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1. Introduction

In the early sixties, Segal [1, 2] and Bargmann [3] introduced an
integral transform that led to a holomorphic representation of quantum
states of linear, Hermitian, Bose fields. (For a review of the holomorphic
��or, coherent-state��representation, see Klauder [4].) The purpose of this
paper is to extend that construction to non-Abelian gauge fields and, in
particular, to general relativity. The key idea is to combine two ingredients:
(i) A non-linear analog of the Segal-Bargmann transform due to Hall [5]
for a system whose configuration space is a compact, connected Lie group;
and, (ii) A calculus on the space of connections modulo gauge transforma-
tions based on projective techniques [6-15].

Let us begin with a brief summary of the overall situation. Recall first
that, in theories of connections, the classical configuration space is given by
A�G, where A is the space of connections on a principal fibre bundle
P(7, G) over a (``spatial'') manifold 7, and G is the group of vertical
automorphisms of P. In this paper, we will assume that 7 is an analytic
n-manifold, G is a compact, connected Lie group, and elements of A and
G are all smooth. In field theory the quantum configuration space is,
generically, a suitable completion of the classical one. A candidate, A�G,
for such a completion of A�G was recently introduced [6]. This space will
play an important role throughout our discussion. It first arose as the
Gel'fand spectrum of a C* algebra constructed from the so-called Wilson
loop functions, the traces of holonomies of smooth connections around
(piecewise analytic) closed loops. It is therefore a compact, Hausdorff
space. However, it was subsequently shown [10, 14] that, using a suitable
projective family, A�G can also be obtained as the projective limit of
topological spaces Gn�Ad, the quotient of Gn by the adjoint action of G.
Here, we will work with this characterization of A�G.

520 ASHTEKAR ET AL.
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It turns out that A�G is a very large space: there is a precise sense in
which it can be regarded as the ``universal home'' for measures1 that define
quantum quange theories in which the Wilson loop operators are well-
defined [12]. However, it is small enough to admit various notions from
differential geometry such as forms, vector fields, Laplacians and heat
kernels [13]. In Yang-Mills theories, one expects the physically relevant
measures to have support on a ``small'' subspace of A�G. The structure of
quantum general relativity, on the other hand, is quite different. In the
canonical approach, each quantum state arises as a measure and there are
strong indications that measures with support on all of A�G will be
physically significant [16].

Now, as in linear theories [1], for non-Abelian gauge fields, it is natural
to first construct a ``Schro� dinger-type'' representation in which the Hilbert
space of states arises as L2(A�G, +) for a suitable measure + on A�G. This
will be our point of departure. The projective techniques referred to above
enable us to define measures as well as integrals over A�G as projective
limits of measures and integrals over Gn�Ad. We would, however, like to
construct a ``holomorphic representation''. Thus, we need to complexity
A�G, consider holomorphic functions thereon and introduce suitable
measures to integrate these functions. It is here that we use the techniques
introduced by Hall [5]. Given any compact Lie group G, Hall considers
its complexification GC, defines holomorphic functions on GC, and, using
heat-kernel methods, introduces measures & with appropriate fall-offs (for
the scalar products between holomorpic functions to be well-defined).
Finally, he provides a transform C& , from L2(G, +H) to the space of
&-square-integrable holomorphic functions over GC. Since Hall's transform
is of a geometric rather than algebraic or representation-theoretic nature,
it can be readily combined with the projective techniques. Using it, we will
construct the appropriate Hilbert spaces of holomorphic functions on
AC�GC��an appropriate complexification of A�G��and obtain isometric
isomorphisms between this space and L2(A�G, +). For gauge theories
��such as the 2-dimensional Yang-Mills theory��our results provide a new,
coherent state representation of quantum states which is well suited to
analyze a number of issues.

The main motivation for this analysis comes, however, from quantum
general relativity: the holomorphic representation serves as a key step in
the canonical approach to quantum gravity. Let us make a brief detour to
explain this point. The canonical quantization program for general
relativity was initiated by P. A. M. Dirac and P. Bergmann already in the

521COHERENT STATE TRANSFORMS

1 While we will be mostly concerned here with Hilbert spaces of quantum states, the space
A�G is also useful in the Euclidean approach to quantum gauge theories. In particular, the
2-dimensional Yang-Mills theory can be constructed on R2 or on S 1_R by defining the
appropriate measure on A�G [15].
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late fifties, and developed further, over the next two decades, by a number
of researchers including R. Arnowitt, S. Deser, C. W. Misner and J. A.
Wheeler and his co-workers. The first step is a reformulation of general
relativity as a Hamiltonian system. This was accomplished using 3-metrics
as configuration variables rather early. While these variables are natural
from a geometrical point of view, it turns out that they are not convenient
for discussing the dynamics of the theory. In particular, the basic equations
are non-polynomial in these variables. Therefore, a serious attempty at
making mathematical sense of their quantum analogs has never been made
and the work in this area has remained heuristic.

In the mid-eighties, however, it was realized [17] that a considerable
simplification occurs if one uses self-dual connections as dynamical
variables. In particular, the basic equations become low order polynomials.
Furthermore, since the configuration variables are now connections, one
can take over the sophisticated machinery that has been used to analyze
gauge theories. Consequently, over the last few years, considerable progress
could be made in this area. (For a review, see, e.g., [18]). However, in the
Lorentzian signature, self-dual connections are complex and provide a
complex coordinatization of the phase space of general relativity rather
than a real coordinatization of its configuration space. Therefore, if one is
to base one's quantum theory on these variables, it is clear heuristically
that the quantum states must be represented by holomorphic functionals of
self-dual connections. (Detailed considerations show that they should in
fact be complex measures rather than functionals.) Given the situation in
the classical theory, this is the representation in which one might expect the
quantum dynamics to simplify considerably. Indeed, heuristic treatments
have yielded a variety of results in support of this belief [19, 18]. Further-
more, they have brought out a potentially deep connection between knot
theory and quantum gravity [20]. To make these results precise, one
first needs to construct the holomorphic representation rigorously. The
coherent state transform of this paper provides a solution to this problem.
In particular, it has already led to a rigorous understanding of the relation
between knots and states of quantum gravity [16, 21].

The paper is organized as follows. In Section 2, we recall the definition
and properties of the Hall transform. Section 3 summarizes the relevant
results from calculus on the space of connections. In particular, in Sec-
tion 3, we will: (i) construct, using projective techniques, the spaces A� of
generalized connections, G� of generalized automorphisms of P and their
quotient A�G and complexifications AC and GC; (ii) see that the space A�
is equipped with a natural measure +0 which is faithful and invariant under
the induced action of the diffeomorphism group of the underlying manifold
7; and (iii) show that it also admits a family of diffeomorphism invariant
measures +(m), introduced by Baez. All these measures project down

522 ASHTEKAR ET AL.
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unambiguously to A�G. Section 4 contains a precise formulation of the
main problem of this paper and summary of our strategy. In Section 5
using heat kernel methods, we construct a family of (cylindrical) measures
&l

t on AC, and a family of transforms Zl
t from L2(A, +0) to (the Cauchy

completion of) the intersection HC & L2(AC, &l
t) of the space of cylindrical

holomorphic functions on AC with the space of &-square integrable func-
tions. These transforms provide isometric isomorphisms between the two
spaces. Furthermore, the transforms are gauge-covariant so that they map
G� -invariant functions on A to GC invariant functions on AC. However,
these transforms are not diffeomorphism covariant: Although the measure
+0 on A� is diffeomorphism invariant, to define the corresponding heat
kernel one is forced to introduce an additional structure which fails to be
diffeomorphism invariant [13]. The Baez measures +(m), on the other
hand, are free of this difficulty. That is, using +(m) in place of +0 , one can
obtain coherent state transforms which are both gauge and diffeomorphism
covariant. This is the main result of Section 6. The Appendix provides the
explicit expression of one of these transforms for the case when the gauge
group is Abelian.

2. Hall Transform for Compact Groups G

In this section we recall from [5] those aspects of the Hall transform
which will be needed in our main analysis. Let GC be the complexification
of G in the sense of [22] and & be a bi-G-invariant measure on GC that
falls off rapidly at infinity (see (2) below). The Hall transform C& is an
isometric isomorphism from L2(G, +H), where +H denotes the normalized
Haar measure on G, onto the space of &-square integrable holomorphic
functions on GC

C&: L2(G, +H) � H(GC) & L2(GC, &(gC)). (1)

Such a transform exists whenever the Radon-Nikodym derivative d&�d+C
H

exists, is locally bounded away from zero, and falls off at infinity in such
a way that the integral

_&
?=

1
dim V?

|
GC

&?(gC&1
)&2 d&(gC) (2)

is finite for all ?. Here, +C
H is the Haar measure on GC, ? denotes (one

representative of) an isomorphism class of irreducible representations of G
on the complex linear spaces V? , and all, &A&=- Tr(A-A) for A # End V?

and A- the adjoint of A with respect to a G-invariant inner product on V? .
For a & satisfying (2), the Hall transform is given by

523COHERENT STATE TRANSFORMS
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[C& ( f )](gC)=( f C \&)(gC)=|
G

f (g) \& (g&1gC) d+H (g), (3)

where \&(gC) is the kernel of the transform given in terms of & by

\& (gC)=:
?

dim V?

- _&
?

Tr(?(gC&1
)). (4)

The transform C& takes a particularly simple form for the (real analytic)
functions k?, A on G corresponding to matrix elements of ?(g),

k?, A (g)=Tr(?(g)A).

This is significant because, according to the Peter-Weyl Theorem the
matrix elements k?, A , for all ? and all A # End V? , span a dense subspace
in L2(G, d+H). The image of these functions k?, A under the transform is
(see [5])

[C& (k?, A)](gC)=[k?, A C \&](gC)

=
1

- _&
?

k?, A(gC). (5)

The evaluation of the Hall transform of a generic function f,
f # L2(G, d+H), can be naturally divided into two steps. In the first, one
obtains a real analytic function on the original group G,

f [ f C \& .

In the second step the function f C \& is analytically continued to GC. It
follows from (4) that

f C \&=\& C f. (6)

A natural choice for the measure & on GC is the ``averaged'' heat kernel
measure &t [5]. This measure is defined by

d&t (gC)=_|G
+C

t (ggC) d+H (g)& d+C
H (gC), (7)

where +C
t is the heat kernel on GC, i.e., the solution to the equations

�
�t

+C
t =

1
4

2GC +C
t

(8)
+C

0 (gC)=$(gC, 1GC
).

Here the Laplacian 2GC is defined by a left GC
-invariant, bi-G-invariant

metric on GC, 1GC denotes the identity of the group GC, and $ is the delta

524 ASHTEKAR ET AL.
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function corresponding to the measure +C
H . If we take for & the averaged

heat kernel measure &t then in (2) we have

_&t
? =et$?, (9)

here $? denotes the eigenvalue of the Laplacian 2G on G corresponding to
the eigenfunction k?, A . Notice that 2G gives the representation on
L2(G, d+H) of a (unique up to a multiplicative constant if G is simple)
quadratic Casimir element. The result (9) follows from (4) and the fact that
the kernel \&t#\t of the transform C&t#Ct is the (analytic extension of) the
fundamental solution of the heat equation on G:

�
�t

\t=
1
2

2G \t . (10)

Therefore, in this case one obtains

\t (gC)=:
?

dim V? e&t$? �2 Tr(?(gC&1
)). (11)

These results will be used in Sections 4 and 5 to define infinite dimensional
generalizations of the Hall transform.

3. Measures on Spaces of Connections

In this section, we will summarize the construction of certain spaces of
generalized connections and indicate how one can introduce interesting
measures on them. Since the reader may not be familiar with any of these
results, we will begin with a chronological sketch of the development of
these ideas.

Recall that, in field theories of connections, a basic object is the space A
of smooth connections on a given smooth principal fibre bundle P(7, G).
(We will assume the base manifold 7 to be analytic and G to be a compact,
connected Lie group.) The classical configuration space is then the space
A�G of orbits in A generated by the action of the group G of smooth verti-
cal automorphisms of P. In quantum mechanics, the domain space of
quantum states coincides with the classical configuration space. In quan-
tum field theories, on the other hand, the domain spaces are typically
larger; indeed the classical configuration spaces generally form a set of zero
measure. In gauge theories, therefore, one is led to the problem of finding
suitable extensions of A�G. The problem is somewhat involved because
A�G is a rather complicated, non-linear space.

One avenue [6] towards the resolution of this problem is offered by the
Gel'fand-Naimark theory of commutative C*-algebras. Since traces of
holonomies of connections around closed loops are gauge invariant, one
can use them to construct a certain Abelian C*-algebra with identity, called

525COHERENT STATE TRANSFORMS
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the holonomy algebra. Elements of this algebra separate points of A�G,
whence, A�G is densely embedded in the spectrum of the algebra. The
spectrum is therefore denoted by A�G. This extension of A�G can be taken
to be the domain space of quantum states. Indeed, in every cyclic represen-
tation of the holonomy algebra, states can be identified as elements of
L2(A�G, +) for some regular Borel measure + on A�G.

One can characterize the space A�G purely algebraically [6, 7] as the
space of all homomorphisms from a certain group (formed out of piecewise
analytic, based loops in 7) to the structure group G. Another��and, for the
present paper more convenient��characterization can be given using cer-
tain projective limit techniques [10, 14]: A�G with the Gel'fand topology
is homeomorphic to the projective limit, with Tychonov topology, of an
appropriate projective family of finite dimensional compact spaces. This
result simplifies the analysis of the structure of A�G considerably. Further-
more, it provides an extension of A�G also in the case when the structure
group G is non-compact. Projective techniques were first used in [10, 14]
for measure-theoretic purposes and then extended in [13] to introduce
``differential geometry'' on A�G.

The first example of a non-trivial measure on A�G was constructed in
[7] using the Haar measure on the structure group G. This is a natural
measure in that it does not require any additional input; it is also faithful
and invariant under the induced action of the diffeomorphism group of 7.
Baez [8] then proved that every measure on A�G is given by a suitably
consistent family of measures on the projective family. He also replaced the
projective family labeled by loops on 7 [10, 14] by a family labeled by
graphs (see also [9, 11]) and introduced a family of measures which
depend on characteristics of vertices. Finally, he provided a diffeomorphism
invariant construction which, given a family of preferred vertices and
almost any measure on G, produces a diffeomorphism invariant measure
on A�G.

We will now provide the relevant details of these constructions. Our
treatment will, however, differ slightly from that of the papers cited above.

3.1. Spaces A� , G� and A�G

Let 7 be a connected analytic n-manifold and G be a compact, connected
Lie group. Consider the set E of all oriented, unparametrized, embedded,
analytic intervals (edges) in 7. We introduce the space A� of (generalized)
connections on 7 as the space of all maps A� : E � G, such that

A� (e&1)=[� A(e)]&1 and A� (e2 b e1)=A� (e2) A� (e1) (12)

whenever two edges e2 , e1 # E meet to form an edge. Here, e2 b e1 denotes
the standard path product and e&1 denotes e with opposite orientation.

526 ASHTEKAR ET AL.
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The group G� of (generalized) gauge transformations acting on A� is the
space of maps g� : 7 � G or equivalently the Cartesian product group

G� := _
x # 7

G. (13)

A gauge transformation g� # G� acts on A� # A� through

[g� (A� )](ep1 , p2
)=g� p1

A� (ep1 , p2
)(g� p2

)&1, (14)

where ep1 , p2
is an edge from p1 # 7 to p2 # 7 and g� pi

is the group element
assigned to pi by g� . The spece G� equipped with the product topology is a
compact topological group. Note also that A� is a closed subset of

A/ _
e # E

Ae , (15)

where the space Ae of all maps from the one point set [e] to G is homeomorphic
to G. A� is then compact in the topology induced from this product.

It turns out that the space A� (and also G� ) can be regarded as the projec-
tive limit of a family labeled by graphs in 7 in which each member is
homeomorphic to a finite product of copies of G [10, 14]. Since this fact
will be important for describing measures on A� and for constructing the
integral transforms we will now recall this construction briefly. Let us first
define what we mean by graphs.

Definition 1. A graph on 7 is a finite subset # # E such that (i) two dif-
ferent edges, e1 , e2 : e1{e2 and e1{e&1

2 , of # meet, if at all, only at one or
both ends and (ii) if e # # then e&1 # #.

The set of all graphs in 7 will be denoted by Gra(7). In Gra(7) there
is a natural relation of partial ordering �,

#$�# (16)

whenever every edge of # is a path product of edges associated with #$.
Furthermore, for any two graphs #1 and #2 , there exists a # such that #�#1

and #�#2 , so that (Gra(7),�) is a directed set.
Given a graph #, let A# be the associated space of assignments

(A#=[A# | A# : # � G]) of group elements to edges of #, satisfying
A#(e&1)=A#(e)&1 and A#(e1 b e2)=A#(e1) A#(e2), and let p#: A� � A# be
the projection which restricts A� # A� to #. Notice that p# is a surjective map.
For every ordered pair of graphs, #$�#, there is a naturally defined map.

p##$: A#$ � A# , such that p#=p##$ b p#$ . (17)

With the same graph #, we also associate a group G# defined by

G# :=[g# | g# : V# � G] (18)

527COHERENT STATE TRANSFORMS
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where V# is the set of vertices of #; that is, the set V# of points lying at the
end of edges of #. There is a natural projection G� � G# which will also be
denoted by p# and is again given by restriction (from 7 to V#). As before,
for #$�#, p# factors into p#=p##$ b p#$ to define

p##$: G#$ � G# . (19)

Note that the group G# acts naturally on A# and that this action is equiv-
ariant with respect to the action of G� on A� and the projection p# . Hence,
each of the maps p##$ projects to new maps also denoted by

p##$: A#$�G#$ � A# �G# . (20)

We collect the spaces and projections defined above into a (triple)
projective family (A# , G# , A#�G# , p##$)#, #$ # Gra(7) . It is not hard to see that
A� and G� as introduced above are just the projective limits is the projective
limit of the compact quotients [10, 14],

A� �G� =A�G. (21)

Note however that the projections p##$ in (17), (19) and (20) are different
from each other and that the same symbol p##$ is used only for notational
simplicity; the context should suffice to remove the ambiguity. In par-
ticular, the properties of p##$ in (19) allow us to introduce a group structure
in the projective limit G� of (G# , p##$)#, #$ # Gra(7) while the same is not possible
for the projective limits A� and A�G of (A# , p##$)#, #$ # Gra(7) and
(A# �G# , p##$)#, #$ # Gra(7) respectively.

The C-algebra of cylindrical functions on A� is defined to be the following
subalgebra of continuous functions

Cyl(A� )= .
# # Gra(7)

(p#)* C(A#). (22)

Cyl(A� ) is dense in the C*-algebra of all continuous functions on A� . The
C-algebra Cyl(A�G) of cylindrical functions on A�G coincides with the
subalgebra of G� -invariant elements of Cyl(A� ).

Finally, let us turn to the analytic extensions. Since the projections p##$

(in (17) and (19)) are analytic, the complexification G C of the gauge group
G leads to the complexified projective family (AC

# , GC
# , pC

##$)#, #$ # Gra(7) . Note
that the projections pC

# : AC � AC
# maintain surjectivity. The projective

limits AC and GC are characterized as in (12) and (13) with the group G
replaced by GC. Since GC is non-compact, so will be the spaces AC and
GC. The algebra of cylindrical functions is defined as above with AC

# sub-
stituted for A# . However these functions may now be unbounded and
C(AC) is not a C* algebra.
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There is a natural notion of an analytic cylindrical function on A� and
a holomorphic cylindrical function on AC:

Definition 2. A cylindrical function f= f# vp# ( f C= f C
# v pC

# ) defined on
A� (AC is real analytic (holomorphic) if f# ( f C

# ) is real analytic (holomorphic).

In the complexified case the formula AC�GC=AC�GC has not (to the
authors' knowledge) been verified, but the natural isomorphism between
Cyl(AC�GC) and the algebra of all the GC invariant elements of Cyl(AC)
continues to exist. We shall extend it to define cylindrical holomorphic
(analytic) functions on AC�GC (A�G) to be all the GC (G� )-invariant cylin-
drical holomorphic (analytic) functions on AC (A� ).

3.2. Measures on A�

We will now apply to A� the standard method of constructing measures on
projective limit spaces using consistent families of measures (see e.g. [23]).

Let us consider the projective family

(A# , p##$)#, #$ # Gra(7) (23)

discussed in the last section and let

(A# , +# , p##$)#, #$ # Gra(7) (24)

be a projective family of measure spaces associated with (23); i.e., such that
the measures +# are (signed) Borel measures on A# and satisfy the con-
sistency conditions

(p##$)*
+#$=+# for #$�#. (25)

Every projective family of measure spaces defines a cylindrical measure. To
see this, recall first that a set CB in A� is called a cylinder set with base
B/A# if

CB=p&1
# (B), (26)

where B is a Borel set in A# . Hence, given a projective family +# of
measures, we can define a cylindrical measure + on (A� , CA� ), through

+ : p#*
+=+# , (27)

where CA� denotes the algebra of cylinder sets on A� . For a consistent
family of measures +=(+#)# # Gra(7) to define a cylindrical measure + that is
extendible to a regular (_-additive) Borel measure on the Borel _-algebra
B#CA� of A� it is necessary and sufficient that the functional

f [ | d+ f, f # Cyl(A� ), (28)

529COHERENT STATE TRANSFORMS
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be bounded. This integral is bounded if and only if the family of measures
(+#)# # Gra(7) is uniformly bounded [8]; i.e., if and only if +# considered as
linear functionals on C(A#) satisfy

&+#&�M (29)

for some M>0 independent of #. (If all the measures +# are positive then
(29) automatically holds [7, 8]).

From now on, all measures + on A� will be assumed to be regular Borel
measures unless otherwise stated. It follows from Section 3.1 that every
such measure + on A� induces a (regular Borel) measure +$ on A�G

+$=?
*

+, (30)

where ? denotes the canonical projection, ?: A� � A�G.
The C|

-diffeomorphisms . of 7 have a natural action on A� induced
by their action on graphs. This defines an action on C(A� ) and on the
space of measures on A� (equal to the topological dual C$(A� ) of C(A� )).
Diffeomorphism invariant measures on A�G were studied in [6]�[8]. We
will denote the group of C|

-diffeomorphisms of 7 by Diff(7).
A natural solution of conditions (25) is the one obtained by taking +# to

be the pushward of the normalized Haar measure +E#
H on GE# with respect

to �&1
# where �#: A# � GE# is a diffeomorphism

�#: A# [ (A# (e1), ..., A# (eE#)) (31)

and [e1 , ..., eE#] are edges of #, such that if (and only if) e # [ej]E#
j=1 then

e&1 � [ej]E#
j=1 [7]. By choosing a different set [e~ j]E#

j=1 (e~ j=e=
j , ==1, &1)

we obtain a different diffeomorphism �$# . Notice, however, that +# is well
defined since the map g [ g&1 preserves the Haar measure +H of G.
We will refer to the choice of this �# as a choice of orientation for the
graph #. The family of measures (+#)# # Gra leads to the measure on A�G
denoted in the literature by +0 and for which all edges are treated equiv-
alently. We will use this measure in Section 5.

A method for finding new diffeomorphism invariant measures on A�
��and therefore also on A�G��was proposed by Baez in [8]. Since these
measures will play an important role in our analysis, we now recall some
aspects of this method.

Definition 3 (Baez [8]). A family (+#)# # Gra(7) of measures on A# is
called (diffeomorphism) covariant if, for every . # Diff(7) and #, #$ such
that .(#)�#$, we have

(p.(#)#$)*
+#$=.

*
+# . (32)
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As shown in [8] (Theorem 2), diffeomorphism invariant measures + on A�
are in 1-to-1 correspondence with uniformly bounded covariant families
(+#)# # Gra(7) . Note that a covariant family is automatically consistent; i.e.,
it satisfies (25).

Baez's strategy is to solve the covariance conditions by appropriately
choosing measures mv associated with different vertex types v. (Each vertex
type is an equivalence class of vertices where two are equivalent if they are
related by an analytic diffeomorphism of 7.) The number nv of edge ends
incident at v is called the valence of the vertex. Thus, any edge with both
ends at v is counted twice. For each vertex v, the measure mv is a measure
for nv G-valued random variables ( gv1 , ..., gunv), one for each of the nv edge
ends at v. When applied to the entire graph, this procedure assigns two
random variables (gea , geb) to each of the E# edges e # #, where the variable
gea (geb) corresponds to the vertex at the beginning (end) of the edge. We
will find it convenient to alternately label the random variables by their
association with vertices and their association with oriented edges and to
denote the map induces by this relabelling as r# : G2E# � G2E#. Given mv for
every vertex type v, we define +# as (for a more detailed explanation see
[8])

|
A#

f# (A#) d+# (A#) :=|
G2E#

( f# b �&1
# b ,#) `

v # V#

dmv (gv1 , ..., gvnv), (33)

where �# is as in (31) and ,#: GE#_GE# � GE# is the map

,# : [(g1a , ..., gE#a), (g1b , ..., gE#b)] [ (g1a g&1
1b , ..., gE#a g&1

E#b). (34)

We will refer to the associated family of measures >v # V#
dmv (gv1 , ..., gvnv)

on G2E# as d+$# . Notice that (33) is well defined because the map (with
labelling given by the association of the random variables with the vertices
(!))

�&1
# b ,# b r#: G2E# � A# (35)

does not depend on the orientation chosen on the graph, even though �# ,
,# and r# do.

The measure mv has then to satisfy:

(i) If some diffeomorphism induces an inclusion i of v into the vertex
w, then there is an associated projection ?i: Gnw � Gnv acting on the corre-
sponding random variables. The measure mv should coincide with the
pushforward of mw:

?i*mw=mv . (36)

531COHERENT STATE TRANSFORMS
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(ii) In order to consider embeddings of graphs

#$�.(#),

for which several edges of #$ may join to form in a single edge of .(#), Baez
defines an arc to be a valence 2 vertex for which the two incident edges join
at the arc to form an analytic edge. He then proposes the condition that
for each valence-1 vertex v connected to an arc a by an edge e (for which
the associated random variables (gve , gae , gae$) have the distribution
mv�ma), we have

pa*
(mv�ma)=mv , (37)

where pa (gve , gae , gae$)=g&1
ve gae g&1

ae$ .

In [8] new solutions to conditions (36) and (37) were found that dis-
tinguish edges as follows. Let m be an arbitrary but fixed probability
measure on G. If a pair of edges e and f meet at an arc a included in the
vertex v, set the corresponding random variables equal:

ga1=ga2 . (38)

Otherwise the random variables gvi are distributed according to the
measure m. Thus,

mv= `
nv

i=1

dm(gvi) `
Av

j=1

$(gvj , gv(nv& j+1)), (39)

where Av denotes the number of arcs included in v and the edge ends have
been labeled so that the arcs are associated with the random variable pairs
(gvi , gv(nv&i+1)). The $-functions in (39) correspond to the measure m. This
procedure defines a measure +(m) on A� for each probability measure m on
G and we will refer to such +(m) as the Baez measures on A� . These
measures distinguish various n-valent vertices v by the number of arcs they
include. Additional diffeomorphism-invariant measures would be expected
to distinguish vertices by using other diffeomorphism invariant charac-
teristics.

Because AC is not compact, it is more difficult to define _-additive
measures on this space than on A� . Thus, we content ourselves with cylin-
drical measures + on (AC, CAC). Cylindrical measures +C on AC are in
one-to-one correspondence with consistent families of measures (+#)C

# # Gra(7)

exactly as in (27)

pC
#*

+C=+C . (40)
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The consistency conditions (25) and diffeomorphism covariance conditions
(32)

(p.(#)#$)*
+#$=.

*
+# . (41)

also preserve their forms

(pC
##$)*

+C
#$=+C

# for #$�# (42)

and

(pC
.(#)#$)*

+C
#$=.

*
+C

# for #$�.(#), (43)

respectively. Therefore, diffeomorphism invariant Baez measures +(m) can
be constructed in the same way starting with an arbitrary probability
measure mC on GC. We will use these measures in Section 6.

Coherent State Transforms for Theories of Connections

The rest of the paper is devoted to the task of constructing coherent state
transforms for functions defined on the projective limit A� . The discussion
contained in the last two sections makes our overall strategy clear: we shall
attempt to ``glue'' coherent state transforms defined on the components A#

of A� into a consistent family. However, since the measure-theoretic results
are not as strong for a non-compact projective family, we must first state
under what conditions a map

Z: L2(A� , d+) � C[HC (AC & L2(AC, d&)] (44)

is to be regarded as a coherent state transform. Here, C indicates comple-
tion with respect to the L2 inner product and HC is the space of
holomorphic cylindrical functions. The definition of the space L2(AC, &)
also requires some care as & is not necessarily _-additive.

We first introduce two definitions:

Definition 4. A transform (44) is G� -covariant if it commutes with the
action of G� , that is, if

Z((Lg� )* ( f ))=(LC
g� )* (Z( f )), (45)

where (A, g� ) [ Lg� A� :=gA stands for the action of G� on A� with the super-
script C denoting the corresponding action on AC,

(LC
g� AC)(ep1 , p2

)=g� p1
AC(ep1 , p2

) g� &1
p2

, (46)

and where *, as usual, denotes the pullback.

533COHERENT STATE TRANSFORMS
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Note that in (45) and (46), we have used the inclusion of G� in GC.

Definition 5. A family (Z#)# # Gra(7) of transforms Z#: L2(A# , d+#) �
H(AC

# ) is consistent if for every pair of ordered graphs, #$�#,

Z#$( f# b p##$)=Z# ( f#) b pC
##$ . (47)

Notice that the consistency condition is equivalent to requiring that

p#* f#=p*#$ f#$ O p#
C*Z# ( f#)=p#$

C*Z# ( f#$). (48)

Definitions 4 and 5 allow us to use:

Definition 6. For a measure2 +=(+#) # # Gra(7) on A� and a cylindrical
measure &=(&#)# # Gra(7) on AC, a map (44) is a coherent transform on A�
if there is a consistent family (Z#)# # Gra(7) of coherent transforms (see
Section 2)

Z#: L2(A# , d+#) � H(AC
# ) & L2(AC

# , d&#) (49)

such that, for every cylindrical function of the form f = f# b p# with
f# # L2(A# , d+#),

Z( f )=Z# ( f#) b pC
# . (50)

When Z is an isometric coherent transform, it associates with every
representation ? of the holonomy algebra on L2(A�G, +) a representation
?C on L2(AC�GC, &) by

?C(:C)=Z?(:)Z&1, (51)

where : is an arbitrary element of the holonomy algebra. Such ?C are the
desired ``holomorphic representations''.

Several important remarks concerning the properties of the analytic
extensions are now in order. Suppose that we are given a family of trans-
forms (Z#)# # Gra(7) as in Definition 5, but that equation (47) is only known
to be satisfied when the functions are restricted to A#/AC

# (for every
possible #). Then, because both functions in (47) are holomorphic on AC

# ,
(47) holds on the entire AC

# .
In other words, in order to construct a family of transforms

Z#: L2(A# , d+#) � H(AC
# ),

534 ASHTEKAR ET AL.
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which is consistent in the sense of Definition 5, it is sufficient to find a
family of maps R#: L2(A# , d+#) � H(A#) which satisfies (47) (H(A#)
denotes the space of real analytic functions on A#). The analyticity of each
function R# ( f#) guarantees the consistent holomorphic extension.

Let R: L2(A� , d+) � L2(A� , d+) be the transform defined by restricting
Z( f ) to A� /AC. Note that G� acts analytically on the components of the
projective family. Thus, the image of the subspace of G� -invariant functions,
with respect to a coherent state transform on A� , consists of GC

-invariant
functions on AC.

5. Gauge Covariant Coherent State Transforms

We now construct a family Zl
t (parametrized by t # R and a function l of

edges) of gauge covariant isometric coherent state transforms when the
measure + on A� is taken to be the natural measure +0 (see Section 3.2).
The corresponding Zl

t, # will be coherent state transforms given by
appropriately chosen heat kernels on A#$GE#. The measures &# on the
right hand side of (49) are averaged heat kernel measures on (GC)E# (see
Section 2).

The idea is to use a Laplace operator 2l on A� [13]. Our transform will
then be defined through convolution with the fundamental solution of the
corresponding heat equation.

The ingredients used to define the Laplacian are the following:

(i) a bi-invariant metric on G which defines the Laplace-Beltrami
operator 2;

(ii) a function l defined on the space E (see Subsection 3.1) of
(analytic) edges in 7, such that

l(e&1)=l(e), l(e)�0, l(e2 b e1)=l(e2)+l(e1), (52)

whenever e2 b e1 exists an belongs to E and the intersection of e1 with e2 is
a single point.

Elementary examples of functions l satisfying (52) are given by: (a) the
intersection number of e with some fixed collection of points and�or sur-
faces in 7; (b) the length with respect to a given metric on 7.

To each graph # we assign an operator acting on functions on A# as

2l
# :=l(e1)2e1

+ } } } +l(eE#)2eE1
, (53)

where ei , i=1, ..., E# are the edges of # and 2ei denotes the pull back, with
respect to �#* (see (31)), of the operator which is the tensor product of 2,

535COHERENT STATE TRANSFORMS
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acting on the i th copy of G, with identity operators acting on the remain-
ing copies. Because 2 is a quadratic Casimir operator, 2l

# is independent of
the choice of orientation for #. The condition (52) implies that the family
of operators (2l

#)# # Gra(7) is consistent with the projective family [13] and
therefore defines an operator 2l acting on cylindrical functions. In other
words of f is a cylindrical function represented by a twice differentiable
function f# on A# , f# # C 2(A#), then

2l f :=(2l
# f#) b p# (54)

and the right hand side does not depend on the choice of the representative
f# of f. (This would not have been the case if we had followed a more
obvious strategy and attempted to define the Laplacian without the factors
l(ei) in (53).)

5.1. The Transform and the Main Result

Given a function l on E, the gauge covariant coherent state transform
will be defined with the help of the fundamental solutions to the heat
equation on A� , associated with 2l:

�
�t

Ft=
1
2

2lFt . (55)

The fundamental solution of (55) is given by the family (\l
t, #)# # Gra(7) of

heat kernels for the operators 2l
# on A# ($GE#),

\l
t, # (A#)=\s1

(A#(e1)) } } } \sE#
(A# (eE#)), (56)

where si=tl(ei) and each of the functions \s (g) being the heat kernel of
the Laplace-Beltrami operator on G. In fact the solution of (55) with
cylindrical initial condition

Ft=0= f (0)
# b p#

is given by

Ft=\l
t, # C f (0)

# , (57)

where the convolution is

(\l
t, # C f#)(A

#) :=|
GE#

\l
t, # (Ah

#)

_( f# b �&1
# )(h1 , ..., hE#) d+H (h1) } } } d+H (hE#), (58)
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and Ah
# : ei [ h&1

i A# (ei). Notice that (56) is well defined since the r.h.s. is
invariant with respect to the change ei [ e&1

i . It is also easy to verify, using
the identity

|
G

\t (g$&1) f (g$&1) d+H (g$)=|
G

\t (g$&1g&1) f (g$) d+H (g$), (59)

that the r.h.s. of (58) does not depend on the orientation chosen for # (see
discussion after (31). Equality (59) follows from the following properties of
the heat kernel [5]

\t (g&1)=\t (g) and \t (g1 g2)=\t (g2 g1). (60)

Let us consider the family of transforms Rl
t, #:

Rl
t, # ( f#)=\l

t, # C f# . (61)

Our main result in the present Section will be:

Theorem 1. The map

Zl
t: L2(A� , +) � C[HC(AC) & L2(AC, &l

t)], (62)

defined on cylindrical functions f = f# b p# as the analytic continuation of
Rl

t, # ( f#) and extended to the whole of L2(A� , +) by continuity is a gauge
covariant isometric coherent state transform.

The measure &l
t in (62) is defined below in Subsection 5.3. We will estab-

lish Theorem 1 with the help of several Lemmas proved in the following
three subsections.

5.2. Consistency

Let us first show that the family of transforms (61) defines a map of
cylindrical functions on A� .

Lemma 1. The family (Rl
t, #)# # Gra(7) in (61) is consistent.

The proof follows from

f# b p#= f#$ b p#$ O (\l
#, t C f#) b p#=(\l

#$, t C f#$) b p#$ . (63)
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For convenience of the reader we recall from [13] the proof of (63). Since
for every pair of graphs #1 , #2 there exists a graph #3�#1 , #2 , it is enough
to prove (63) for

#2�#1 . (64)

The graph #2 can be formed from #1 by adding additional edges, and sub-
dividing edges��each of these steps being applied some finite number of
times.

Thus, we need only to verify the consistency conditions for each of the
following two cases: the graph #2 differs from #1 by (i) adding an extra edge
to #1 , and (ii) cutting an edge of #1 in two.

It follows from the construction of the projective family
(A# , p##$)#, #$ # Gra(7) and from formula (56), that (63) is equivalent to the
equality

|
G2

\r (g$&1g) \s (h$&1h) f (g$h$) d+H (g$) d+H (h$)

=|
G

\r+s (g$&1 gh) f (g$) d+H (g$) (65)

for any r, s�0. Eq. (65) follows from (59), from the fact that Lg* and Rg*
commute with \t C for all g # G and from the composition rule

\r C \s C f =\r+s C f. (66)

We have

|
G2

\r (g$&1g) \s (h$&1h) f (g$h$) d+H (g$) d+H (h$)

=|
G

\r (g$&1g)(\s C L*g$ f )(h) d+H (g$)

=|
G

\r (g$&1g)(\s C Rh* f )(g$) d+H (g$)

=(Rh*\r C \s C f )(g)

=(\r C \s C f )(gh)=(\r+s C f )(gh)

=|
G

\C
r+s (g$&1gh) f (g$) d+H (g$). (67)

This completes the proof of (63) and therefore also of Lemma 1.

538 ASHTEKAR ET AL.



F
ile

:5
80

J
28

14
21

.B
y:

B
V

.D
at

e:
27

:0
2:

96
.T

im
e:

12
:4

8
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

32
71

Si
gn

s:
17

10
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

According to Lemma 1, given a cylindrical function f = f# b p# we have a
well-defined ``heat evolution,''

Rl
t ( f ) :=Rl

t, # ( f#) b p# . (68)

Notice that from Section 2 it follows that for any f# # L2(A# , d+0, #) the
convolution \l

t, # C f#= f# C \l
#, t is a real analytic function.

We define a coherent state transform on each A# through

(Zl
t, # f#)(AC

# ) :=(\lC
t, # C f#)(AC

# ), (69)

where \lC
t, # is the analytic continuation of \l

t, # from A# to AC
# [5]. Accord-

ing to Lemma 1 and the remarks after Definition 6, the family of trans-
forms (Zl

t, #)# # Gra(7) is consistent in the sense of Definition 5. Hence, we
may define the transform for each square-integrable cylindrical function
f = f# b p# # Cyl(A� )

Zl
t ( f ) :=Zl

t, # [ f#] b pC
# , (70)

which maps the space of +0-square integrable cylindrical functions on A�
into the space of cylindrical holomorphic functions on AC.

5.3. Measures on AC

Consider the averaged heat kernel measure &t (7) defined on the com-
plexified group GC and the associated family of measures (&l

t, #)# # Gra(7) on
the spaces AC

# :

d&l
t, # (AC

# ) :=d&l(e1) t (A
C
# (e1))� } } } �d&l(eE#) t (AC

# (eE#)). (71)

It follows automatically from [5] that the transform Zl
t, #: L2(A# , d+#, AL) �

H(A#) & L2(AC
# , d&l

t, #) is isometric. Isometry of the transforms Zl
t, # implies

the following equality for all square-integrable holomorphic functions f1# , f2#

and all #$�#

|
A#

C
f1# (A

C
# ) f2# (A

C
# ) d&l

t, #=|
A

C
#$

( f1# b pC
##$)(AC

#$)( f2# b pC
##$)(AC

#$) d&l
t, #$ . (72)

From the arbitrariness of f1# and f2# we will conclude that the family
[&l, C

t, # ]#, #$ # Gra(7) is consistent and therefore defines a cylindrical measure on

AC which will be denoted by &l
t .

To see this let i: G� C � CN be an analytic immersion of G� C :=
GC_ } } } _GC into CN for sufficiently large N. A Borel probability measure
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+C on GC defines a Borel probability measure i
*

+C on CN (supported on
i(G� C)) through

|
CN

fd(i
*

+C) :=|
G� C

i*( f ) d+C. (73)

Consider the analytic functions i*(Fl) on G� C, where

Fl (z)=elz, l, z # CN, lz := :
N

j=1

lj zj . (74)

For every $1 , $2 # RN we choose l1=&1�2($2+i$1) and l2= &l1 so that

(F� l1 Fl2)(x, y)=ei($1 x+$2 y), (75)

where z=x+iy. Then

/+C($1 , $2) :=|
R2N

ei($1x+$2 y)d(i
*

+C)=|
G� C

i*(Fl) i*(Fl2) d+C (76)

is the Fourier transform of the measure i
*

+C on R2N, which, according to the
Bochner theorem, completely determines i

*
+C and therefore also +C. Thus (72)

implies that (pC
##$)*

&l
t, #$ and &l

t, # in fact agree as Borel measures on AC
# .

5.4. Gauge Covariance

Here we complete the proof of Theorem 1.
We only need to establish:

Lemma 2. R commutes with action of G� on L2(A� , d+0).

In the proof, g, ga , gb , and �# (A#) will be elements of GE# and we define
multiplication of E#-tuples component-wise; i.e., (ga gb) i=(ga) i (gb) i .

Proof of Lemma 2. For cylindrical f = f# b p# and g� # G� , let ga , gb # GE#

be given by (ga)i :=g� (pia) and (gb) i :=g� (pib), where pia and pib are the
initial and final points of the edge ei associated with a fixed choice of orien-
tation on #. Then,

Rl
t [ f ](g� [A#])=(\t, # C f#)(g� [A#])

=|
GE#

( f# b �&1
# )(gga �# (A#) g&1

b ) ` (\t d+H)(g)

=|
GE#

( f# b �&1
# )(ga g�# (A#) g&1

b ) ` (\t d+H)(g)

=Rl
t [g� *( f )](A� ), (77)
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since the measure is conjugation invariant. Note that this is a consequence
of the G� -invariance of 2l.

Finally, note that since the transform (70) depends on the path function
l, it fails to be diffeomorphism covariant.

6. Gauge and Diffeomorphism Covariant Coherent State Transforms

In this Section, we introduce a coherent state transform that is both
gauge and diffeomorphism covariant. This new transform will be based on
techniques associated with the Baez measures and we recall from Subsec-
tion 3.2 that, given any Baez measure +(m) on AC and the corresponding
measures + (m)

# on A# , we may write (33) as

|
A#

f# d+ (m)
# =|

GE#_GE#
f# b �&1

# b ,# d+ (m)$
# . (78)

From (39), each d+ (m)
# $ is a product of measures dm on G and delta func-

tions with respect to these measures. The arguments of the delta functions
are pairs of coordinates and no coordinate appears in more than one delta
function. Specifically, this is true for the Baez measure +~ 0#+(+H) con-
structed from the Haar measure m=+H on G.

6.1. The Transform and the Main Result

Let us fix a measure & on GC that satisfies the conditions listed in Sec-
tion 2 for the existence of the Hall transform C& . Given & we have on G a
generalized heat-kernel measure d\=\& d+H used in the Hall transform (3)
from L2(G, +H) to L2(GC, &) & H(GC).

Our transform will be defined as follows. Given some A� 0 # A� and the
corresponding A0, # # A# , let ,A� 0, #

: GE#_GE# � GE# be the map

,A� 0, #
: [(g1a , ..., gE# a), (g1b , ..., gE#b)]

[ (g1a A� 0(e1) g&1
1b , ..., gE#a A� 0(eE#) g&1

E#b). (79)

Note that ,A� 0, #
depends on A� 0 only through A0, # and that if A� 0 is the trivial

connection 1� (for which 1� (e)=1G for any e # E) then ,1� , #=,# of (34).
For f: A� � C such that f = f# b p# , we would like to define R( f ): A� � C

through R( f )=R# ( f#) b p# , where

R# ( f#)(A0, #)=|
G2E#

f# b �&1
# b ,A� 0, #

d\$# . (80)
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In (80) d\$# is the measure on GE#_GE# associated with the Baez measure
\=+(\). Thus, d\$# is a product of generalized heat kernel measures d\ and
delta-functions with respect to this measure. We will show that the map R
is well defined. Our main result will be

Theorem 2. For each &, there exists a unique isometric map

Z: L2(A� , +~ 0) � C[HC( ) & L2(AC, +(&))], (81)

such that, for every f # Cyl(A� ) and any holomorphic (L2
-) representative of

Z( f ) with restriction to A denoted by f� , the real-analytic function f� coin-
cides +~ 0-everywhere with R( f ). The map Z is a gauge and diffeomorphism
covariant isometric coherent state transform.

6.2. Consistency

As before, it is convenient to break the proof of our theorem into several
parts. We begin with

Lemma 3. The family (R#)# # Gra(7) ,

R# ( f#)(A0, #)=|
G2E#

f# b �&1
# b ,A� 0, #

d\$# , (82)

is consistent.

Proof. Suppose that f: A� � C is cylindrical with f = f#1
b p#1

and
f = f#2

b p#2
. As in Section 5, it is enough to consider the case #2�#1 .

We must now establish the conditions (i), (ii) listed in the proof of
Lemma 1 in Subsection 5.2. The first case is straightforward. Indeed
f#2

= f#1
b p#1 #2

depends only on those edges that actually lie in #1 . Integra-
tion over the other variables in the measure d\$#2

simply yields the measure
d\$#1

as in the usual Baez construction. Thus, R#2
( f#2

)=R#1
( f#1

) b p#1 #2
.

We now address (ii). Suppose that #2 is just #1 with the edge e0 # #1 split
into e1 and e2 at the vertex v. Let e1 , e2 have orientations induced by e0 .
Without loss of generality, let e1 b e2=e0 . Then we have

R#2
( f#2

)(A0, #2
)=|

Ga
E#2_Gb

E#2
( f#2

b �&1
#2

)(g1a A� 0(e1) g&1
1b , ...) d\$#2

, (83)

where the gia are coordinates on GE#2
a and the gib are coordinates on GE#2

b .
Since f#2

= f#1
b p#1 #2

, ( f#2
b �&1

#2
)(g1 , ..., gE#2

)=( f#1
b �&1

#1
)(g1 g2 , g3 , ..., gE#2

), it
follows that
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R#2( f#2
)(A0, #2

)

=|
Ga

E#2_Gb
E#2

( f#1
b �&1

#1
)(g1a A� 0(e1) g&1

1b g2a A� 0(e2) g&1
2b , g3a A� 0(e3) g&1

3b , ...,

gE#a A� 0(eE#) g&1
E# b)_$(g1b , g2a) d\(g1b) d\(g2a)

d\$#1[(g
1a , g3a , ..., gE#a), (g2b , g3b , ..., gE#b)]

=(R#1
( f#1

) b �&1
#1

)(A� (e1) A� (e2), A� (e3), ..., A� (eE#))

=(R#1
( f#1

) b p#1 #2
)(A0, #2

).

This is enough to show consistency so that the family (R#)# # Gra(7)

defines unambiguously a map R: Cyl(A� ) & L2(A� , +~ 0) � Cyl(A� ).

6.3. Extension and Isometry

For a general f # Cyl(A� ) & L2(A� , +~ 0), the function R( f ) may not be
real-analytic on A� . However, there still exists a natural ``analytic exten-
sion'' of R( f ) to a unique element of L2(AC, + (&)) that can be briefly
defined as follows. The function R( f ) is real-analytic when restricted to a
subspace of A� carrying the support of the Baez measure; on the other
hand, the complexification of this subspace contains the support of the
Baez measure in AC. This is sufficient for the extension of R( f ) to exist
and be unique (in the sense of L2 spaces).

To define the extension more precisely, let us first express the Baez
intregral in a more convenient form. Given an oriented graph #, consider
A# , AC

# and the corresponding maps �&1
# b ,#: GE#_GE# � A# as well as the

complexification �C&1
# b ,C

# : GCE#_GCE# � AC
# . In what follows, all the

functions on A# (AC
# ) shall be identified with their pullbacks to the corre-

sponding GE#_GE#(GCE#_GCE#). Since the delta-functions in the Baez
measure identify some pairs (gia , g jb) of variables, for some E#�k#�2E# ,
they define embeddings

*#: Gk# � GE#_GE#

(85)
*C

# : GCk# � GCE#_GCE#,

where *C
# is the complexification of *# and both are insensitive to the choice

of measure on G used to define the Baez measure. (Note that the maps *
and �&1 b , b * do not depend on the choice of an orientation of #.)

Suppose that we wish to compute the integral of some f = f# b p# #
Cyl(AC) with respect to +~ 0=+(+H) or f = f# b pC

# # Cyl(AC) with respect to
+(&). Then, we may use these embeddings to write the integrals as
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|
A�

f d+~ 0=|
Gk#

f# b �&1
# b ,# b *# ` d+H (86)

|
A� C

f d+(&)=|
GCk#

f# b �C&1

# b ,C
# b *C

# ` d&. (87)

The above formulas show the following statement.

Lemma 4. Let f1 , f2 # Cyl(A� ); f1= f2 tilde +0-everywhere if and only if
for a graph # such that fi=p#* fi# i=1, 2, we have (�&1

# b ,# b *#)* f1#=
(�&1

# b ,# b *#)* f2# > d+H-everywhere (and analogously for the complexified
case). The natural maps

(�&1
# b ,# b *#)*: L2(A# , +~ 0#) � L2 \Gk#, ` +C

H+ ,

(88)

(�C&1
# b ,C

# b *C
# )*: L2(AC

# , + (&)
# ) � L2 \GCk#, ` &+ ,

are isometric.

Further, let C(k#) be the coherent state transform defined by Hall from
L2(Gk#, >k#

i=1 d+H (gi)) to L2(GC
k#, >k#

i=1 d&(gC
i )). It follows from (86, 87)

that

[R# ( f#) b �&1
# b ,# b *#](g*)

=|
Gk#

[ f# b �&1
# b ,# b *#](g&1g*) ` d\(g)

=(C(k#)[ f# b �&1
# b ,# b *#])(g*), (89)

where g, g*, g* # Gk# and (gg*) i=gi gi*. Re-expressing the last result less
precisely, the restriction of R#( f ) to Gk# embedded in GE#_GE# coincides
with the usual Hall transform. The following Lemma then follows from the
results of [5].

Lemma 5. Let f# be a measurable function on A# with respect to the Baez
measure +~ 0# ; the function R#( f#) restricted to �&1

# b ,# b *#(Gk#) is real-
analytic.

The function R#( f#) can thus be analytically extended to a holomorphic
function defined on �C&1

# b ,C
# b *C

# (Gk#C) which, according to Lemma 4,
uniquely determines an element Z#( f#) in L2(AC

# , &#). We have defined a
map Z#

Z#: L2(A# , +~ 0#) � L2(AC
# , + (&)

# ). (90)
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The consistency of the family of maps (Z#)# # Gra(7) easily follows from the
consistency of (R#)# # Gra(7) . Another advantage of relating, through (89), Z#

with the usual Hall transform C(k#) is that we may again consult Hall's
results and note that the map (90) is an isometry. Thus, we have verified
the following Lemma.

Lemma 6. (i) The family of maps (Z#)# # Gra(7) (90) is consistent;
(ii) The map

Z: L2(A� , +~ 0) & Cyl(A� � L2(AC, +(&)) (91)

is an isometry, where Z(p#* f#) :=Z# ( f#).

Since cylindrical functions are dense in L2(A� , +~ 0), it follows that our
transform Z extends to

Z: L2(A� , +~ 0) � C[L2(AC, + (&))] (92)

as an isometry.

6.4. Analyticity

We have seen that the pullback of Z#( f#) through the map (�C
# )&1 b ,C

# b
*C

# may be taken to be holomorphic. However, we will now show that this
is the case for Z( f ) itself.

Lemma 7. If f # Cyl(A� & L2(A� , +~ 0) then;

(i) Any cylindrical function f = f# b p# differs only on a set of tilde +0

measure zero from some f 0= f 0
# b p# such taht R#( f 0

#) is real analytic.

(ii) Z( f ) may be represented by a holomorphic function on AC.

Note that the second part of the Lemma follows automatically from
part (i).

For this Lemma, we will use the concept of the Baez-equivalence graph
#E corresponding to a graph #. This #E is an abstract graph (a collection
of ``edges'' and ``vertices'' not embedded in any manifold) formed from the
edges of #. However, two edges in #E meet at a vertex if and only if the
corresponding edges join to form an analytic path in #. Since each edge of
# can, at a given vertex, meet at most one other edge analytically, each
vertex in #E connects at most two edges. Thus, #E consists of a finite set of
line segments and closed loops that do not intersect. Let us orient the edges
of #E so that, at each vertex, one edge flows in and one edge flows out. We
will assume that the edges of # are oriented in the corresponding way.

A graph # for which #E contains no cycles will be called Baez-simple. To
derive Lemma 7, we will also need the following Lemma:
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Lemma 8. Any cylindrical function f: A� � C is identical to a function f 0

that is cylindrical over a Baez-simple graph #s , except on sets of +~ 0 measure
zero.

To see this, we construct the Baez-simple graph #s from # by removing
one edge ei

0 from the i th cycle in #E . Let `: A# � A# be the map such that

[`(A#)](ei
0)=_ `

Ni

j=1

A#(ei
j)&

&1

, (93)

where ei
j are the other edges in the i th cycle and are numbered from 1 to

Ni in a manner consistent with their orientations. For any other edge e, let
[`(A#)](e)=A#(e).

Proof of Lemma 8. If f = f# b p# , let f 0
# = f# b ` and f 0= f 0

# b p# so that f 0

is in fact cylindrical over #s ( f 0= f 0
#s

b p#s). Note that d+$# is a product of
measures associated with the connected components of #E and recall that
f 0

# differs from f# only in its dependence on edges in cycles of #E . For
simplicity, let us assume for the moment that f# in fact depends only on
edges that lie in one cycle : in #E so that f#= f: b p:# for some f:: A: � C.
Furthermore,

& f & f 0&2
L2, +~ 0

=|
Ga

E:_Gb
E: } [ f: b �&1

: ](g0: g&1
0b , g1a g&1

1b , ..., g (E:&1): g&1
(E:&1)b)

&[ f: b �&1
: ] \\ `

E:&1

i=1

(gia g&1
ib )+

&1

, g1a g&1
1b , ..., g (E:&1)a g&1

(E:&1)b+}
2

_ `
E:&1

i=1

$(g (i&1)b , gia) $(g (E:&1)b , g0a) `
E:&1

j=0

d+H (gia) d+H (gib)=0,

(94)

so that f and f 0 differ only on sets of +~ 0 measure zero. The same is true
when f# depends on several cycles :i .

We can also use #E to introduce a convenient labelling of the edges in #s .
Let e (i, j) be the j th edge of the i th connected component of #E , where we
again assume that the edges in the i th component are numbered con-
sistently with their orientations. Note that since #s is Baez-simple these
components form open chains with well-defined initial edges (e(i, 1)) and
final edges (e(i, Ni)).
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Proof of Lemma 7. Suppose that there are N#s components of #s . Then,
from (33), (34), and (39) we have

d\$#s= `

N#s

i=1
_d\(g(i, 1)a) d\(g(i, 1)b)

_ `
Ni

j=2

$(g (i, j&1)b , g(i, j)a) d\(g(i, j)a) d\(g(i, j)b)& . (95)

For k#s=�N#s1
i=1 (Ni+1), let us now introduce the map _A� , #s

: Gk#s � GE#s

through

[_A� , #s
(g)] i, j=g(i, j) A� (e(i, j)) g&1

(i, j+1) (96)

for g # Gk#, where we have set g(i, 1)=g(i, 1)a and g(i, j)=g(i, j&1)b for j�2.
Thus, we may write

R#s
( f 0

#s
)(A#s

)=|
Gk#s

[ f 0
#s b �&1

#s
b _A� , #s

] `

N#s

i=1

`
Ni+1

j=1

\(g(i, j)) d+H (g(i, j)). (97)

Analyticity of (97) can now be shown by making the change of integra-
tion variables

g$(i, j)=g(i, j) `
Ni+1

k= j

A(e(i, k)) (98)

so that, using the invariance of +H , we may write

R#s
( f 0

#s
)(A#s

)=|
Gk#s

[ f 0
#s b �&1

#s
b _1� , #s

]

_ `

N#s

i=1

`
Ni+1

j=1

\(g$(i, j)) _ `
Ni+1

k= j

A(e(i, k))&
&1

+ d+H (g$(i, j)). (99)

From the analyticity of \ [7] and the compactness of Gk#s it follows that
R#s

( f 0
#s

) is a real-analytic function. This concludes the proof of Lemma 5.

6.5. Gauge Covariance

We now derive

Lemma 9. Z is a G� -covariant transform.

In particular, this will show that R maps gauge invariant functions to
gauge invariant functions.
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Proof. For cylindrical f = f# b p# ,

R# ( f#)(A#)=|
G2E#

( f# b �&1
# )(g1a A� (e1) g&1

1b , ..., gE#a A� (eE#) g&1
E#b) d\$# (100)

and

R# ( f#)(g#[A#])=|
G2E#

( f# b �&1
# )(g1a g� p1a

A� (e1)(g� p1b
)&1 g&1

1b , ...,

gE#a g� pE# a
A� (eE#)(g� pE# b

)&1 g&1
E#b) d\$# , (101)

where g� pia
is the group element associated with the initial vertex of edge i

by g# # G# and g� pib
is the group element associated with the final vertex of

edge i. Note that, in this scheme, a point may be referred to as the initial
and�or final vertex of many edges.

We now perform the change of integration variables,

gia � g� &1
pia

gia (g� pia
)

(102)
gib � g� &1

pib
gib (g� pib

).

The measure d\$# contains only heat kernel-like measures and delta func-
tions $(gvi , gvj), where the notation indicates that the arguments of a given
delta-function are associated with the same vertex v. Since each such delta-
function is unaffected by the above transformation and the heat kernel-like
functions \& are conjugation invariant, \$# is also invariant under (102).
Thus,

R# ( f#)(g#[A#])=|
G2E#

( f# b �&1
# )(g� p1a

g1a A� (e1) g&1
1b g� p1b

, ...,

g� pE# a
gE#a A� (eE#) g&1

E# b(g� pE# b
)&1 d\$#

=R# (g#[ f#])(A#), (103)

verifying gauge covariance for cylindrical f. Since cylindrical functions are
dense in L2(A� , +~ 0), Lg�*, LC*

g� are continuous \g� # G� and we have shown that
Z is an isometry and thus continuous, it follows that Z commutes with
gauge transformations and that Lemma 9 holds. Theorem 2 then follows as
a corollary of Lemmas 3�9.

Before concluding, we note that a number of technical issue still remain
to be understood. Among these are the exact relationship of AC�GC to
AC�GC and a better understanding of the space obtained by completing
L2(AC, + (&)) & HC(AC). It is also not known a diffeomorphism covariant
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coherent state transform can be used to construct a holomorphic represen-
tation from L2(A� , +0). While we hope that future investigation will clarify
these matters, Theorems 1 and 2 as stated are enough to provide a
framework for the construction and analysis of holomorphic representa-
tions for theories of connections.

Appendix: The Abelian Case

For compact Abelian G, the transform Z of Section 6 can be expressed
in a particularly simple way and it is possible to obtain explicit results. We
begin by simply evaluating the transform of the holonomy T:: A� � CN

associated with an arbitrary piecewise analytic path :. (Note that the
results above for C-valued functions on A� hold for functions that take
values in any Hilbert space.) This holonomy is cylindrical over any graph
# in which the path : may be embedded and may be written as

T: (A� )= `
E#

i=1

[A� (ei)]mi, (104)

where the integer mi is the (signed) number of times that the path : traces
the edge ei . Thus, the transform is given by the Baez integral over T:

R(T:)(A� )=|
Ga

E#_Gb
E#

`
E#

i=1

[gia A� (ei) g&1
ib ]mi d\$#

=T: (A� ) |
Ga

E:_Gb
E:

`
E#

i=1

[gia g&1
ib ]mi d\$# (105)

and R is a scaling transformation on T: . Denote the resulting scaling factor
for T: on the right hand side of (105) by e&l(:), that is, R[T:]=e&l(:)T: .
For the case where & is a Gaussian measure in standard coordinates, we
will show that l(:) is real and positive.

Introduce coordinates % # [0, 2?], r # (&�, �) on U(1)C such that gC=
ei%er. We wish to consider a measure d&_=e&r2�_(d% dr�2? - ?_) and the
corresponding heat kernel measure d\_ (%)=�k # Z e&[(%+2?k)2]�2_(d%�- 2?_).
From (105) we find that

e&l(:)=|
Gk#

`
k#

j=1

eiqj %j d\_ (%j)=e&(_�2) - _�2? �j qj
2

(106)

for some qj # Z so that l(:) is real and positive, as claimed. Furthermore,
since qj is a linear function of the mi , l(:)=�i, j gij

# mi mj for some sym-
metric matrix gij

# defined by #, �# and *# . The matrix gij
# defines a Laplacian
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operator 2#=�i, j g ij
# (���%i)(���%j) on GE# and thus a Laplacian on A# , and

our transform is the corresponding coherent state transform on A# .
Consistency of our transform ensures that the 2# are a consistent set of
operators and that they define a Laplacian 2 on some dense domain in
L2(A� , +0). Our transform is just the coherent state transform on A� defined
by the heat kernel of the Laplacian 2.
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