Tropicalization in symplectic geometry and degeneration to real polarizations
or (Geometric degeneration to tropical varieties in symplectic geometry)

José Mourão
Técnico Lisboa, U Lisboa

Conference: Tropical Aspects in Geometry and Topology
September, 2–6, Bonn MPIM

work in collaboration with Thomas Baier (U Porto), Carlos Florentino (Técnico Lisboa), Will Kirwin (U Köln) and João P. Nunes (Técnico Lisboa)
Index

1. Summary ... 2
2. Motivation ... 4
3. $(\mathbb{C}^*)^n$ – case, flat family 6
4. Toric Varieties – non-flat families .. 12
5. Wick Rotation, i.e. imaginary time hamiltonian evolution?? 16
6. References ... 24
1. Summary

New relation:
[for completely integrable systems \((X^{2n}, \omega, \mu : X \rightarrow \mathbb{R}^n)) \]

\[
\text{Quantum Physics & Symplectic Geometry} \quad \overset{\text{dequantization}}{\longrightarrow} \quad \text{Tropical Geometry} \quad \overset{\text{decomplexification}}{\longrightarrow}
\]

Dequantization \(-\) \(\hbar \rightarrow 0 \)

Decomplexifications \(-\) (Kähler) Geometric degenerations to tropical varieties:

\[\begin{align*}
\text{:=} & \quad \text{Follow (to infinite time) a geodesic ray,} \\
& \text{in the space of Kähler metrics,} \\
& \text{generated by } H = ||\mu||^2 = f_1^2 + \cdots + f_n^2, \\
\text{= Do a Wick rotation, time } \sim is, \text{ followed by } s \rightarrow \infty \text{ for } H = ||\mu||^2
\end{align*} \]
Imaginary time $s \to \infty$ limit
2. Motivation

Start with a hypersurface \(\hat{Y} \subset (\mathbb{C}^*)^n \) and let \(t = e^s \),

\[
(\mathbb{C}^*)^n \supset \hat{Y} = \{ w \in (\mathbb{C}^*)^n : \sum_{m \in \mathcal{P}} c_m w^m = 0 \}
\]

\[
T^*T^n \supset Y_t = \{ (\theta, x) \in T^n \times \mathbb{R}^n : \sum_{m \in \mathcal{P}} c_m e^{sm \cdot x + im \cdot \theta} = 0 \}
\]

Q1 Can we see \(w_t = e^{sx_j + i\theta_j} \) as defining a one parameter family of complex structures in \(T^*T^n \)?

A1 Yes

Q2 Can this be extended to toric varieties = (partial equivariant) compactifications of \((\mathbb{C}^*)^n \)?

A2 Not directly. For the complex structure to be defined in the added divisors we need to add a constant term to the holomorphic coordinates which doesn’t change with \(s \! \).

\[
w_t = e^{yQ + sx + i\theta}
\]

or, more generally, \(w_t = e^{yQ + s \partial H / \partial x + i\theta} \)

where \(Q \) is the polytope, image of the moment map, \(Q = \mu(X) \).
Q3 In this framework, what is the symplectic geometry interpretation of the (generalization of the) Log_t map?

A3 Is just the moment map (or its H-Legendre transform): $L_H \circ \mu$

Q4 Can A2 and A3 be extended to more general integrable systems?

A4 Yes proved in some cases – conjectured always – work in progress
3. $(\mathbb{C}^*)^n$—case, flat family

3.1 - Complex and Symplectic Pictures

Log$_t$ map as a moment map

$T^*\mathbb{T}^n$ - symplectic: $\omega = dx \wedge d\theta$

$(\mathbb{C}^*)^n$ - complex
\[
(T^*\mathbb{T}^n, \omega, J_t) \xrightarrow{\tilde{\psi}_t} (T\mathbb{T}^n, \tilde{\omega}_t, \tilde{J}) \xrightarrow{\varphi} ((\mathbb{C}^*)^n, \hat{\omega}_t, \hat{J})
\]

\[
\tilde{\psi}_t(\theta, x) = (\theta, sx), \quad s = \log(t)
\]

\[
\varphi(\theta, y) = e^{y+i\theta} \quad \text{inverse of the polar decomposition}
\]

\[
\psi_t(\theta, x) = \varphi \circ \tilde{\psi}_t(\theta, sx) = e^{sx+i\theta},
\]

\[
\mu(\theta, x) = x \quad \text{moment map in the symplectic picture}
\]

\[
\hat{\mu}_t(w) = \text{Log}_t(w) - \hat{\omega}_t\text{-moment map in the complex picture}
\]
\(\hat{Y} = \left\{ \sum_{m \in \mathcal{P}} c_m w^m = 0 \right\} - \text{complex picture} \)

\(Y_t = \left\{ \sum_{m \in \mathcal{P}} c_m e^{s m \cdot x + im \cdot \theta} = 0 \right\} - \text{symplectic picture} \)

\[
\begin{align*}
Y_t &\xrightarrow{\psi_t} \hat{Y} \\
\mu_t &\xrightarrow{\psi_t} (\mathbb{C}^*)^n, \hat{\omega}_t, \hat{J}) \\
\mathbb{R}^n &\xrightarrow{\mu_t}
\end{align*}
\]

The amoebas coincide

\[
A_t = \hat{\mu}_t \circ \hat{\iota}(\hat{Y}) = t\text{-dependent } \hat{\omega}_t\text{-moment image of a fixed subvariety}
\]

\[
= \mu \circ \iota_t(Y_t) = \text{image of a subvariety moving, due to change in } J_t
\]
3.2 - J_t degenerates to what?

“J_∞” as a (GQ) real polarization

J_t-polarized functions are solutions of the CR equations

$$\frac{\partial}{\partial \bar{z}_t} f = 0 \iff \frac{1}{\log t} \frac{\partial}{\partial x} f + i \frac{\partial}{\partial \theta} f = 0$$

“J_∞” can be defined through its polarized functions which are solutions of

$$\frac{\partial}{\partial \theta} f = 0 \iff f(\theta, x) = F(x)$$

i.e. \mathbb{T}^n-invariant functions.
3.3 - GH collapse, Tropicalization of (the amoebas of) Divisors & Decomplexification

- **GH collapse**: Metrically, as $t \to \infty$, the Kähler manifold (T^*T^n, ω, J_t) collapses to \mathbb{R}^n

\[\gamma_t = \log(t)dx^2 + \frac{1}{\log(t)}d\theta^2 \]
• **Decomplexification:** The complex (Kähler) structure degenerates to a real (GQ) polarization

• **Tropicalization:** In the same limit the amoebas of divisors become tropical

\[A_\infty = \lim_{t \to \infty} \mu \circ \iota_t(Y_t) = A_{\text{trop}} \]
4. Toric Varieties – non-flat families

4.1 - Adding Divisors to $(\mathbb{C}^*)^n$

Question: Can this (the degeneration of the complex structure to the toric real polarization – decomplexification) be extended to a (partial) compactification of $(\mathbb{C}^*)^n$?

Answer: Yes, but we need an important modification. Recalling that the moment map is no longer surjective to \mathbb{R}^n and from Guillemin (JDG, 1994), Abreu (IJM, 1999) and Baier-Florentino-M-Nunes (JDG, 2011) the previous one-parameter family has to change as follows.
\((X_P, \omega, J_t) \cong (\mathbb{T}^n \times \bar{P}, \omega, J_t) \xrightarrow{\psi_t} ((\mathbb{C}^*)^n, \hat{\omega}_t, \hat{J}) \)

\((\bar{X}_P, \omega, J_t) \)

\((X_P, \omega, J_t) \xrightarrow{\psi_t} (\bar{X}_P, \hat{\omega}_t, \hat{J}) \)

\[\psi_t(\theta, x) = e^{yt+i\theta} = e^{\partial g_t/\partial x+i\theta} \]

\[g_t(x) = g_P(x) + sH(x) = \sum_{F \subset P} \frac{1}{2} \ell_F(x) \log \ell_F(x) + sH(x) \]

\[\mu(\theta, x) = x - \text{moment map in the symplectic picture} \]

\[H - \text{a convex function of } x, \text{ i.e. } H = x^2 = \|\mu\|^2 \]
4.2 - GH collapse, Tropicalization & Decomplexification for Toric varieties

Baier-Florentino-M-Nunes, JDG (2011)

• GH collapse: Metrically, as $t \to \infty$, the Kähler manifold (X_P, ω, J_t) collapses to P with metric $HessH$ on \bar{P}

\[
\frac{1}{\log(t)}\gamma_t = \frac{1}{\log(t)}(Hess(g_t)dx^2 + Hess(g_t)^{-1}d\theta^2) \xrightarrow{t \to \infty} Hess(H)dx^2
\]
• **Decomplexification:** The complex (Kähler) structure degenerates to the real toric polarization

• **Tropicalization:** In the same limit (part of) the amoebas of divisors tropicalize

\[Y_t = \left\{ \sum_{m \in \mathcal{P}} c_m e^{m \cdot \frac{\partial g_P}{\partial x}} + s m \cdot x + i m \cdot \theta = 0 \right\} \xrightarrow{\mu} P \]

Theorem[Baier-Florentino-M-Nunes, 2011]

\[\lim_{t \to \infty} \mu(Y_t) = \pi(A_{trop}) \]
5. Wick Rotation, i.e. imaginary time hamiltonian evolution??

5.1 - Introduction to $Ham_C(X)$

Question - What decomplexification (to a given real polarization) has to do with the Wick rotation?

Hamiltonian evolution in complex time has been around in quantum physics for a long time.

Our approach is a development of an approach coming from 2 very different sides.
• **Kähler Geometry** Semmes (1992) and Donaldson (1999) considered the space of fixed cohomology class Kähler metrics on a manifold M as an infinite dimensional symmetric space corresponding to $\text{Ham}(M)_\mathbb{C}/\text{Ham}(M)$, with geodesics given by imaginary time one-parameter subgroups of $\text{Ham}(M)_\mathbb{C}$.

• **Quantum Gravity** Thiemann (1995) considered imaginary time one-parameter subgroups of $\text{Ham}(M)_\mathbb{C}$ to map real observables to complex observables in an attempt to link the usual spin-connection representation with the complex Ash-tekar connection representation.
There are different versions on how to define the action of $Ham_C(M)$.

- Complexify M, act on M_C and then project back to M – see Burns-Lupercio-Uribe (2013)

- We will follow an approach closer to the one proposed initially by Thiemann and further adapted to the context of geometric quantization by Hall-Kirwin (2011) and Kirwin-M-Nunes (2013).
5.2 - Flat family on \((\mathbb{C}^*)^n\) and \(\text{Ham}_\mathbb{C}(\mathbb{C}^*)^n\)

Recall the trivial flat family \((T^*\mathbb{T}^n, dx \wedge d\theta, J_s)\)

\[J_s : w_s = e^{sx+i\theta} \text{ are } J_s\text{-holomorphic coordinates} \]

\textbf{Metric} - \(\gamma_s = sdx^2 + \frac{1}{s}d\theta^2\)

Includes two GH collapses to \(\mathbb{R}^n\) (as the complex structure degenerates to the real horizontal or toric polarization at \(s = \infty\)) and to \(\mathbb{T}^n\) (as the complex structure degenerates to the real vertical or toric polarization at \(s = 0\))
Let $2H = ||\mu||^2 = x^2$. The whole family (including the pseudo-Kähler metrics corresponding to $s < 0$)) is the closure of the orbit of the imaginary time one-parameter subgroup $\mathcal{C} \subset Ham_\mathbb{C}(T^*\mathbb{T}^n)$ through J_1 generated by this hamiltonian, $\mathcal{C} = \{ e^{i\tilde{s}X_H}, \tilde{s} \in \mathbb{R} \}$

$$e^{i\tilde{s}X_H} w_1 = e^{i\tilde{s}x \partial / \partial \theta} e^{x+\theta} = w_{\tilde{s}+1} = w_s$$

For $\tilde{s} \neq -1 \iff s \neq 0$ these define diffeomorphisms of $T^*\mathbb{T}^n$, φ_s

$$\varphi_s(w) = |w|^s \frac{w}{|w|}$$

So that we get

$$\xymatrix{ Ham_\mathbb{C}(T^*\mathbb{T}^n) & \mathcal{C} \setminus \{ e^{-iX_H} \} & Diff(T^*\mathbb{T}^n) }$$
5.3 - Non flat family on a toric variety X_P and $\text{Ham}_\mathbb{C}(X_P)$

Kirwin-M-Nunes, 2013-14

The calculations here are surprisingly similar to the flat case.
Consider again $2H = ||\mu||^2 = x^2$. Then $X_H = x\frac{\partial}{\partial \theta}$

\[
\begin{align*}
 w_1 & = e^{y_P + i\theta} \\
 y_P & = \frac{\partial}{\partial x} g_P = \frac{\partial}{\partial x} \left(\sum_{F \subset P} \frac{1}{2} \ell_F(x) \log \ell_F(x) \right) \\
 w_t & = e^{isX_H w_1} = e^{sx} w_1
\end{align*}
\]
To illustrate consider the sphere $S^2 = \mathbb{CP}^1$, with polytope $P = \{0 \leq x \leq 1\}$ so that

\[
\begin{align*}
g_P &= \frac{1}{2} x \log x + \frac{1}{2} (1 - x) \log(1 - x) \\
\gamma_t &= G_t dx^2 + \frac{1}{G_t} d\theta^2 \\
G_t &= \frac{1}{2} \frac{1}{x(1-x)} + s
\end{align*}
\]

and the metric picture is represented in the previous toric figure (p. 14) and (for $s < -2$) by
5.4 - Summary - Decomplexification \equiv (Wick Rotation) $+$ ($s \to \infty$)

Thus, to decomplexify a Kähler manifold M in the direction of a (local) integrable system with moment map μ:

- **i)** Choose $H = ||\mu||^2$
- **ii)** Wick rotate: take the one parameter subgroup of $Ham_\mathbb{C}(M)$ with imaginary time is generated by H.
- **iii)** Take the limit $s \to \infty$

Theorem [M-Nunes, 2013-14] In algebraically completely integrable systems, in equivariant neighborhoods and in some other interesting examples the above method gives the GH collapse. The one-parameter Kähler metrics correspond to geodesic rays.

Theorem [Kirwin-M-Nunes, 2013-14] In toric varieties the above method is well defined and gives GH collapse and tropicalization of divisors.

Compact Riemann surfaces Kirwin-M-Nunes, work in progress.
6. References

Journal References

Work in Progress

- J. Mourão and J. P. Nunes, *A note on complexified Hamiltonian flows and geodesics on the space of Kähler metrics*

- J. Mourão and J. P. Nunes, *Decomplexification of integrable systems, metric collapse and quantization*

- W. Kirwin, J. Mourão and J. P. Nunes, *Decomplexification of toric varieties, geodesics in the space of toric Kähler metrics and quantization*

- W. Kirwin, J. Mourão and J. P. Nunes, *Decomplexification of Riemann surfaces and quantization*
Thank you!