
Differentiable manifolds and differential forms

1 Differentiable manifolds

Definition 1.1 A set M ⊂ Rn is said to be a differentiable manifold of dimension m ∈
{1, . . . , n − 1} if for any point a ∈ M there exists an open set U 3 a and a smooth function
f : V ⊂ Rm → Rn−m such that

M ∩ U = Graph(f) ∩ U

for some ordering of the Cartesian coordinates of Rn.

Remark 1.2 We also define a manifold of dimension 0 as a set of isolated points, and a manifold
of dimension n as an open set.

Theorem 1.3 M ⊂ Rn is a differentiable manifold of dimension m iff for each point a ∈ M
there exists an open set U 3 a and a smooth function F : U → Rn−m such that

(i) M ∩ U = {x ∈ U : F(x) = 0};

(ii) rankDF(a) = n−m.

Proof: Assume without loss of generality that det ∂F∂z (a) 6= 0, where we write x = (y, z) with
y ∈ Rm and z ∈ Rn−m. Then by the Implicit Function Theorem there exists an open set V ⊂ U
with a ∈ V such that M ∩ V is given by the graph of a smooth function z = f(y). This
shows that a set satisfying the conditions in the statement is indeed a differentiable manifold.
To show that a differentiable manifold satisfies the conditions in the statement it suffices to take
F(y, z) = f(y)− z. �

Definition 1.4 A vector v ∈ Rn is said to be tangent to a set M ⊂ Rn at the point a ∈ M if
there exists a smooth curve c : R → M such that c(0) = a and ċ(0) = v. A vector v ∈ Rn is
said to be orthogonal to M at the point a if it is orthogonal to all vectors tangent to M at a.

Proposition 1.5 If M ⊂ Rn is a manifold of dimension m then the set TaM of all vectors tangent
to M at the point a ∈ M is a vector space of dimension m, called the tangent space to M at
the point a.

Proof: Assume without loss of generality that M is given by z = f(y) in a neighborhood of the
point a, where we use the notation in the proof of the theorem above. Any curve c : R→M with
c(0) = a is given in this neighborhood by c(t) = (d(t), f(d(t))), where d : R→ Rm is a curve in
Rm. Therefore, ċ(0) = (ḋ(0), Df(a) · ḋ(0)), and so any vector tangent to M at the point a is
contained in the image of Rm by the injective linear map u 7→ (u, Df(a) ·u). On the other hand,
given u ∈ Rm, its image by this map is the vector tangent to the curve c(t) = (b+ tu, f(b+ tu)),
where we write a = (b, c), and so it is tangent to M at the point a. We conclude that TaM is
an m-dimensional vector subspace of Rn. �
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Definition 1.6 The normal space to an m-manifold M ⊂ Rn at the point a ∈ M is the
(n−m)-dimensional vector space T⊥a M obtained by taking the orthogonal complement of TaM .

Proposition 1.7 Let M ⊂ Rn be an m-manifold, a ∈ M a point in M , U 3 a an open set and
F : U → Rn−m such that M ∩ U = {x ∈ U : F(x) = 0} with rankDF(a) = n − m. Then
TaM = kerDF(a).

Proof: Since dim kerDF(a) = m, it suffices to show that TaM ⊂ kerDF(a). For any smooth
curve c : R → M satisfying c(0) = a, we have F(c(t)) = 0 whenever c(t) ∈ U , and so
DF(a) · ċ(0) = 0. �

Definition 1.8 A parameterization of a given m-manifold M ⊂ Rn is a smooth injective map
g : U →M (with U ⊂ Rm open) such that rankDg(t) = m for all t ∈ U .

Proposition 1.9 If g : U →M is a parameterization of the m-manifold M ⊂ Rn then

Tg(t)M = span

{
∂g

∂t1
(t), . . . ,

∂g

∂tm
(t)

}
.

Proof: Obvious. �

Theorem 1.10 If M ⊂ Rn is an m-manifold and a ∈ M then there exists an open set V 3 a
such that M ∩ V is the image of a parameterization g : U ⊂ Rm → M . Conversely, given a
smooth map g : U ⊂ Rm → Rn such that rankDg(t) = m for all t ∈ U , and given any point
t0 ∈ U , there exists an open set U0 ⊂ U with t0 ∈ U0 such that g(U0) is an m-manifold.

Proof: Since there exists an open set V 3 a such that M ∩ V is the graph of a smooth function
f : V ⊂ Rm → Rn−m, we can choose the parameterization to be g(t) = (t, f(t)). To prove
the converse, assume that the first m lines of Dg(t0) are linearly independent. Then, writing
x = (y, z) with y ∈ Rm and z ∈ Rn−m, we have from the Inverse Function Theorem that the
equations (y, z) = g(t) can be solved to yield t = h(y) in some open neighborhood U0 of t0,
with h a smooth function. Therefore, g(h(y)) = (y,k(y)), and so g(U0) is the graph of the
smooth function k. �
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2 Covectors and wedge product

Definition 2.1 The dual vector space to Rn is

(Rn)∗ = {α : Rn → R : α is linear}.

The elements of (Rn)∗ are called covectors.

By linearity, a covector is determined by its action on the canonical basis of Rn. We define
the covectors dx1, . . . , dxn ∈ (Rn)∗ through

dxi(ej) =

{
1 if i = j

0 if i 6= j

(we will see later on the reason for this notation). Given α ∈ (Rn)∗, we have

α(v) = α

(
n∑
i=1

viei

)
=

n∑
i=1

viα (ei) =
n∑
i=1

viαi,

where αi = α(ei). In particular, dxi(v) = vi, and so

α(v) =

n∑
i=1

αi dx
i(v)⇔ α =

n∑
i=1

αi dx
i.

One easily concludes from this that {dx1, . . . , dxn} is a basis for (Rn)∗, which is then a vector
space of dimension n.

Definition 2.2 A (covariant) k-tensor T is a multilinear map T : (Rn)k → R, i.e.

(i) T (v1, . . . ,vi + wi, . . . ,vk) = T (v1, . . . ,vi, . . . ,vk) + T (v1, . . . ,wi, . . . ,vk);

(ii) T (v1, . . . , λvi, . . . ,vk) = λT (v1, . . . ,vi, . . . ,vk).

Example 2.3

(i) A covector is a 1-tensor.

(ii) g : Rn × Rn → R given by g(v,w) = v ·w is a 2-tensor (metric tensor).

(iii) T : (Rn)n → R given by T (v1, . . . ,vn) = det(v1, . . . ,vn) is an alternanting n-tensor.

Definition 2.4 A k-tensor α is said to be alternanting, or a k-covector, if

α(v1, . . . ,vi, . . . ,vj . . . ,vk) = −α(v1, . . . ,vj , . . . ,vi . . . ,vk).

We denote by Λk (Rn) the vector space of all k-covectors.
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Given i1, . . . , ik ∈ {1, . . . , n}, we define dxi1 ∧ . . . ∧ dxik ∈ Λk (Rn) as

dxi1 ∧ . . . ∧ dxik(v1, . . . ,vk) = det


dxi1(v1) . . . dxi1(vk)

. . . . . . . . .

dxik(v1) . . . dxik(vk)

 .
Note that

dxi1 ∧ . . . ∧ dxip ∧ . . . ∧ dxiq ∧ . . . ∧ dxik = −dxi1 ∧ . . . ∧ dxiq ∧ . . . ∧ dxip ∧ . . . ∧ dxik ,

and so
dxi1 ∧ . . . ∧ dxip ∧ . . . ∧ dxip ∧ . . . ∧ dxik = 0.

Proposition 2.5
{
dxi1 ∧ . . . ∧ dxik

}
1≤i1<...<ik≤n

is a basis for Λk (Rn), whose dimension is the-

refore
(
n
k

)
.

Proof: If ∑
i1<...<ik

αi1...ik dx
i1 ∧ . . . ∧ dxik = 0

then by applying this k-covector to ej1 , . . . , ejk (with j1 < . . . < jk) we obtain αj1...jk = 0. This
shows that the elements of

{
dxi1 ∧ . . . ∧ dxik

}
1≤i1<...<ik≤n

are linearly independent. To show

that they generate Λk (Rn), take a k-covector T and consider

α =
∑

i1<...<ik

T (ei1 , . . . , eik) dxi1 ∧ . . . ∧ dxik .

It should be clear that
α(ei1 , . . . , eik) = T (ei1 , . . . , eik)

for i1 < . . . < ik; since both covectors are alternating, the equality holds for any ordering of the
indices, and by multilinearity it holds for any vectors. �

Remark 2.6 Since
(
n
0

)
= 1, we define Λ0 (Rn) = R.

Example 2.7 Λ2
(
R3
)

has dimension 3, and a basis is for instance {dy ∧ dz, dz ∧ dx, dx ∧ dy}.
This makes it possible to identify R3 both with Λ1

(
R3
)
≡
(
R3
)∗

and with Λ2
(
R3
)
: if v ∈ R3,

we define
ωv = v1dx+ v2dy + v3dz

and
Ωv = v1dy ∧ dz + v2dz ∧ dx+ v3dx ∧ dy.

Note that actually ωv can be defined for v ∈ Rn. It is easy to see that

ωv(w) = v ·w,

and that
Ωu(v,w) = u · (v ×w).
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Definition 2.8 If α ∈ Λk (Rn) and β ∈ Λl (Rn),

α =
∑

i1<...<ik

αi1...ik dx
i1 ∧ . . . ∧ dxik , β =

∑
j1<...<jl

βj1...jl dx
j1 ∧ . . . ∧ dxjl ,

we define their wedge product α ∧ β ∈ Λk+l (Rn) as

α ∧ β =
∑

i1<...<ik
j1<...<jl

αi1...ik βj1...jl dx
i1 ∧ . . . ∧ dxik ∧ dxj1 ∧ . . . ∧ dxjl .

Remark 2.9 If α is a 0-covetor (real number), its wedge product by α is simply the product by
a scalar.

Example 2.10 The wedge product can be seen as a generalization of the cross product: if v,w ∈
R3 then

ωv ∧ ωw = Ωv×w.

It can also be seen as a generalization of the inner product:

ωv ∧ Ωw = (v ·w) dx ∧ dy ∧ dz.

Proposition 2.11 Properties of the wedge product:

(i) α ∧ (β + γ) = α ∧ β + α ∧ γ;

(ii) α ∧ β = (−1)klβ ∧ α if α ∈ Λk (Rn) , β ∈ Λl (Rn);

(iii) α ∧ (β ∧ γ) = (α ∧ β) ∧ γ.

Proof: Exercise. �
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3 Differential forms, pull-back and exterior derivative

Definition 3.1 A differential form of degree k in Rn is a smooth function ω : Rn → Λk(Rn).
We denote by Ωk(Rn) the set of k-forms in Rn.

Example 3.2 A 0-form is simply a smooth function φ : Rn → R.

Definition 3.3 If f : Rn → Rm is smooth and ω ∈ Ωk(Rm) then the pull-back of ω by f is the
k-form f∗ω ∈ Ωk(Rn) defined by

(f∗ω)(x)(v1, . . . ,vk) = ω(f(x))(Df(x)v1, . . . , Df(x)vk).

Example 3.4 The pull-back of a 0-form φ by f is simply the pre-composition φ ◦ f .

Proposition 3.5 Properties of the pull-back:

(i) f∗(ω + η) = f∗ω + f∗η;

(ii) f∗(ω ∧ η) = f∗ω ∧ f∗η;

(iii) (g ◦ f)∗(ω) = f∗(g∗ω).

Proof: Exercise. �

Definition 3.6 If ω ∈ Ωk(Rn),

ω =
∑

i1<...<ik

ωi1...ik(x) dxi1 ∧ . . . ∧ dxik ,

then its exterior derivative is the (k + 1)-form dω ∈ Ωk+1(Rn) defined by

dω =
∑

i1<...<ik

n∑
i=1

∂ωi1...ik
∂xi

dxi ∧ dxi1 ∧ . . . ∧ dxik .

Example 3.7

1. The exterior derivative of a 0-form φ is the 1-form

dφ =
n∑
i=1

∂φ

∂xi
dxi.

At each point, this 1-form is the linear transformation represented by the Jacobian matrix
of φ, that is, the derivative of φ. In particular, the exterior derivative of the function xi is
dxi, which explains our notation for the basis of (Rn)∗.

2. Another way of thinking of the exterior derivative of a 0-form φ : Rn → R is as the 1-form
corresponding to the gradient of φ:

dφ = ωgradφ.
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3. If F : R3 → R3 is a smooth vector field then

dωF = ΩcurlF

and
dΩF = (divF) dx ∧ dy ∧ dz.

Differential forms give a quick method for computing curls: for example, if F = (−y, x, z)
then ωF = −ydx+ xdy + zdz, whence

ΩcurlF = dωF = −dy ∧ dx+ dx ∧ dy = 2dx ∧ dy,

and so curlF = (0, 0, 2).

Proposition 3.8 Properties of the exterior derivative:

(i) d(ω + η) = dω + dη;

(ii) d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη if ω ∈ Ωk (Rn);

(iii) d(dω) = 0;

(iv) f∗(dω) = d(f∗ω).

Proof: (i) and (ii) are immediate. To prove (iii), note that

d(dω) = d
∑

i1<...<ik

n∑
i=1

∂ωi1...ik
∂xi

dxi ∧ dxi1 ∧ . . . ∧ dxik

∑
i1<...<ik

n∑
i,j=1

∂2ωi1...ik
∂xj∂xi

dxj ∧ dxi ∧ dxi1 ∧ . . . ∧ dxik .

By Schwarz’s Lemma,

n∑
i,j=1

∂2ωi1...ik
∂xj∂xi

dxj ∧ dxi =

n∑
i,j=1

∂2ωi1...ik
∂xi∂xj

dxj ∧ dxi = −
n∑

i,j=1

∂2ωi1...ik
∂xi∂xj

dxi ∧ dxj .

Therefore this expression vanishes, and so d(dω) = 0.
To prove (iv), we note that for 0-forms φ we have

d(f∗φ)(v) = d(φ ◦ f)(v) = dφ(Df(v)) = (f∗dφ)(v).

In particular, we have
d(f∗(dφ)) = d(d(f∗φ)) = 0 = f∗(d(dφ)),

and so (iv) holds for 1-forms of the type dφ. Since any k-form can be built out of 0-forms and
the 1-forms dx1, . . . , dxn by using wedge products and sums, it is easy to see that (iv) holds for
any k-form. �

Example 3.9

(i) If φ : R3 → R is a scalar field then d(dφ) = 0⇔ curl(gradφ) = 0.
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(ii) If F : R3 → R3 is a vector field then d(dωF) = 0⇔ div(curlF) = 0.

Definition 3.10 We say that ω ∈ Ωk (Rn) is:

(i) closed if dω = 0;

(ii) exact if ω = dη for some η ∈ Ωk−1 (Rn) (called a potential for ω).

Proposition 3.11 If ω ∈ Ωk (Rn) is exact then ω is closed.

Proof: Obvious. �

Remark 3.12 More generally, we can consider the set Ωk(U) of k-forms whose domain is any
open set U ⊂ Rn. It turns out that the relation between closed and exact forms on U depends
crucially on the topology of U .

Theorem 3.13 (Poincaré Lemma) If ω ∈ Ωk (U) is closed and the open set U is star-shaped
then ω is exact.

Proof: Assume without loss of generality that 0 is a center for U . If

ω(x) =
∑

i1<...<ik

ωi1...ik(x) dxi1 ∧ . . . ∧ dxik ,

we define IΩ ∈ Ωk−1 (U) as

Iω(x) =
∑

i1<...<ik

n∑
l=1

(−1)l−1
(∫ 1

0
tk−1ωi1...ik(tx) dt

)
xil dxi1 ∧ . . . ∧ d̂xil ∧ . . . ∧ dxik

(where ̂ means omission). We have

ω = d(Iω) + I(dω),

and so if dω = 0 then ω = d(Iω). �

Example 3.14

(i) If F : U → Rn is a closed vector field and U ⊂ Rn is star-shaped then there exists φ : U → R
such that F = gradφ.

(ii) If F : U → R3 is a divergenceless vector field and U ⊂ R3 is star-shaped then there exists
A : U → R3 such that F = curlA.

Differential forms give a quick method for computing vector potentials: for example, given
F = (2y, 2z, 0) we have

ΩF = 2y dy ∧ dz + 2z dz ∧ dx = d
(
y2
)
∧ dz + d

(
z2
)
∧ dx = d

(
y2dz + z2dx

)
,

and so a vector potential for F is A =
(
z2, 0, y2

)
.
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4 Integration and Stokes Theorem

Proposition 4.1 If g : U ⊂ Rm → M and h : V ⊂ Rm → M are parameterizations of the
m-manifold M ⊂ Rn then h−1 ◦ g is a diffeomorphism (smooth bijection with smooth inverse).

Proof: Since g and h are injective, h−1 ◦ g is a bijection on its domain. Since the columns of
Dg and Dh generate the same vector space at each point (tangent space), there exists a unique
nonsingular m×m matrix A such that Dg = Dh ·A. It is easy to check that A = D(h−1 ◦ g),
and the Inverse Function Theorem then guarantees that h−1 ◦ g is a diffeomorphism. �

Definition 4.2 We say that two parameterizations g : U ⊂ Rm → M and h : V ⊂ Rm → M
of the m-manifold M ⊂ Rn induce the same orientation if detD(h−1 ◦ g) > 0, and opposite
orientations if detD(h−1◦g) < 0. The manifold M is called orientable if it is possible to choose
parameterizations whose images cover M and induce the same orientation. An orientation on an
orientable manifold is a choice of a maximal family of parameterizations under these conditions,
which are said to be positive. An orientable manifold with a choice of orientation is said to be
oriented.

Definition 4.3 If g : U ⊂ Rm → M is a positive parameterization of the oriented m-manifold
M ⊂ Rn and ω ∈ Ωm (Rn), we define the integral of ω along g(U) (assumed bounded) as∫

g(U)
ω =

∫
U
ω(g(t))

(
∂g

∂t1
, . . . ,

∂g

∂tm

)
dt1 . . . dtm

=

∫
U
g∗ω (e1, . . . , em) dt1 . . . dtm.

Remark 4.4 If we think of an open set U ⊂ Rn as an n-manifold parameterized by the identity
map (which we take to be positive), this definition implies∫

U
f(x) dx1 ∧ . . . ∧ dxn =

∫
U
f(x) dx1 . . . dxn,

and so ∫
g(U)

ω =

∫
U
g∗ω.

Example 4.5

1. If M ⊂ Rn is a 1-manifold and F : Rn → Rn is a vector field then∫
M
ωF =

∫ b

a
ωF(g(t))

(
dg

dt
(t)

)
dt =

∫ b

a
F(g(t)) · dg

dt
(t) dt =

∫
M

F · dg

is the line integral of F along M . Note that in this case the choice of orientation is the
choice of the direction of the curve.

2. If M ⊂ R3 is a 2-manifold and F : R3 → R3 is a vector field then∫
M

ΩF =

∫
U

ΩF(g(u, v))

(
∂g

∂u
,
∂g

∂v

)
du dv =

∫
U
F(g(u, v))·

(
∂g

∂u
× ∂g

∂v

)
du dv =

∫
M
〈F,n〉

is the flux of F through M . Note that in this case the choice of orientation is the choice of
the unit normal.
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Proposition 4.6 The integral of a m-form on the image of a positive parameterization of an
m-manifold is well defined, that is, it is independent of the choice of parameterization.

Proof: We start by checking that the definition is consistent for integrals on n-manifolds: if
U, V ⊂ Rn are open sets, ω = fdx1 ∧ . . . ∧ dxn ∈ Ωn(Rn) and g : U → V is a positive
diffeomorphism then ∫

U
f(g(t)) dx1 ∧ . . . ∧ dxn

(
∂g

∂t1
, . . . ,

∂g

∂tn

)
dt1 . . . dtn

=

∫
U
f(g(t)) det

(
∂g

∂t1
, . . . ,

∂g

∂tn

)
dt1 . . . dtn

=

∫
U
f(g(t))(detDg) dt1 . . . dtn

=

∫
U
f(g(t)) | detDg| dt1 . . . dtn

=

∫
V
f(x) dx1 . . . dxn

by the Theorem of Change of Variables.
Now let M be an oriented m-manifold, let g : U ⊂ Rm → M and h : V ⊂ Rm → M be

two positive parameterizations with the same image (so that g = h ◦ k for some diffeomorphism
k : U → V ), and suppose that ω ∈ Ωm(Rn). Using the result above,∫

U
g∗ω =

∫
U

(h ◦ k)∗ω =

∫
U
k∗(h∗ω) =

∫
V
h∗ω.

�

Definition 4.7 If M ⊂ Rn is a bounded, oriented m-manifold and ω ∈ Ωm (Rn), we define∫
M
ω =

N∑
i=1

∫
gi(Ui)

ω,

where gi : Ui →M are positive parameterizations whose images are disjoint and cover M except
for a finite number of manifolds of dimension smaller than m.

It can be shown that it is always possible to obtain a finite number of parameterizations of
this kind, and that the definition above does not depend on the choice of these parameterizations.

Definition 4.8 Informally, an m-manifold with boundary is a subset M ⊂ N of an m-manifold
N ⊂ Rn delimited by an (m − 1)-manifold ∂M ⊂ M , called the boundary of M , such that
M \∂M is again an m-manifold. We say that M é orientable if N is orientable. If M is oriented,
the induced orientation on ∂M is defined as follows: if g : U ∩ {t1 ≤ 0} → M is a positive
parameterization of M such that h(t2, . . . , tm) = g(0, t2, . . . , tm) is a parameterization of ∂M ,
then h is positive. Moreover, if ω ∈ Ωm(Rn), we define∫

M
ω =

∫
M\∂M

ω.

10



Remark 4.9 A manifold is a particular case of a manifold with boundary, but a manifold with
boundary is not a manifold in general.

Theorem 4.10 (Stokes) If M ⊂ Rn is a compact, oriented m-manifold with boundary and
ω ∈ Ωm−1 (Rn) then ∫

M
dω =

∫
∂M

ω,

where ∂M has the induced orientation.

Proof: We assume that M can be decomposed into images of cubes by positive parameterizations.
Since the integrals along adjacent faces correspond to opposite orientations, and consequently
cancel out, we can assume without loss of generality that M is the image of a cube.

Let g : [0, 1]m →M be a parameterization. Since∫
M
dω =

∫
[0,1]m

g∗(dω) =

∫
[0,1]m

d(g∗ω)

and ∫
∂M

ω =

∫
∂[0,1]m

g∗ω,

it suffices to prove the Stokes Theorem in the case when M = [0, 1]m. If ω ∈ Ωm−1(Rm) then

ω =
m∑
i=1

ωi(x) dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxm,

and so

dω =
m∑
i=1

(−1)i−1
∂ωi
∂xi

dx1 ∧ . . . ∧ dxm.

Consequently,∫
[0,1]m

dω =
m∑
i=1

(−1)i−1
∫
[0,1]m

∂ωi
∂xi

dx1 ∧ . . . ∧ dxm

=
m∑
i=1

(−1)i−1
∫
[0,1]m

∂ωi
∂xi

dx1 . . . dxm

=
m∑
i=1

(−1)i−1

(∫
{xi=1}

ωi dx
1 . . . d̂xi . . . dxm −

∫
{xi=0}

ωi dx
1 . . . d̂xi . . . dxm

)

=

∫
∂[0,1]m

ω,

where we used the definition of induced orientation (note that the orientation is reversed each
time the coordinate functions are switched). �

Corollary 4.11 If M is an oriented compact m-manifold (without boundary) and ω ∈ Ωm−1 (Rn)
then ∮

M
dω = 0.
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Example 4.12 If M is a regular domain in R2 and ω = Pdx+Qdy ∈ Ω1(R2), we have

dω =

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy,

and so the Stokes Theorem reduces to the Green Theorem:∫∫
M

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy =

∮
∂M

Pdx+Qdy.

Example 4.13 The whole Vector Calculus in R3 can be reinterpreted in terms of differential
forms:

(i) Products:

ωφF = φωF;

ΩφF = φΩF;

ΩF×G = ωF ∧ ωG;

(F ·G)dx ∧ dy ∧ dz = ΩF ∧ ωG = ωF ∧ ΩG.

(ii) Derivatives:

ωgradφ = dφ;

ΩcurlF = dωF;

(divF) dx ∧ dy ∧ dz = dΩF.

(iii) Integrals: ∫
M

F · dg =

∫
M
ωF;∫

M
F · n =

∫
M

ΩF.

(iv) Theorems involving derivatives:

curl(gradφ) = 0 ⇔ d(dφ) = 0;

div(curlF) = 0 ⇔ d(dωF) = 0.

(v) Theorems involving integrals:∫
M

gradφ · dg = φ(b)− φ(a) ⇔
∫
M
dφ = φ(b)− φ(a);∫∫

M
curlF · n =

∮
∂M

F · dg ⇔
∫
M
dωF =

∮
∂M

ωF;∫∫∫
M

divF =©
∫∫
∂M

F · n ⇔
∫
M
dΩF =

∮
∂M

ΩF.
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5 Vector Calculus in curvilinear coordinates

If g : U → Rn is a coordinate transformation then we can think of the new coordinates t1, . . . , tn

as scalar fields on Rn. We have

dti
(
∂g

∂tj

)
=
∂ti

∂tj
= δij ,

where δij = 1 if i = j and δij = 0 if i 6= j (Kronecker delta). Defining the 1-forms

ωi =
n∑
j=1

gijdt
j ,

where

gij =
∂g

∂ti
· ∂g
∂tj

are the components of the metric matrix G, we see that

ωi

(
∂g

∂tj

)
= gij =

∂g

∂ti
· ∂g
∂tj

,

that is, ωi is the 1-form associated to
∂g

∂tj
.

Example 5.1 Recall that the cylindrical coordinates in R3 correspond to the coordinate trans-
formation g : R+ × (0, 2π)× R→ R3 given by

g(ρ, ϕ, z) = (ρ cosϕ, ρ senϕ, z).

The metric matrix is

G =


1 0 0

0 ρ2 0

0 0 1


and so

{
∂g

∂ρ
,
∂g

∂ϕ
,
∂g

∂z

}
is an orthogonal basis associated to the 1-forms

{
dρ, ρ2dϕ, dz

}
. The

corresponding orthonormal basis {eρ, eϕ, ez} satisfies

eρ =
∂g

∂ρ
∼ dρ ∼ eϕ × ez ∼ ρ dϕ ∧ dz;

eϕ =
1

ρ

∂g

∂ϕ
∼ ρ dϕ ∼ ez × eρ ∼ dz ∧ dρ;

ez =
∂g

∂z
∼ dz ∼ eρ × eϕ ∼ ρ dρ ∧ dϕ

(where we write F ∼ ωF ∼ ΩF). We also have

ρ dρ ∧ dϕ ∧ dz = (eρ · (eϕ × ez)) dx ∧ dy ∧ dz = dx ∧ dy ∧ dz.

To compute, for instance,
4φ = div(gradφ)

13



in cylindrical coordinates, we note that

gradφ ∼ dφ =
∂φ

∂ρ
dρ+

∂φ

∂ϕ
dϕ+

∂φ

∂z
dz

∼ ∂φ

∂ρ
ρ dϕ ∧ dz +

∂φ

∂ϕ

1

ρ
dz ∧ dρ+

∂φ

∂z
ρ dρ ∧ dϕ,

whence

4φ ρ dρ ∧ dϕ ∧ dz = d

(
∂φ

∂ρ
ρ dϕ ∧ dz +

∂φ

∂ϕ

1

ρ
dz ∧ dρ+

∂φ

∂z
ρ dρ ∧ dϕ

)
=

(
∂

∂ρ

(
ρ
∂φ

∂ρ

)
+

1

ρ

∂2φ

∂ϕ2
+ ρ

∂2φ

∂z2

)
dρ ∧ dϕ ∧ dz,

that is:

4φ =
1

ρ

∂

∂ρ

(
ρ
∂φ

∂ρ

)
+

1

ρ2
∂2φ

∂ϕ2
+
∂2φ

∂z2
.

Example 5.2 Recall that the spherical coordinates in R3 correspond to the coordinate trans-
formation g : R+ × (0, π)× (0, 2π)→ R3 given by

g(r, θ, ϕ) = (r sen θ cosϕ, r sen θ senϕ, r cos θ).

The metric matrix is

G =


1 0 0

0 r2 0

0 0 r2 sen2 θ


and so

{
∂g

∂r
,
∂g

∂θ
,
∂g

∂ϕ

}
is an orthogonal basis associated to the 1-forms

{
dr, r2dθ, r2 sen2 θdϕ

}
.

The corresponding orthonormal basis satisfies

er =
∂g

∂r
∼ dr ∼ eθ × eϕ ∼ r2 sen θ dθ ∧ dϕ;

eθ =
1

r

∂g

∂θ
∼ r dθ ∼ eϕ × er ∼ r sen θ dϕ ∧ dr;

eϕ =
1

r sen θ

∂g

∂ϕ
∼ r sen θ dϕ ∼ er × eθ ∼ r dr ∧ dθ.

We also have

r2 sen θ dr ∧ dθ ∧ dϕ = (er · (eθ × eϕ)) dx ∧ dy ∧ dz = dx ∧ dy ∧ dz.

To compute, for instance,
4φ = div(gradφ)

is spherical coordinates, we note that

gradφ ∼ dφ =
∂φ

∂r
dr +

∂φ

∂θ
dθ +

∂φ

∂ϕ
dϕ

∼ ∂φ

∂r
r2 sen θ dθ ∧ dϕ+

∂φ

∂θ
sen θ dϕ ∧ dr +

∂φ

∂ϕ

1

sen θ
dr ∧ dθ,
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whence

4φ r2 sen θ dr ∧ dθ ∧ dϕ = d

(
∂φ

∂r
r2 sen θ dθ ∧ dϕ+

∂φ

∂θ
sen θ dϕ ∧ dr +

∂φ

∂ϕ

1

sen θ
dr ∧ dθ

)
=

(
sen θ

∂

∂r

(
r2
∂φ

∂r

)
+

∂

∂θ

(
sen θ

∂φ

∂θ

)
+

1

sen θ

∂2φ

∂ϕ2

)
dr ∧ dθ ∧ dϕ,

that is:

4φ =
1

r2
∂

∂r

(
r2
∂φ

∂r

)
+

1

r2 sen θ

∂

∂θ

(
sen θ

∂φ

∂θ

)
+

1

r2 sen2 θ

∂2φ

∂ϕ2
.
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