the angle between two
vectors coincides with the Euclidean angle). Any (minimal) surface can be parameterized
by isothermal coordinates.
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4. if g : U ⊂ R2 → S is a parameterization of the surface S ⊂ R3 by isothermal coordinates
then

∂2g

∂u2
+
∂2g

∂v2
≡ ∆g = 2EHn.

In particular, S is minimal if and only if the components x(u, v), y(u, v) and z(u, v) of the
parameterization are harmonic functions,

∆x = ∆y = ∆z = 0,

implying that there are no compact minimal surfaces (without boundary).

5. Weierstrass-Enneper Theorem: Any simply connected minimal surface can be parame-
terized by g : U → R3, with U ⊂ C simply connected, given by

g(w) =

(
Re

∫
1

2
f(w)(1− g2(w))dw,Re

∫
i

2
f(w)(1 + g2(w))dw,Re

∫
f(w)g(w)dw

)
,

where f is a holomorphic function in U and g is a meromorphic function in U . The zeros
of f coincide with the poles of g, and the order of the zeros of f is twice the order of the
poles of g. Moreover, the first fundamental form is given by

I =
1

4
|f(w)|2

(
1 + |g(w)|2

)2
dwdw̄.

6. Minimal surfaces corresponding to the Weierstrass-Enneper data fθ(w) = eiθf(w) are called
associated minimal surfaces, and in particular are isometric (that is, have the same first
fundamental form). The minimal surfaces corresponding to f(w) and to if(w) are called
conjugate minimal surfaces, as the corresponding coordinate functions are conjugate
harmonic functions.

7. The Gauss curvature of a minimal surface with Weierstrass-Enneper data f(w) and g(w) is

K(w) = −
(

4|g′(w)|
|f(w)| (1 + |g(w)|2)2

)2

,

and the principal curvatures are

k1(w) =
4|g′(w)|

|f(w)| (1 + |g(w)|2)2
and k2(w) = − 4|g′(w)|

|f(w)| (1 + |g(w)|2)2
.

8. Ricci Theorem: Let ds2 be the metric of a simply connected Riemannian surface with Gauss
curvature K < 0. Then there exists a minimal surface parameterized by g : U ⊂ R2 → R3

such that ds2 = dg · dg if and only if the Gauss curvature of ds̃2 =
√
−Kds2 is zero.

14


