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1. Lecture: Introduction - JM

Refs: [HKLR, Kr1, Kr2, Ve1, Fe1, Fe2, HT, GHJ, Pr1, Pr3, GW, Ve2, Wi1, Go,

GM]

Background reading: Symplectic reduction and Kähler geometry [Ca1, Ca2]

1.1. Introduction - motivational. As mentioned in the abstract this is an in-

formal set of notes (in progress) prepared for the CAMGSD working seminar on

Symplectic/Contact Geometry/Topology. We are all using this opportunity to

learn more about the subject. Corrections/comments/suggestions are very much

welcome.

A hyperkähler (HK) manifold is a (real) 4n-dimensional Riemannian manifold

with three parallel, orthogonal (which we call compatible with the metric)

complex structures I, J,K1, satisfying the quaternionic relations

I2 = J2 = K2 = IJK = −1,

or, in other words, it is a quintuple (M,γ, I, J,K). Recall that a Riemannian

manifold is called Kähler if there is one (parallel & orthogonal) complex structure,

(M,γ, I). A metric and a compatible complex structure define a symplectic struc-

ture (called Kähler form) so that a HK manifold has three symplectic structures,

ω1(·, ·) = γ(I·, ·), ω2(·, ·) = γ(J ·, ·), ω3(·, ·) = γ(K·, ·), which are (non-degenerate

closed) two-forms of type (1, 1) for the corresponding complex structure. Hy-

perkähler metrics are however much more rigid than Kähler structures [Hi4]. By

adding ∂∂f , for a sufficiently small f ∈ C∞(M), to a Kähler form we obtain a

new Kähler form, which shows that the space Kähler metrics is infinite dimen-

sional. Moreover it is easy to obtain examples of Kähler manifolds. Any complex

submanifold of complex projective space has an induced Kähler structure. On the

other hand is much more difficult to find examples of HK manifolds and even if

one finds an HK metric on a compact manifold, than one can show that there is,

up to isometry, only a finite dimensional space of HK metrics. An efficient way

of constructing HK manifolds consists in using holomorphic symplectic reduction,

which we will discuss below in section 1.2.3 and in Lecture 2.

1.1.1. Why would a differential/symplectic/algebraic geometer care?

There are many reasons for a geometer to care about HK manifolds. Let us

comment briefly on some of them.

1.1.1.a) Interesting manifolds/varieties.

Many interesting manifolds and algebraic varieties have HK structure [Hi4,

Kr3]:

(i) Resolutions of rational surface singularities and links with the McKay

correspondence.

(ii) Cotangent bundles and coadjoint orbits of complex Lie groups.

1in fact these complex structures lead to a two-dimensional sphere of parallel complex structures,
aI + bJ + cK, a, b, c ∈ R : a2 + b2 + c2 = 1
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(iii) Spaces of representations of a Riemann surface group in a complex

Lie group (related to point 1.1.1.d) below).

(iv) Space of based rational maps f : P1(C) −→ P1(C) of degree k.

(v) The space of based loops in a complex Lie group.

1.1.1.b) Moduli spaces.

Many interesting moduli spaces in geometry have hyperkähler structure

and the properties of their metrics are important. For instance, non-

abelian magnetic monopole moduli spaces are hyperkähler and their geodesics

describe (low energy) monopole scattering [AH]. Several of these moduli

spaces arise as moduli spaces of solutions of nonlinear partial differen-

tial equations related to the self-dual Yang-Mills equations. This bridges

hyperkähler geometry to the world of integrable systems and soliton equa-

tions.

1.1.1.c) Mirror symmetry.

HK manifolds can be considered as special cases of Calabi–Yau (CY) man-

ifolds (see section 1.2.1) and therefore they have trivial canonical bundle

and the HK metrics are always Ricci flat. As we will see in the Lecture 5,

for them the mirror map has (if they are smooth and compact) an impor-

tant simplification: the mirrors are diffeomorphic to each other. They are

very useful to test mirror symmetry in simpler cases. Examples are even

(over C) dimensional complex torii and K3 surfaces.

A manifestation of this (relative) simplicity concerns special lagrangian

fibrations. In the Strominger, Yau and Zaslow (SYZ) formulation [GHJ]

of mirror symmetry it is conjectured that if X and X̌ are a pair of mirror

CY manifolds, then X should have a special Lagrangian (or SpLag) fibra-

tion (see section 1.2.2), f : X −→ B (with some singular fibers), such

that the mirror X̌ would be equal to an appropriate compactification of

the dualizing fibration. If proved true, this conjecture would give a much

wanted geometric understanding of mirror symmetry. What happens for

HK manifolds is that a fibration is SpLag with respect, say, to the com-

plex structure K if and only if is holomorphic Lagrangian with respect to

(I, ωJ + iωK), so that in the HK context, finding SpLag fibrations is equiv-

alent to finding holomorphic Lagragian fibrations. This turned out to be

much simpler than finding SpLag fibrations and holomorphic Lagrangian

fibrations in HK manifolds give in fact, to date, the only nontrivial known

SpLag fibrations in compact CY manifolds.

1.1.1.d) Mirror symmetry, Hitchin’s equations, and Langlands duality.

The title of this point coincides with the title of Witten’s paper [Wi1].

Witten and coauthors interpret the geometric Langlands duality as a par-

ticular instance of the mirror symmetry mentioned in the previous point,
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for a pair of HK manifolds

X = M(LG,C) −→ B

X̌ = M(G,C) −→ B,(1)

whereM(G,C) denotes the moduli space of solutions of the Hitchin equa-

tions on the Riemann surface C with gauge group G (or equivalently the

moduli space of GC–Higgs bundles on C [Go]) and LG denotes the Lang-

lands dual of the group G. These moduli spaces have known holomorphic

Lagrangian fibrations, the Hitchin fibrations. For the pair of compact Lie

groups G and LG, these fibrations have the same base and are dual to each

other, making them an instance of SYZ mirror symmetry. The relation

of the pairs of HK varieties (1) with mirror symmetry and with the geo-

metric Langlands correpondence appeared before [KW] in eg [HT]. The

novelty of [KW] for the geometric Langlands correspondence was to iden-

tify the quantum field theory (QFT) behind this correspondence. Besides

giving a new perspective into the correspondence, this QFT interpreta-

tion leads to a significative extension of the correspondence. It is amazing

that the physical theory involved is a close relative of the theory behind

the 1994 revolution in four-manifold geometry: Seiberg-Witten theory. In

the later case N = 2 super-Yang-Mills theory with group G in the (real

four-)manifold M leads to the definition of Seiberg-Witten invariants of

M and to their relation with the G-Donaldson invariants of M [Ig]. In the

former case geometric Langlands correspondence for the Riemann surface

C is “derived” from the (more rigid) N = 4 super-Yang-Mills theory with

group G in the (real four-)manifold M = R2×C (see [KW], specially Sect.

4). As Kapustin and Witten phrase in their paper:

Our focus in the present paper is on the geometric Langlands program for

complex Riemann surfaces. We aim to show how this program can be

understood as a chapter in quantum field theory.

We will expand a bit on some on these things in Lectures 4 and 5.

1.1.2. Why would a“quantum” geometer care? Motivated again by results

in supersymmetric Yang-Mills theories, Gukov and Witten [GW, Wi2] proposed a

new approach to the quantization of a symplectic manifold X. They suggest that

the quantization of X can be reformulated in terms of a 2d conformal field theory

(CFT): The A sigma model with target a complexification Y of X. Then, they

argue that the conditions for this theory to have a good A model are equivalent

to Y having a complete HK metric. Furthermore, if Y is an affine variety than

they claim in the p.4 of [GW]:

Interestingly, the conditions under which deformation quantization of an affine

variety gives an actual deformation of the ring of functions on Y are very similar
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to the conditions for Y to admit a complete hyperkähler metric along the lines of

the complete Calabi-Yau metrics constructed in [4].

We will expand on this in Lecture 6.

1.2. Introduction - technical.

1.2.1. Special holonomy. We start with some classification results. Let (X, γ)

be a Riemannian manifold (X, γ) and x ∈ X. For every loop α ∈ Lx(X) based at

x, denote by ϕα the holonomy along α, ϕα ∈ O(TxX). The holonomy group, Hγ =

{ϕα, α ∈ Lx(X)}, acts on TxX, Hγ ⊂ O(TxX), and the Riemannian manifold

(X, γ), is called irreducible if the holonomy representation is irreducible.

Theorem 1.1 (De Rham). A compact simply connected Riemannian manifold is

metrically a product of irreducible Riemannian manifolds.

The full list of compact, simply connected, irreducible Riemannian manifolds

is remarkably simple and given by Berger’s theorem.

Theorem 1.2. [Berger] Let (X, γ) be an irreducible, compact, simply connected

Riemannian manifold, which is not a symmetric space. Then, the holonomy group

Hγ of (X, γ) is one of the following groups:

Hγ dimR(X) Type

SO(n) n general Riemannian

U(m) 2m Kähler

SU(m) 2m Calabi–Yau

Sp(k) · Sp(1) 4k Quaternion–Kähler

Sp(k) 4k hyperkähler

G2 7 G2–manifold

Spin(7) 8 Spin(7)–manifold

Fact. Irreducible manifolds have the additional structure making them of the

type indicated in the 3d column of the table above. So, in particular, for a irre-

ducible Sp(k)–manifold (X, γ), there exist 3 orthogonal, parallel complex struc-

tures, I, J,K, satisfying the quanternionic relations and making the quintuple,

(X, γ, I, J,K) a HK manifold. On the other hand, for an irreducible real 4k–

dimensional H–manifold (X, γ), with H ⊂ SU(2k) (as is the case of HK manifolds

as Sp(k) ⊂ SU(2k)), the metric is Ricci-flat and the canonical bundle of a Kähler

triple (X, γ, I) is trivial.

1.2.2. Hyperkähler SYZ conjecture. The main reference in this section is

[Ve2]. Let (X, γ, I, J,K) be a HK manifold and ω1, ω2, ω3 be the corresponding

symplectic forms. The following simple result is very important.

Proposition 1.3. The (non-degenerate closed) 2–form ωC = ω2 + iω3 is I–

holomorphic.
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Proof. Let us first show that ωC(IY, Z) = iωC(Y, Z), for all vector fields Y, Z ∈
Γ(TXC).

ωC(IY, Z) = ω2(IY, Z) + iω3(IY, Z) = γ(JIY, Z) + iγ(KIY, Z) =

= −ω3(Y, Z) + iω2(Y, Z) = iωC(Y, Z).

Since for Y ∈ Γ(T
(0,1)
I X), IY = −iY , we conclude that ωC ∈ Ω(2,0)(X). Being

closed implies that ∂IωC = 0 and therefore ωC is I–holomorphic. �

Thus a HK manifold is holomorphic symplectic. Conversely, from the Calabi-

Yau theorem one concludes:

Theorem 1.4. A compact, Kähler, holomorphically symplectic manifold admits

a unique HK metric in the cohomology class of its Kähler metric.

Definition 1.5. Let (X,ω) be a Calabi-Yau (CY) manifold with holomorphic

volume form Ω. A real submanifold Z ⊂ X is called special Lagrangian (SpLag)

if <Ω|Z is proportional to the Riemannian volume form.

As mentioned in section 1.1.1.c SpLag fibrations of CY manifolds play a crucial

role in mirror symmetry. The following simple fact is then very important.

Proposition 1.6. An I–holomorphic ωC–Lagrangian subvariety of a HK manifold

X is J–SpLag.

Definition 1.7. A compact HK manifold X is called simple if H1(X) = 0 and

H(2,0)(X) ∼= C.

Then, from Theorem 1.2 and Theorem 1.4 one obtains the Bogomolov decom-

position of a compact HK manifold.

Theorem 1.8. A compact HK manifold X admits a finite covering which is a

product of a torus with several simple HK manifolds.

The following amazing theorem is crucial.

Theorem 1.9 (Matsushita, 1997). Let X be a simple HK manifold and π :

X −→ B be a surjective, holomorphic map, with 0 < dim(B) < dim(X). Then

dimB = 1
2

dimX and the fibers of π are holomorphic Lagrangian.

We see then that proving the existence of a SpLag fibration on a simple HK

manifold X is reduced to proving the existence of a surjective holomorphic map

such that the image has dimension smaller than that of X.

This leads to the HK SYZ conjecture or Huybrechts-Sawon conjecture:

Conjecture 1.10. Let X be a compact HK manifold. Then X can be deformed

to a HK manifold admitting a holomorphic Lagrangian fibration.

Holomorphic line bundles with base-point free linear systems on a variety X are

in bijective correspondence with holomorphic maps from X to projective space.
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The line bundle L −→ X is ample if and only if its first Chern class is in the

Kähler cone. Of particular interest to the HK SYZ conjecture 1.10 are nef line

bundles, which are those for which the first Chern class is in the closure of the

Kähler cone.

Also the target of recent works is the following Beauville conjecture [GLR1]:

Conjecture 1.11. Let X be a compact simply connected HK manifold and L a

Lagrangian submanifold biholomorphic to a complex torus. Then L is a fiber of a

meromorphic Lagrangian fibration, f : X −→ B.

If true, this would simplify even further the task of proving the existence of

SpLag fibration in a HK manifold: it would be sufficient to find a single complex

Lagrangian submanifold, biholomorphic to a complex torus. The conjecture was

proven in [GLR1] for non-projective X. For projective X the result is weaker.

We will return to this point in Lecture 5.

1.2.3. Hyperkähler vs holomorphic symplectic quotient. Let (X,ω) be a

symplectic manifold with hamiltonian action of the Lie group G such that the

moment map µ : X −→ g∗ is equivariant. Then, for ζ a regular value ζ ∈ z ⊂ g∗,

where z denotes the space of G–invariants, the quotient µ−1(ζ)/G has a unique

symplectic form ω̃, which pulls back to ω|µ−1(ζ)
. This

(X,ω, µ) −→ (X̃, ω̃)

X̃ = µ−1(ζ)/G = X//G

is the usual Marsden-Weinstein symplectic quotient construction.

Suppose now X is a HK manifold with symplectic action of G, which is equiv-

ariantly hamiltonian with respect to the three symplectic forms ω1, ω2, ω3. We

then have three hamiltonian maps, or equivalently a vector valued moment map

µ : X −→ g∗ ⊗ R3.

The structural result is then the following theorem [HKLR]

Theorem 1.12. If ζ ∈ z ⊗ R3 ⊂ g∗ ⊗ R3 is a regular value of the HK moment

map µ then

(2) M(ζ1, ζ2, ζ3) = X//G := µ−1(ζ)/G =
(
µ−11 (ζ1) ∩ µ−12 (ζ2) ∩ µ−13 (ζ3)

)
/G,

where ζ = ζ1 ⊗ e1 + ζ2 ⊗ e2 + ζ3 ⊗ e3 is a HK manifold.

The analogous result in the Kähler case states that if the hamiltonian action of

G preserves also the metric and thus the complex structure, then X//G is Kähler

and its complex structure is identified with the holomorphic quotient Xs/GC,

where GC is the complexification of G with a holomorphic action extending that

of G and Xs is the set of stable points, ie those whose GC orbit intersects µ−1(ζ).

In the HK case, since the symplectic forms define the metric, a three-hamiltonian

action is necessarily isometric also and preserves the three complex structures. Let



Hyperkähler manifolds 8

us concentrate on the holomorphic structure defined by I and let

µC = µ2 + iµ3 : X −→ gC = g⊗ C .

From the proof of proposition 1.3 we obtain that

Y (µC(ξ)) = 0 , ∀Y ∈ Γ(T
(0,1)
I X)

and therefore µC is holomorphic. It is in fact the moment map of the ωC = ω2+iω3–

hamiltonian action of GC. Then, we see that

µ−1(ζ) = µ−11 (ζ1) ∩ µ−12 (ζ2) ∩ µ−13 (ζ3) = µ−11 (ζ) ∩ µ−1C (ζ̃),

where ζ̃ = ζ2+ iζ3 ∈ z⊗C, and therefore, by taking appropriately care of stability,

the complex structure on the HK quotient (2) is given by applying the holomorphic

symplectic quotient construction to X,

(µsC)−1(ζ̃)/GC,

or equivalently

M(ζ1, ζ2, ζ3) = X///G = Xs//GC = (µsC)−1(ζ̃)/GC.

The holomorphic symplectic description gives an efficient way of obtaining in-

teresting HK manifolds. As Proudfoot puts it [Pr3]:

Let H [= GC] be a reductive algebraic group acting on a smooth variety V . The

cotangent bundle T ∗V admits a canonical holomorphic symplectic structure, and

the induced action of H on T ∗V is hamiltonian, that is, it admits a natural equi-

variant moment map µ : T ∗V −→ h [= g⊗C]. Over the past ten years, a guiding

principle has emerged that says that if M is an interesting variety which may be

naturally presented as a GIT (geometric invariant theory) quotient of V by H,

then the [holomorphic] symplectic quotient µ−1(ζ)/H of T ∗V by H is also inter-

esting. This mantra has been particularly fruitful on the level of cohomology, as

we describe below. Over the complex numbers, a GIT quotient may often be in-

terpreted as a Kähler quotient by the compact form [G] of H, and an algebraic

quotient as a hyperkähler quotient.

Most known interesting examples of HK manifolds are in fact constructed in this

way with V a complex (finite or infinite-dimensional) complex vector (or affine)

space with a linear (or affine) Hamiltonian action of G. Then the action of GC

on T ∗V is h(v, w) = (hv, (h∗)−1w), which reduces to h(v, w) = (hv, h−1w) if G is

abelian as is the case of hypertoric varieties, which will be studied in Lecture 2.

In the non-abelian case the standard finite dimensional examples are given by

quivers so that VQ/HQ is the moduli space of representations of a quiver Q and

T ∗VQ//HQ is the HK moduli space of representations of the Nakajima double

quiver associated with Q. Examples are the hyperpolygon spaces, corresponding

to star-shaped quivers and also to moduli spaces of Higgs bundles on a punctured

sphere [GM],M(U(n),P1(C) \ {p1, . . . , pr}). The moduli spaces of Higgs bundles

M(G,C) in general can be described by a HK reduction of a infinite dimensional
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space of pairs (A, φ) ∈ T ∗A, where A is a connection on a complex vector bundle

E on C and φ ∈ Γ(End(E) ⊗ KC). The Hitchin equations correspond to the

simultaneous vanishing of all three moment maps [Go].

1.2.4. Cotangent bundles of Kähler manifolds. The standard references here

are [Fe1, Fe2].

Let V be a Kähler manifold. On T ∗V there is a canonical holomorphic sym-

plectic structure for which the fibers of T ∗V −→ V and the zero section are

holomorphic Lagrangian. Feix then proves.

Theorem 1.13 (Feix). Let V be a real-analytic Kähler manifold. Then, there

exists a HK metric in a neighbourhood of the zero section of the cotangent bundle

T ∗V , which is compatible with the canonical holomorphic symplectic structure.

She also proves no-go global theorems, like:

Proposition 1.14. There is no complete HK metric in the cotangent bundle of

a Riemann surface of genus > 1.

Proposition 1.15. If V is a compact complex surface admitting a complete HK

metric on its cotangent bundle then there exists a finite cover V̂ of V with abelian

fundamental group.

Proposition 1.16. If V is a compact complex manifold of dimension n admitting

a complete HK metric on its cotangent bundle then b1(X) ≤ 4n− 2.

Notice that Proposition 1.14 is a simple consequence of Proposition 1.16. Feix

also describes the very nice construction by Stenzel of a complete Ricci-flat Kähler

metric on T ∗Sn by giving its Kähler potential (p. 71).
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2. Lecture: Hypertoric varieties - RSD

Background reading: Toric manifolds [Ca3, Gu, Ab]

2.1. Preliminaries. Recall that a toric Kähler manifolds is a Kähler manifold

with a Hamiltonian action of a torus with maximal dimension. Hypertoric mani-

folds are the Hyperkähler analogue of this. We start with a definition.

Definition 2.1. A hypertoric manifold is a hyperkähler manifold (X, g, J1, J2, J3)

of dimension 4n admitting an effective tri-hamiltonian Tn action.

The fundamental building block of hypertoric manifolds is the following funda-

mental example.

Example 2.2. Let G be a subgroup of U(d) = GL(d,C)∩Sp(2d,R) and denote its

Lie algebra by G. The group G acts on Cd Hamiltonianally. Let µ : Cd → G∗ be

the moment map of the action. It is a standard fact in symplectic geometry that

for “good” values of λ the manifold

Cd//G = µ−1(λ)/G

is a symplectic manifold. In fact in “good” cases we have

XG,λ = Cd//G = Cd
s/G

C

where Cd
s is the set of stable points Cd with respect to the G action and GC is

the complexification of G. This is a deep and interesting fact but we will not say

more about it.

The group G also acts on T ∗Cd = Cd ⊕ Cd by the formula

g · (z, w) = (gz, (gT )−1w), g ∈ G, (z, w) ∈ Cd ⊕ Cd.

Now Cd ⊕ Cd is in fact hyperkähler with hyperkähler forms given by

ωR =
i

2

∑
k

dzk ∧ dz̄k +
i

2
dwk ∧ dw̄k

and

ωC =
∑
k

dzk ∧ dwk.

Suppose the G action preserves the hyperkähler structure. It is tri-Hamiltonian

and its moment maps are given by

µR(z, w) = µ(z)− µ(w),

and

µC(z, w)(v) = w(v̂z), v ∈ GC

where v̂z is the tangent vector induced by v on TzCd. We can form the hyperkähler

quotient and define the hyperkähler manifold

MG,λR,λC = T ∗Cd///G = (µ−1R (λR) ∩ µ−1C (λC))/G

There is a relation between the symplectic quotient and the hyperkähler quo-

tient in this setting. Namely we have the following proposition
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Proposition 2.3. If λ is a regular value for µ and (λ, 0) is a regular value for

(µR, µC) the manifold T ∗XG,λ is contained as an open dense set ofMG,λ,0 whenver

it is non empty.

Proof. This is just a stetchy sketch. We have that XG = Cd
s/G

C and therefore

T ∗XG = {(z, w) : z ∈ Cd
s, w(v̂z) = 0, ∀v ∈ GC}/GC,

i.e.

T ∗XG = ((Cd
s ⊕ Cd) ∩ µ−1C (0))/GC.

Now points in (Cd
s ⊕ Cd) ∩ µ−1C (0) are actually stable for the G action on T ∗Cd

and thus (Cd
s ⊕ Cd) ∩ µ−1C (0) ⊂ (µ−1C (0))s. �

2.2. Construction of hypertoric manifolds. The construction we give here is

due to Bielawski and Dancer and mimics the construction of toric manifolds as

quotients of Cd by subtori of Td. We will assume some familarity with the toric

version of the construction. For more details see [Gu]. Let U be a set of d vectors

u1, · · ·ud in Rn.

U = {u1, · · ·ud}.
Define the map β : Rd → Rn by β(ei) = ui and assume there is a subtorus N of

Td whose lie algebra is the kernel of β. Let β∗ be the dual of β, let ι : ker(β)→ Rd

be the inclusion map and ι∗ be its dual. The torus Td acts Hamiltonially on Cd

with moment map

φ(z) =
∑
k

|zk|2ek.

where we have identified Rd with its dual. We can restrict the Td action to N .

The resulting action will be Hamiltonian as well with moment map ι∗ ◦ φ. Set

µ = ι∗ ◦ φ. We denote

XU ,λ = Cd//N = µ−1(λ)/N

to be the symplectic quotient of Cd by N . This admits a Hamiltonian Td/N ' Tn
action where n = d− dimN . When λ is a regular value for µ, we have

dim(XU ,λ) = 2d− 2dimN

so when XU ,λ is a manifold it is toric. This will be the case if we take U to be the

set of normals to a so called Delzant polytope.

If fact we can carry out this construction in the hyperkähler setting. The torus

Td acts on T ∗Cd = Cd⊕Cd as in the fundamental example of the previous section.

The action is tri-Hamiltonian with respect to the symplectic forms on T ∗Cd. The

moment maps are

φR(z, w) =
∑
k

(|zk|2 − |wk|2)ek,

and

φC(z, w) =
∑
k

zkwkek.
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The action restricts to N and the restricted action is again tri-Hamiltonian with

moment maps µR = ι∗ ◦φR and µC = ι∗ ◦φC. LetMU ,λR,λC denote the hyperkähler

quotient of T ∗Cd by this action i.e.

MU ,(λR,λC) = T ∗Cd///N.

This manifold admits a Hamiltonian action of Td/N ' Tn and its dimension is 4n

hence this is a hypertoric manifold when it is smooth. Again we will need some

conditions on U to ensure smoothness or at least some reasonable behaviour.

2.3. Hyperplane arrangements. Given a set U and a pair (λR, λC), we denote

by

HR
k = {x ∈ Rn : x · uk = λR}

and

HC
k = {x ∈ Cn : x · uk = λC}.

We also set Hk = HR
k ×HC

k ⊂ Rn × Cn ' R3n.

Proposition 2.4. Let ψ = (ψR, ψC) denote the moment map for the Tn action

on MU ,λ with respect to ωR and ωC. Then ψ is surjective and given p in ψ−1(a, b)

the Lie algebra of the stabilizer of p is spanned by {uk : (a, b) ∈ Hk}

Proof. Again this is sketchy. We will make use of the maps µ = ι∗ ◦φ, µR = ι∗ ◦φR

and µC = ι∗ ◦ φC. As in the toric case we have β∗ ◦ ψ ◦ π = φ ◦ inc where

• inc is the inclusion map from Z = µ−1R (λR) ∩ µ−1C (λC) in T ∗Cd and

• π : Z → Z/N is the projection.

This translates into the following relations:

〈ψR[z, w], uk〉 = |zk|2 − |wk|2

and

〈ψC[z, w], uk〉 = zkwk.

where [z, w] = π(z, w). Given (a, b) in Rn × Cn there is (z, w) such that

〈a, uk〉+ λRk = |zk|2 − |wk|2

and

〈b, uk〉+ λCk = zkwk.

This is the crucial point about this construction of hypertoric manifolds. It is

a simple consequence of the fact that the triple moment map (φR, φC) itself is

surjective. What remains to be seen is that (z, w) is in µ−1R (λR) ∩ µ−1C (λC). This

is just as in toric case.

(φR, φC)(z, w) =

(∑
k

(|zk|2 − |wk|2)ek,
∑
k

zkwkek

)
i.e.

(φR, φC)(z, w) =

(∑
k

〈a, uk〉ek,
∑
k

〈b, uk〉ek

)
+

(∑
k

λRk ek,
∑
k

λCk ek

)
,
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which gives

(φR, φC)(z, w) = (β∗(a), β∗(b)) +

(∑
k

λRk ek,
∑
k

λCk ek

)
,

thus

(µR(z, w), µC(z, w)) = ι∗ ◦ φ(z, w) = (ι∗ ◦ β∗(a), ι∗ ◦ β∗(b)) + (λR, λC).

Because β ◦ ι = 0 this shows that

(µR(z, w), µC(z, w)) = (λR, λC),

and the result follows.

As for the second statement notice that (zk, wk) = 0 if and only if 〈ψR[z, w], uk〉−
λR = 0 and if 〈ψC[z, w], uk〉 − λC = 0 (here we denote i.e. if and only if ψ[z, w] is

in Hk. Now

Stab[z, w] = StabTd(z, w)/StabN(z, w).

Because the Lie algebra of StabTd(z, w) is span{ei : zi = wi = 0} the result

follows. �

From this proposition we see that hyperplane arrangements play the part of the

moment polytope. We would like to list a couple of important properties of the

above construction without proof. Assume the vectors u1, · · ·ud are primitive and

that they generate Rn.

• The manifoldMU ,λ is an orbifold if and only if every intersection of n+ 1

hyperplanes Hk is empty.

• The manifoldMU ,λ is smooth if it is an orbifold and in addition every non

empty intersection of n hyperplanes Hk corresponds to normal vectors that

generate Zn i.e. if
∫
I
Hi 6= and I has n elements then {ui, i ∈ I} is a basis

of Zn.

• Every hypertoric manifold is equivariantly diffeomorphic to one of the

MU ,λ constructed above. This result is due to Bielawski (see [Bi2]). In

fact Bielawski proves more, a complete metric on the hypertoric manifold

is Taub-NUT deformation equivalent to the standard metric coming from

the flat metric on T ∗Cd and descending toMU ,λ. See [Bi2] for a definition

of Taub-NUT deformation equivalence.

3. Lecture: Hypertoric manifolds from polytopes - RSD

Assume that U is the set of normals of a compact rational simple polytope P .

We can then construct XP,λ the toric orbifold associated to P and a choice of λ

as well as MP,λ.

Proposition 3.1. T ∗XP is a open and dense inMP and the two are equal if and

only if XP is a product of projective spaces.
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Proof. Sketchy sktetch again. We have seen the first part of the claim before ( see

2.3). Note that in this setting it known that Cd
s = Cd

P where

Cd
P = ∪FCd

F ,

where the union is taken among all faces F of P and

Cd
F = {z ∈ Cd : zk = 0, uk ⊥ F}.

From what we saw in the proof of proposition 2.3, Cd
P × Cdµ−1C (0) ⊂ (µ−1C (0))s

and the inclusion is open and dense.

Next we state the following fact

Lemma 3.2. XP is a product of projective spaces if and only if every subset of n

facets of P which intersect do so at a vertex of P .

We will not show this in general (see [BD] for more details) but this actually

easy to understand in dimension 2. In fact 2 dimensional rational simple polytopes

are obtained from chopping right angle triangles or rectangles (this is equivalent

to saying that compact toric surfaces with orbifold singularities are blow ups of

CP2 of of CP1 × CP1). If the polytope actually has a chopping then two of its

facets will meet outside the polytope so the only 2 dimensional polytopes that

meet the condition of the lemma are (right angle) triangles and rectangles hence

we need XP to be CP2 of of CP1 × CP1.

It is actually easy to see that if P does not satisfy the property in lemma 3.2

then MP cannot equal T ∗XP . In fact the fixed points under the torus action in

T ∗XP correspond to fixed points of the torus action in XP hence to vertices in P .

As for the fixed points of MP these correspond to intersections of n facets of P

(for which the stabilizers have dimension n). If there are intersections of n facets

which are not vertices, MP will have more fixed points than T ∗XP .

Assume now that the P satisfies the property in the lemma 3.2. We will also

assume that 0 ∈ P i.e. the λi are positive. Let (z, w) ∈ µ−1C (0) then∑
k

|zk|2ι∗(ek) =
∑
k

|wk|2ι∗(ek) + λR

and µ(z) =
∑

k |zk|2ι(ek) = λ′ where is “bigger” than λ′. What we really want to

say is that z is in a polytope P ′ that is obtained as a dilation of P and contains

P as a subset. Therefore it follows that z ∈ Cd
P ′ . The point here is that Cd

P ′ is

equal to Cd
P because the polytope P satisfies the property in the lemma. Hence

z ∈ Cd
P and we have showed that

µ−1C (0) ⊂ Cd
P × Cd.

This finishes the proof. �

3.1. The Kähler potential in moment map coordinates. The flat metric

T ∗Cd is Td invariant thus it descends to a metric onMU which is invariant under

the Td/N ' Tn action. Because of this the metric can be expressed in terms of

the coordinates on the moment map image Rn×Cn. There is an explicit formula
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for the Kähler potential of this metric in terms of these coordinates. Namely we

have

Proposition 3.3. LetMP,λ be a hypertoric manifold from the construction above.

Denote the moment map for the Tn action by ψ = (ψR, ψC). Let sk and vk be

defined as sk = 〈ψR, uk〉 + λRk and vk = 〈ψC, uk〉 + λCk . Define also rk by the

formula r2k = s2k + 4vkv̄k. Then

ωR = ∂̄∂(rk + λk log(rk + sk))

where ∂ and ∂̄ are with respect to the complex structure J1.

When XP is a product of projective spaces this should restrict to the Guillemin

metric on XP ⊂ T ∗XP . In fact taking w = 0 in the above formula vk =

〈ψC, uk〉 + λCk = zkwk = 0 for all k and therefore rk = sk = lk. Thus the Kähler

potential becomes lk + λk log(lk). Refs: [BD, Pr1, Pr2]
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4. Lecture: Nahm equations and hyperkähler manifolds - JPN

Refs: [AH, Kr2, Kr3, Hi1, Hi2, Hi3, Hi5, AB, Bi, N]

We will describe Nahm’s equations, along with other interesting systems of “ge-

ometrical” PDE’s, from dimensional reduction of the self-dual Yang-Mills equa-

tions. We will describe the corresponding HK moduli spaces of solutions. In

particular, the moduli space of magnetic monopoles can be described in 3 equiv-

alent ways. One of them is as a moduli space of spectral curves. The other two

moduli spaces are naturally connected to the first: one is the moduli space of so-

lutions of the Bogomolny equations in three dimensions; the other, is the moduli

space of solutions of Nahm’s equations with particular boundary conditions. The

spectral curves appear from the side of Nahm’s equations in a natural way in terms

of Lax pairs. On the side of the Bogomolny equations, the spectral curves have

a less common origin; they appear as a subset of the space of oriented lines in 3-

dimensional space, namely corresponding to lines where certain naturally defined

differential operators obtained form the Bogomolny equations have L2 solutions

in the kernel.

We will also try to cover Hitchin’s description of the HK Atiyah-Hitchin metric

on the moduli space of monopoles in terms of the geometry of theta functions on

the spectral curves, given in [Hi5].
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5. Lecture: Mirror symmetry for hyperkähler manifolds - JM

Refs: [Ve1, Hu, GHJ, GLR1, GLR2, Ve2, Ve2]
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6. Lecture: Gukov-Witten quantization - JE

Refs: [GW, Wi2]
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Mathématiques Superieures 105, Les Presse Univ. Montréal, 1987.
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