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Abstract: In these lectures, I will explain the geometry
of ADE surface singularities, their resolutions, and their
deformations, interpret this geometry in gauge theory via
quiver representations, and apply these results to N=1
dualities.



1 ADE singularities, deformations, and reso-
lutions

1.1 The A; case

Consider an A; surface singularity S, analytically isomor-
phic to the hypersurface in C? defined by the equation

Ty = 2°.

This singularity can smoothed in two ways:

e Deforming the equation (complex structure deforma-
tion)

e Resolving (blowing up) the singularity (Kahler de-
formation)

The deformed equation may be taken to be
TY = 2+
where s € C. These form a nice family of surfaces X

over the parameter space Def(A4;) = C, with X, = S:

X C Def(Al) x C3

1
Def(Al),

the hypersurface X C Def(A;) x C? ~ C* being defined
by the equation zy = 2% + s.
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This family admits a nowhere vanishing holomorphic

2-form
~dx ANdy

Z

w € Oy /Def(Aq)"

The singularity .S can be resolved by blowing up the ideal
(z, z) (or the maximal ideal (z,y, z)) to obtain a smooth
surface 7 : S — S. Explicitly, in one local patch we
introduce a new variable u = z/x, and in the other patch
the variable v = x/z. This eliminates z in the first patch
and z in the second patch, and the respective equations
become
y = u’z, VY = 2

which are clearly smooth. We can take (u,z) (resp.
(v,y)) as coordinates on the respective patches. The
curve C' = 7 1(0) is isomorphic to P! with % and v iden-
tified with the standard affine coordinates of P!'. From
the gluing maps
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Yy =u'zr, v=u""

of the two patches it is immediate to compute that C? =
—2.
In the respective patches, we compute
m™*w = 2dx A du, ™ w = 2dv A dy,

which has no zeros. Thus 7*wg ~ wg, and S is a canon-
ical surface singularity.



It is not possible to replace S by S and form a family of
surfaces over Def(A;), but this can be done after a Galois
cover of the base, i.e. a change of variables. Substituting
s = —t?, we get the equation zy = 2> —t* = (2—1t)(z+t).
This singular family can be resolved by blowing up the
ideal (x,z — t). Explicitly, this gives two patches, one
with a new variable u = (z — t)/x, the other with a
new variable v = z/(z — t). Again, z (resp. x) can be
eliminated from the respective patches and we get smooth
hypersurfaces with equations

y = u(ux + 2t), vy —t = 2.

Alternatively, two copies of C? x V with respective co-
ordinates (u,z,t) and (v,y,t) are glued by the identifi-
cations

y = u(uzx + 2t), v=u"", t =t.

In other words, t € C, not s, is the natural variable
parametrizing deformations of S. For the purpose of gen-
eralizing, put V = C. The map s = —t? expresses V
as a Galois cover of Def(A;) with Galois group W = Zs
generated by ¢ — —t. So we can write Def(A;) as V/W.



This construction can be summarized by the diagram

Z = XAx,V = X

N 3
v L5 v/w,

where the square is a fiber square and Z2 — & x,V is
the blowup constructed above.

The family Z — V' is called a simultaneous resolu-
tion of S. The surface Z; corresponding to t € V is
isomorphic to X 2 if t # 0 while Z; is S. The excep-
tional curve C' C Zj is given in the respective patches by
r=t=0(respy=1t=0).



The simultaneous resolution can be used to construct
noncompact Calabi-Yau threefolds. Let f : C — V
be holomorphic.! A threefold Z is constructed by pulling
back Z via f, i.e. via the fiber square

/J = Z
{ 1
c Ly

Similarly, a possibly singular threefold X can be con-
structed by pulling back X x, V' via f:

X = A%,V
l l
c 4 v

and the map Z — X X,V induces a map Z — X.

!More general and more local constructions can be obtained from holomorphic maps
f: A=V with A a complex disk, but we choose C as the domain of f for application to
physics.



Explicitly, we let w be a coordinate on C and describe
fast = f(w). Then Z is constructed by taking two
copies of C? with respective coordinates (u,z,w) and
(v, y,w) and identifying them via

y = u(uzx + 2f(w)), v=u"", w = w.
Note that Z contains a curve isomorphic to P! lying
over each solution of f(w) = 0. These curves are all
contracted by the map Z — X. The explicit equation of
X as a hypersurface in C* is

ry = 2° — f(w)

It can be checked immediately that du A dx A dw =
—dv A dy N dw, patching to give a global holomorphic
3-form Q on Z. Thus Z is a (non-compact) Calabi-Yau
threefold, which here means a smooth threefold with a
nowhere vanishing holomorphic 3 form.

If f(w) = w, then X has a node (conifold singularity)
at the origin, and Z — X is a small resolution of X.
Note that if instead we take f(w) = —w, then we get
the same X, but a different small resolution Z’. The
birational map Z — — — Z' is called a flop. More
generally, given any Z constructed from f : C — V,
we can flop Z by constructing a new Z’, using —f in
place of f.



Since Z is a smooth family, all fibers are diffeomor-
phic. In particular, the exceptional curve C' ~ P! ~ S?
deforms to a topological 2 sphere S? in any Z;. This can
be seen explicitly if ¢ is real by changing variables to write
Z; as 2 + y? + 2? = t? and then letting z, v, 2 be real.
Put

at) = /S? W,
Note that «(0) = 0, since

a(0) :/Sgw*w:/cw*w :/W(C)w:O

since m(C') is a point. The quantity «(t) is called the
holomorphic volume of S?. Its vanishing is necessary
and sufficient for the homology class [S?] € H*(Z;, Z) to
be representable by a holomorphic cycle. If ¢ #£ 0, the
cycle S? C Z; is called a vanishing cycle.



1.2 General ADE singularities

Let’s generalize the A; case. ADE surface singularities
are ubiquitous in algebraic geometry and physics, and
there are many ways to characterize them. Perhaps the
simplest way is to describe these as canonical surface sin-
gularities, so that the minimal resolution

7:S— S

satisfies
T ws ™~ wg,
where wy denotes the dualizing sheaf of the variety X.

In particular, if S has trivial canonical bundle, then S
is smooth and has trivial canonical bundle.

Each of the ADE surface singularities can be described
as a hypersurface in C? with a double point. In fact, the
ADE singularities are precisely the hypersurfaces with a
rational double points, and this another way to charac-
terize these singularities.



The equations of the ADE singularities in all cases are

S Defining Equation

— ~n+l
A, XY =2

D, |2+ y’z+2"1=0

Es | 22+y°+2'=0
E, 2+ +y2d =0

Ey 2+ +22=0

In this form, the singularity is at the origin. In general,
the singular point will be denoted by p € S.

The ADE singularities can either be resolved or de-
formed. First let’s consider deformations.
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For a general S C C? defined by a polynomial F

choose representative polynomials GGy, . . ., G, for a basis
of
OF OF OF
C :
o A G 5 )

Then & = F' 4+ u1Gy + - - - + G, will define a sem-
universal deformation of S as a hypersurface in C**" with
coordinates (x,y, z, pi1, - - - , fhy)-

Explicitly for the ADE singularities we have the semi-
universal deformations, renaming the deformation pa-
rameters

S Equation

A, xy—z”“—}—Z”Z ;2" =0

D, | x? +y 224 2" 20 g2 1+2fyny—0
FEg| 22+ 93+ 2+ eyz® + esyz + €622 + sy
+€92 + €19 = 0

Er | 22+ y° + y2? + ey®2 + egy® + e3yz + €102>
+e19y + €14z + €18 =0

Es | 22 + 9 + 2° + ey2® + egy2? + €192° + €14y2
+e182° + €20y + €242 + €390 = 0
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In each case, the parameter space is n-dimensional.
As we will see, the parameter space can be identified
with the quotient of the corresponding root space by the
associated Weyl group, and the parameters «;, do;, Vn, €;
have been named so that under this identification they are
homogenous polynomials on the root space, with degree
given by their subscripts. For example, in the motivating
case of A;, we have ay = —t2.
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Now let S be an ADE singularity. For the minimal
resolution 7 : S — S we have 7~ 1(p) = C1 U ... UC,.
The curves C; are the exceptional curves, and each is
isomorphic to P!. Since the canonical bundle of S is
trivial, get get C? = —2 by adjunction. Furthermore,
the C; intersect each other transversely in the configura-
tion of the associated Dynkin diagram. A vertex is given
for each C; and an edge is drawn between the vertices
corresponding to C; to C; if the curves C; and C; meet
(and intersecting curves intersect at precisely one point).

A, i

i (2 Cn
Cn
D, C1 € . .Cn—2 Cn—1
C4
En C1 Co C3 .Cn—l Cn
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Let S be one of the ADE singularities and 7 : S — S
its minimal resolution. Put V = H?*(S,C). Then V
together with its intersection form is a (complexified) root
system of the type that that singularity is named for,
with root lattice H%(S,Z). The curves Ci,...,C, are
identified with a choice of positive simple roots in this root
system. In particular, this means that all positive roots
C can be expressed as a linear combination C' = ¥; n;C;
with n; € Z>g. Geometrically, this means that the cycle
C satisfies C? = —2, so that with the natural scheme
structure defined by II; Igz, the subscheme C' C S has

arithmetic genus 0 by adjunction. Here Z¢; is the ideal
sheaf of C; in S.
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Each root C generates a reflection r¢ in the hyperplane
in V" orthogonal to C

re: V=V, rc(D)=D+ (D - C)C.
The Weyl group W C Aut(V) is the group generated
by the r¢;. It is a finite group.

The Weyl group of A, is the symmetric group S,,1.
This can be seen explicitly as follows. Embed V' C C"*!
by mapping C; to e; — e;41, where the {e;} are the stan-
dard basis for C"*1. Let o € 5,11 denote the transposi-
tion (¢,4 4+ 1). Then we compute

r;(€j — €j11) = €s(j) — €o(jt1)-

Thus r¢; acts as the transposition (¢,7 + 1), and the as-
sertion follows since these tranpositions generate S,11.

We can now give the main geometric assertion.
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Given the semi-universal deformation X of .S parametrized
by V/W as described explicitly above, a simultaneous
resolution Z exists over V', so that the family Z is the
semi-universal deformation of S.

The situation can be summarized by the diagram

Z 5 Xx,V - X CV/WxC?

N 1
vV L vV/w

Asin the A; case, we can now pull back the simultaneous
resolution via a holomorphic map f : C — V, obtaining
a smooth threefold Z over C which maps to a possibly
singular threefold X. For any w with f(w) = 0, there
will be an ADE configuration of curves C1 U ... U C,
lying over w.
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WEe illustrate by constructing the simultaneous resolu-
tion for A,,. We have identified

V= {<t17'--7tn+1> S Rn+1 | Yt = O}

Recall the equation for X

zy = 2" 4 nil ;2"
i=2

We make the substitution «; = o;(t1,...,t,41), where
the o; are the usual elementary symmetric functions.
Note that this generalizes the A; case. The t; are natu-
rally functions on V', and the «; are functions on V /W,
which are homogeneous of degree ¢+ when thought of as
functions on V.

We construct Z from & x, V' as the closure of the
graph of the rational map

X x,V = (P
($7 Y, z, tl) S 7tn+1) = [Cl?, Hf/:l (Z + tZ/)]izl,...,n
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Let us now consider in the general case a threefold 7
constructed from amap f : C — V

J — X

N
C

Let C be a root. A fundamental result is that the cycle C
(with multiplicities) appears in the fiber of Z over w € C
if and only if f(w)-C =0, i.e. if and only if f(w) lies in
the hyperplane orthogonal to C'. Furthermore, in such a
case, inside the fiber of Z over w (which by construction
is diffeomorphic to g), the fiber of Z — X contains a
holomorphic cycle in the homology class [C].
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Let’s say a few more words for A;. We write f : C —
V C C3as

f:<f17f27f3):c_>c37 f1+f2+f3:0
Then X C C x C? is defined by the equation

zy = (2 + fi(w))(z + fo(w))(z + f3(w)).
We obtain Z as the closure of the graph of the rational

map

X - (P,
(@, 2, w) = (2, 24 fi(w)], [z, (24 fi(w))(z+ fa(w))]).
Using the identities

[z, 2+ fi(w)] = [(z + fo(w)(z + fs(w), Y],
[z, (2 + fi(w))(z + fa(w))] = [z + fa(w), —y],

we see that the indeterminacy locus of this map is given
by

r=y=0, z=—fi(w), filw)= f;w)
for any ¢ # 7. So any of these cases gives an exceptional
curve in /.
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If fi(w) = fo(w), then f(w) is orthogonal to Cy and we
get an exceptional curve homologous to C; in its fiber.

If fo(w) = f3(w), then f(w) is orthogonal to Cy and we
get an exceptional curve homologous to C in its fiber.

If fi(w) = f3(w), then f(w) is orthogonal to the root
C1 + (5 and we get an exceptional curve homologous to
C1 + Cy in its fiber.
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Since H 2(~,Z) ~ 7" we have n vanishing cycles
Szt C Zy, t = 1,...,n. For an appropriate family of
2-forms w¥ /v We put

a;(t) = /Slztw.

Here t € V. Note that o(t) vanishes when the cycle S7,
is holomorphic. As remarked above, this happens when
t is in the hyperplane orthogonal to the root C;. We can
choose w such that in the A,, case we have

a; =1; — i
with the conventions above. In the D,, case we have
o=t —tixq,1=1,....,n—1, ay =t,_ 1+,
where X X, V' is given by the equation

Pzt — Tt
2

z? + yzz + + 2 ﬁ1 t;y,
i
and the blowup Z — X X,V can be given explicitly.
The FE, descriptions can also be given explicitly by
explicit formulas for the a;(t) and an explicit geometric
construction in lieu of an explicit equation.
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There is a more general construction obtained from
partial simultaneous resolutions S of S. Instead of
blowing up all of C, ..., C,, we pick a subset {C; | i €
I} of the Cj, and contract the curves {C; | j &€ I} in
S to obtain a surface S (with ADE singularities) and a
birational morphism S — S. Let W’ C W be the subset
of W generated by the reflections {r¢; | ¢ € I}. It can
be shown that V/W'is smooth (and is in fact isomorphic
to C"), and that there is a diagram

Y = Xx,V/W - X cCV/WxC?

N\ \ 3
viw 5 VW

where the fibers of ) are partial resolutions of the fibers
of X, the fiber over the origin being the partial resolution
S. Furthermore, ) is a semi-universal deformation of S.

A threefold Y can be constructed from a holomorphic
map f : C — V/W’ by pulling back ). Pulling back
X x,V/W' gives a threefold X, and there is an induced
map Y — X contracting some curves. The threefold
Y may be singular, but will be smooth if f is carefully
chosen.
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