Differentiable manifolds and differential forms

1 Differentiable manifolds

Definition 1.1 A set M C R"™ s said to be a differentiable manifold of dimension m ¢
{1,...,n — 1} if for any point a € M there exists an open set U > a and a smooth function
f:VcR™— R*™ such that

M NU = Graph(f)NU
for some ordering of the Cartesian coordinates of R™.

Remark 1.2 We also define a manifold of dimension O as a set of isolated points, and a manifold
of dimension n as an open set.

Theorem 1.3 M C R" is a differentiable manifold of dimension m iff for each point a € M
there exists an open set U 5 a and a smooth function F : U — R"™™ such that

(i) MNU ={xeU:F(x)=0}
(ii) rank DF(a) = n — m.

Proof: Assume without loss of generality that det %—E(a) # 0, where we write x = (y,z) with
y € R™ and z € R®™™. Then by the Implicit Function Theorem there exists an open set V C U
with a € V such that M NV is given by the graph of a smooth function z = f(y). This
shows that a set satisfying the conditions in the statement is indeed a differentiable manifold.
To show that a differentiable manifold satisfies the conditions in the statement it suffices to take

F(y,z) =1(y) -z O

Definition 1.4 A vector v € R" is said to be tangent to a set M C R" at the point a € M if
there exists a smooth curve ¢ : R — M such that ¢(0) = a and ¢(0) = v. A vector v € R" is
said to be orthogonal to M at the point a if it is orthogonal to all vectors tangent to M at a.

Proposition 1.5 If M C R" is a manifold of dimension m then the set T M of all vectors tangent
to M at the point a € M is a vector space of dimension m, called the tangent space to M at
the point a.

Proof: Assume without loss of generality that M is given by z = f(y) in a neighborhood of the
point a, where we use the notation in the proof of the theorem above. Any curve ¢ : R — M with
c(0) = a is given in this neighborhood by c(t) = (d(¢),f(d(¢))), where d : R — R™ is a curve in
R™. Therefore, ¢(0) = (d(0), Df(a) - d(0)), and so any vector tangent to M at the point a is
contained in the image of R™ by the injective linear map u — (u, Df(a)-u). On the other hand,
given u € R™, its image by this map is the vector tangent to the curve c(t) = (b+tu, f(b+tu)),
where we write a = (b, c), and so it is tangent to M at the point a. We conclude that T, M is

an m-dimensional vector subspace of R". ]



Definition 1.6 The normal space to an m-manifold M C R" at the point a € M is the
(n — m)-dimensional vector space T;-M obtained by taking the orthogonal complement of Ty M .

Proposition 1.7 Let M C R"™ be an m-manifold, a € M a point in M, U > a an open set and
F:U — R"™ such that M NU = {x € U : F(x) = 0} with rank DF(a) = n —m. Then
TaM = ker DF(a).

Proof: Since dimker DF(a) = m, it suffices to show that T, M C ker DF(a). For any smooth
curve ¢ : R — M satisfying ¢(0) = a, we have F(c(t)) = 0 whenever c(t) € U, and so
DF(a)-¢(0) = 0. O

Definition 1.8 A parameterization of a given m-manifold M C R"™ is a smooth injective map
g:U — M (withU C R™ open) such that rank Dg(t) =m for allt € U.

Proposition 1.9 Ifg: U — M is a parameterization of the m-manifold M C R™ then

og og
Tg(t)M = Span {atl(t), ey w(t)} .

Proof: Obvious. O

Theorem 1.10 /f M C R™ is an m-manifold and a € M then there exists an open set V > a
such that M NV is the image of a parameterization g : U C R™ — M. Conversely, given a
smooth map g : U C R™ — R"™ such that rank Dg(t) = m for all t € U, and given any point
to € U, there exists an open set Uy C U with tg € Uy such that g(Uy) is an m-manifold.

Proof: Since there exists an open set V' 5 a such that M NV is the graph of a smooth function
f:V CcR™ — R"™, we can choose the parameterization to be g(t) = (t,f(t)). To prove
the converse, assume that the first m lines of Dg(t() are linearly independent. Then, writing
x = (y,z) with y € R™ and z € R"™, we have from the Inverse Function Theorem that the
equations (y,z) = g(t) can be solved to yield t = h(y) in some open neighborhood Uy of ty,
with h a smooth function. Therefore, g(h(y)) = (y,k(y)), and so g(Uy) is the graph of the
smooth function k. 0



2 Covectors and wedge product

Definition 2.1 The dual vector space to R" js
(R™)* ={a:R" = R: «is linear}.
The elements of (R™)" are called covectors.

By linearity, a covector is determined by its action on the canonical basis of R™. We define
the covectors dx!, ... dx™ € (R™)* through

‘ 1 g
def(ey) =4 o
0 if i#£]
(we will see later on the reason for this notation). Given a € (R")", we have
n n n
a(v) =« <Z v’e,) = Zvla (e;) = Zvlai,
i=1 i=1 i=1
where a; = a(e;). In particular, dz'(v) = v%, and so
n n
a(v) = Zai dz'(v) & a = Zai dx".
i=1 i=1

One easily concludes from this that {dx!,... dxz"} is a basis for (R™)*, which is then a vector

space of dimension n.

Definition 2.2 A (covariant) k-tensor T is a multilinear map T : (R")" = R, i.e.
() T(viy.. ., vi+wi, oo, Vi) =T (Vi ooy Vig oo, Vi) + T (Vi ooy Wiy oo, VE)
(il) T(vi, ... AV, oo, Vi) = AT(Ve, oo, Viy oo VE).

Example 2.3
(i) A covector is a 1-tensor.

(i) g:R" x R" — R given by g(v,w) = v -w is a 2-tensor (metric tensor).
(iii) T : (R™)" — R given by T'(v1,...,vy) = det(vy,...,vy,) is an alternanting n-tensor.
Definition 2.4 A k-tensor « is said to be alternanting, or a k-covector, if

a(Vi, .., Viy o, Voo, V) = —a(Vi, o Vo VL, V).

We denote by A* (R™) the vector space of all k-covectors.



Given i1,...,ix € {1,...,n}, we define dz'* A ... Adx™ € A¥ (R") as
doit(vy) ... da(vy)
dr™ A .. ANdz™(vy, ..., vE) = det
dz's(vy) ... da'(vy)
Note that
de" A ANdx AL ANdE AL AN dat = —da AL A dat AL A da AL LA dat

and so ' ' ' '
dr" A ... Ndx AL A Ndx™ AL AN da"™ = 0.

Proposition 2.5 {dz* A... A da' is a basis for A¥ (R™), whose dimension is the-

refore (7).

}1§i1<...<ik§n

Proof: If ‘ |
Z gy iy dz™ AL AN dx't =0
11 <...<tp
then by applying this k-covector to e;,,...,e;, (with j; < ... < ji) we obtain o, j, = 0. This

shows that the elements of {d:cil AN dx’k}1<i1< <ip<n 3T€ linearly independent. To show

that they generate A* (R"), take a k-covector T and consider
a = Z T(ei,...,e;)dx™ A... Adz'e.
11 <...<i

It should be clear that
oz(el-l, ey eik) = T(eil, Ce . ,eik)

for i1 < ... < ig; since both covectors are alternating, the equality holds for any ordering of the
indices, and by multilinearity it holds for any vectors. O

Remark 2.6 Since () = 1, we define A° (R") = R.

Example 2.7 A? (R*) has dimension 3, and a basis is for instance {dy A dz,dz A dz, dz A dy}.
This makes it possible to identify R® both with A' (R3) = (R?’)* and with A* (R®): if v € R?,
we define

Wy = vldr + vzdy +v3dz

and
Qv = vidy A dz + v?dz A dx + v3da A dy.

Note that actually wy can be defined for v € R™. It is easy to see that

and that



Definition 2.8 /f « € AF (R") and 8 € A' (R"),

a = Z ail,,,ikdxil/\.../\dxik, g = Z 5j1...jldxj1/\.../\dwj’,

11 <. <0, J1<...<Jy

we define their wedge product a A 3 € A¥+ (R™) as

aAB = > i Big da AL Ada Adat AL A dad
11 <. <0
J1<..<Jy

Remark 2.9 /f « is a O-covetor (real number), its wedge product by « is simply the product by
a scalar.

Example 2.10 The wedge product can be seen as a generalization of the cross product: if v,w €
R3 then

Wy A wWw = Qyxw-

It can also be seen as a generalization of the inner product:
wy A Qw = (v-w)de Ady Ndz.
Proposition 2.11 Properties of the wedge product:
(i) an(B+y)=arB+any
(i) aANB= (=D BAa if acAFR?),3cARY);
(i) a A (BAY) = (A B) A7

Proof: Exercise. t



3 Differential forms, pull-back and exterior derivative

Definition 3.1 A differential form of degree k in R™ is a smooth function w : R™ — AF(R™).
We denote by Q2F(R™) the set of k-forms in R".

Example 3.2 A O-form is simply a smooth function ¢ : R™ — R.

Definition 3.3 /ff : R* — R™ is smooth and w € QF(R™) then the pull-back of w by f is the
k-form f*w € QF(R™) defined by

(E0)(X)(vi,. .., Vi) = w(E())(DEGVL, ..., DEGX)vy).
Example 3.4 The pull-back of a 0-form ¢ by f is simply the pre-composition ¢ o f.

Proposition 3.5 Properties of the pull-back:
(i) £ (w+n) = o+ 9,
(i) £ (wAn) =f*wAfny;
(iii) (g o f)"(w) = f*(g"w).
Proof: Exercise. 0

Definition 3.6 /fw € QF(R"),

Z Wiy i ( daz”/\ oA daE,

11 <...<tp
then its exterior derivative is the (k + 1)-form dw € QF1(R") defined by
0 .
= > Z w“ Tt gt A dgt A LA dat
11 <...<tp 1=1
Example 3.7

1. The exterior derivative of a O-form ¢ is the 1-form

99 .

do = 61

At each point, this 1-form is the linear transformation represented by the Jacobian matrix
of ¢, that is, the derivative of ¢. In particular, the exterior derivative of the function z* is
dx', which explains our notation for the basis of (R™)*.

2. Another way of thinking of the exterior derivative of a O-form ¢ : R™ — R is as the 1-form
corresponding to the gradient of ¢:

d(b = Wgrad ¢-



3. IfF:R3 — R3 is a smooth vector field then
dwr = chrlF

and
dQp = (divF) dz A dy A dz.

Differential forms give a quick method for computing curls: for example, if F = (—y, z, z)
then wgp = —ydz + xdy + zdz, whence

QeuwlF = dwp = —dy N dx + dx A dy = 2dz A dy,
and so curl F = (0,0, 2).

Proposition 3.8 Properties of the exterior derivative:

(i) d(w+n) = dw + dn;

(i) dwAn) =dwAn+(—DFwAdy if weQF(R"),;

(i) d(dw) =0;

(iv) £*(dw) = d(f*w).
Proof: (i) and (ii) are immediate. To prove (iii), note that

d(dw) =d Z Z Wis.. Z’“d:c Adz AL A daE

11<...<ip =1

Z Z O wiy.. 0tk god A dat A dzit A LA datc
0xi Ozt

11 <...<ig 3,j=1

By Schwarz's Lemma,

a Wiy ik j 6 Wiy 1k ] 62("‘}11 i J
Zajazd /\dx—zalajd Ada' = Soipeg vt Adal.

7]7 7‘77 7]7

Therefore this expression vanishes, and so d(dw) = 0.
To prove (iv), we note that for O-forms ¢ we have

d(f*¢)(v) = d(¢ o £)(v) = dp(Df(v)) = (£*d¢)(v).

In particular, we have
d(f*(d¢)) = d(d(f*¢)) = 0 = £*(d(de)),

and so (iv) holds for 1-forms of the type d¢. Since any k-form can be built out of 0-forms and

the 1-forms dz', ..., dz" by using wedge products and sums, it is easy to see that (iv) holds for
any k-form. O
Example 3.9

(i) If ¢ : R — R is a scalar field then d(d¢) = 0 < curl(grad ¢) = 0.



(i) IfF :R3 — R3 is a vector field then d(dwg) = 0 < div(curl F) = 0.
Definition 3.10 We say that w € QF (R") is:

(i) closed if dw = 0;

(i) exact if w = dn for some n € Q=1 (R") (called a potential for w).
Proposition 3.11 /fw € QF (R™) is exact then w is closed.

Proof: Obvious. OJ

Remark 3.12 More generally, we can consider the set Q*(U) of k-forms whose domain is any
open set U C R™. [t turns out that the relation between closed and exact forms on U depends
crucially on the topology of U.

Theorem 3.13 (Poincaré Lemma) If w € QF (U) is closed and the open set U is star-shaped
then w is exact.

Proof: Assume without loss of generality that O is a center for U. If

wx) = Y wig (X)da AL A da,

1< <k
we define I1Q € QF~1(U) as
Tw(x) = Z i(—l)l_l (/1 i, i (%) dt) 2 e AL AdTA LA da
i1<...<ip I=1 0
(where ™ means omission). We have
w=d(lw)+ I(dw),
and so if dw = 0 then w = d({w). O
Example 3.14

(i) IfF : U — R"™ is a closed vector field and U C R" is star-shaped then there exists ¢ : U — R
such that F = grad ¢.

(i) If F : U — R3 is a divergenceless vector field and U C R? is star-shaped then there exists
A : U — R3 such that F = curl A.

Differential forms give a quick method for computing vector potentials: for example, given
F = (2y,22,0) we have

Qp =2ydy Adz +22dz Adz = d (y*) Adz +d (2°) Ndz = d (yPdz + 2%dz)

and so a vector potential for F is A = (22,0,y?).



4 Integration and Stokes Theorem

Proposition 4.1 Ifg : U C R™ — M and h : V C R™ — M are parameterizations of the
m-manifold M C R™ then h~! o g is a diffeomorphism (smooth bijection with smooth inverse).

Proof: Since g and h are injective, h™! o g is a bijection on its domain. Since the columns of
Dg and Dh generate the same vector space at each point (tangent space), there exists a unique
nonsingular m x m matrix A such that Dg = Dh - A. It is easy to check that A= D(h~!og),
and the Inverse Function Theorem then guarantees that h™! o g is a diffeomorphism. O

Definition 4.2 We say that two parameterizations g : U C R™ — M and h: V C R™ — M
of the m-manifold M C R" induce the same orientation if det D(h~! o g) > 0, and opposite
orientations ifdet D(h~!og) < 0. The manifold M is called orientable if it is possible to choose
parameterizations whose images cover M and induce the same orientation. An orientation on an
orientable manifold is a choice of a maximal family of parameterizations under these conditions,
which are said to be positive. An orientable manifold with a choice of orientation is said to be
oriented.

Definition 4.3 Ifg : U C R™ — M is a positive parameterization of the oriented m-manifold
M C R™ and w € Q™ (R™), we define the integral of w along g(U) (assumed bounded) as

og 8g> i
w= [ w(gt (,.. dt...dt"
/g(U) /U (5(t) ot! T otm
:/g*w(el,...,em)dtl...dtm.
U

Remark 4.4 If we think of an open set U C R™ as an n-manifold parameterized by the identity
map (which we take to be positive), this definition implies

[ st nnaet = [ goant
/gw)w:/yg*w'

1. If M Cc R"™ js a 1-manifold and F : R® — R" s a vector field then

/wF_/wF (dtu)dt /abwg(t)) %8 (1) ar = | Feie

is the line integral of ¥ along M. Note that in this case the choice of orientation is the
choice of the direction of the curve.

and so

Example 4.5

2. If M C R3 s a 2-manifold and F : R? — R3 s a vector field then

/MQF:/UQF@(“’”))(? §g>d d”—/UF(g(u v))- (gi gg)d dv_/M<F,n>

is the flux of F' through M. Note that in this case the choice of orientation is the choice of
the unit normal.



Proposition 4.6 The integral of a m-form on the image of a positive parameterization of an
m-manifold is well defined, that is, it is independent of the choice of parameterization.

Proof: We start by checking that the definition is consistent for integrals on n-manifolds: if

U,V.C R" are open sets, w = fdz' A ... Adax™ € Q*(R") and g : U — V is a positive
diffeomorphism then

og og
1 n 1 n
/Uf(g(t))da; Ao Ndx <8t1"" atn)dt ..t

/f det( S ;i)dtl...dt”

/ f(g(t))(det Dg) dt...adt"
/f t)) | det Dg|dt! ... dt"
— [ 160 aat

.

by the Theorem of Change of Variables.

Now let M be an oriented m-manifold, let g : U C R™ — M and h : V C R™ — M be
two positive parameterizations with the same image (so that g = h o k for some diffeomorphism
k:U — V), and suppose that w € Q™(R™). Using the result above,

/ giw = / (hok)'w = / k*(h*w) = / h*w.
U U U v
Definition 4.7 If M C R" is a bounded, oriented m-manifold and w € Q™ (R™), we define

N
f =2

where g; : U; — M are positive parameterizations whose images are disjoint and cover M except
for a finite number of manifolds of dimension smaller than m.

It can be shown that it is always possible to obtain a finite number of parameterizations of
this kind, and that the definition above does not depend on the choice of these parameterizations.

Definition 4.8 Informally, an m-manifold with boundary is a subset M C N of an m-manifold
N C R" delimited by an (m — 1)-manifold OM C M, called the boundary of M, such that
M\ OM is again an m-manifold. We say that M € orientable if N is orientable. If M is oriented,
the induced orientation on OM is defined as follows: if g : U N {t' < 0} — M is a positive
parameterization of M such that h(t?,... t™) = g(0,t2,...,t™) is a parameterization of OM,
then h is positive. Moreover, if w € Q™(R™), we define

/wz/ w
M M\OM

10



Remark 4.9 A manifold is a particular case of a manifold with boundary, but a manifold with
boundary is not a manifold in general.

Theorem 4.10 (Stokes) If M C R™ is a compact, oriented m-manifold with boundary and
w € QML (R") then

/ dw :/ w,

M oM

Proof: We assume that M can be decomposed into images of cubes by positive parameterizations.
Since the integrals along adjacent faces correspond to opposite orientations, and consequently
cancel out, we can assume without loss of generality that M is the image of a cube.

Let g : [0,1]™ — M be a parameterization. Since

[aw= g = [ dg)
M [0,1]™ [0,1]™

/ w:/ g w,

OM a[0,1]m

it suffices to prove the Stokes Theorem in the case when M = [0, 1]™. If w € Q™" 1(R™) then

where OM has the induced orientation.

and

w:Zwi(x)d:vl/\.../\d/z?i/\.../\dxm,
i=1
and so
do="Y (1) = dz" A... Ada™
w ;( ) i 0% x

Consequently,

/ dw
[0,1]™

Il

m Ot

(—1)t / O dat. .. dz™
[0

(—l)i_l/ O dz' A ... A dz™
[0,1]

=1

I

im1 71}m afﬁl
:Z(—l)i_l (/ widzz:l...d/:c\i...dxm—/ widxl...d/m\i...d:nm>
i1 {zi=1} {z*=0}

w?
8[0,1]m

where we used the definition of induced orientation (note that the orientation is reversed each
time the coordinate functions are switched). t

Corollary 4.11 If M is an oriented compact m-manifold (without boundary) and w € Q™1 (R")

then
7{ dw = 0.
M

11



Example 4.12 If M is a regular domain in R? and w = Pdx + Qdy € Q'(R?), we have

_[(0Q OP
dw_(@x_8y>dx/\dy’

and so the Stokes Theorem reduces to the Green Theorem:

// <6Q—ap>dx/\dy:f Pdx + Qdy.
M \0z Oy oM

Example 4.13 The whole Vector Calculus in R® can be reinterpreted in terms of differential
forms:

(i) Products:

WgF = @ WF;
Qur = ¢ QF;
Qpxg = WF \wgG;

(F-G)dzx Ndy Ndz = Qp Nwg = wr A Q.
(ii) Derivatives:

Werad ¢ = de;
Qe ¥ = dwr;
(divF)dz A dy N dz = dQp.

(iii) Integrals:

(iv) Theorems involving derivatives:

curl(grad¢) =0 <& d(d¢) = 0;
div(curlF) =0 < d(dwr) = 0.

(v) Theorems involving integrals:
[ wmado-dg=ob) ~oa) & [ o= a(b) - ofa)
M M

// curlF-n:j{ F-dg < /dwF:f WF;
M oM M oM
M oM M oM

12



5 Vector Calculus in curvilinear coordinates

If g : U — R™ is a coordinate transformation then we can think of the new coordinates t!, ..., t"

as scalar fields on R™. We have
([ 0g ot!
at' | == | = == = dij;,
<6t9> oty J

where 0;; =1 if i = j and §;; = 0 if i # j (Kronecker delta). Defining the 1-forms

n
wi= Y gigdt/,
i=1

where
_Jg 08

9 = Bti " o
are the components of the metric matrix GG, we see that

(98 _ _Og Og
Wilow ) "9 T pp o

. ) ) 0
that is, w; is the 1-form associated to a—fj

Example 5.1 Recall that the cylindrical coordinates in R? correspond to the coordinate trans-
formation g : Rt x (0,27) x R — R3 given by

g(p,p,2) = (pcosy, psenp, z).

The metric matrix is

1 0 0
G=10 p*> 0
1
Jg Og 0
and so {f)g) 8—g, 8g} is an orthogonal basis associated to the 1-forms {dp,dego,dz}. The
p Op Oz
corresponding orthonormal basis {e,,e,,e.} satisfies
0
e, = 8—? ~dp~e,xe,~pdpdz;
10g
e, I pdp ~e, xe, z A dp
0
ez:£~d2~epxe¢~pdp/\dg0

(where we write F ~ wg ~ Qg ). We also have
pdpNdp Ndz = (e, (e, X €;))dx Ndy Ndz = dx ANdy N dz.

To compute, for instance,
A¢ = div(grad ¢)

13



in cylindrical coordinates, we note that

8¢ 0¢p 8¢>

grad ¢ ~ do = d +a—d +87
N8—¢pdap/\d2+%fdz/\dp+%pdp/\dgp,
Op 0p p 0z
whence
1
Nppdp ANdp Ndz =d @pdgo/\dz—l—%fdz/\dp—l-aqudp/\d«p
ap dp p 0z
d ( 9o\  18% ¢
== (p= - — dp Ndp Nd
<5p<pap>+pas0+ Pozr ) e ez
that is:

10 ( 09\, 1 9% 0%
A ) Ik A
#= p dp (p 8/)) MR

Example 5.2 Recall that the spherical coordinates in R3 correspond to the coordinate trans-
formation g : RT x (0,7) x (0,27) — R? given by
g(r,0,¢) = (rsenfcosp,rsenfsenp,rcosh).

The metric matrix is
1 0 0

G=|0 r? 0
0 0 7r2sen?d

and so {E?g 8 i?g} is an orthogonal basis associated to the 1-forms {dr,r*df, r*sen® Ody}.

or’ 00’ Dy
The corresponding orthonormal basis satisfies

0

e, = a—g ~dr~egxe,~r 5en0d9/\d<p,
r

10

ey = ;8—5 ~rdf ~ e, xe.~rsenlddpAdr;
1 0

e, = rsen9£ ~rsenfdp ~e. x ey~ rdrAdf.

We also have
r?senfdr AdO Adp = (e, (ep x e,))dx Ady Adz = dz Ady A dz.

To compute, for instance,
A¢ = div(grad ¢)

is spherical coordinates, we note that

¢d +%d9+ 0¢

grad ¢ ~ dop = 90 9o

dp

9¢ 99
70 sen @ dp A dr + % —

N%r senfdfd Adp + — dr A db,

14



whence

1
Adr?senfdr NdOAdp =d a—qg7“2se1r1¢9al¢9/\61l<p—|—8—qj sen@d«p/\dr—{—%idr/\dﬁ
or a0 Jyp senf

B 0 [ 5090 0 0¢ 1 827¢
= (sen&ar (r (97“) + 20 (sen& 89) + sen 952 dr NdO N dp,

that is:

10 (4,00 1 9 0o 1 99
Agb_ﬂ@r(?a 87“>+r256n969(Sen080>+r28en29 dp?’
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