
NOTES ON LAGRANGIAN FIBRATIONS

DANIELE SEPE

Abstract. These notes are written to complement a series of lectures on Lagrangian fibrations that will

take place at IST from February 28 to April 3, 2012. As such, they only cover a few topics viewed from a
very specific point of view (i.e. understanding the symplectic topology of completely integrable Hamiltonian

systems). At the moment they are work in progress, so please feel free to comment on versions of this draft.
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1. Motivation

2. Definition and examples

Proviso. Throughout these notes we work in the C∞ category unless otherwise stated. Moreover, all mani-
folds are assumed to be Hausdorff.

Definition 2.1. Let (M,ω) be a symplectic manifold. A Lagrangian fibration is a surjective map π :
(M,ω)→ B whose regular fibres are Lagrangian submanifolds of (M,ω).

Remark 2.2. Definition 2.1 implies that dimM = 2 dimB.

2.1. Examples.

2.1.1. The cotangent bundle. Let B be any manifold and consider its cotangent bundle T∗B endowed with
the canonical symplectic form Ωcan (cf. [MS95]). The footpoint projection

pr : (T∗B,Ωcan)→ B

is a Lagrangian fibration (in fact, a fibre bundle). Note that the zero section is Lagrangian: in fact, all
sections α : B → T∗B which are closed 1-forms are Lagrangian. While this is a very simple example, it is
central to understanding the topology and symplectic geometry of Lagrangian fibrations (cf. Section 2.2).

This example can be generalised slightly by considering magnetic terms. Fix [κ] ∈ H2(B;R) and let κ be a
closed 2-form on B whose cohomology class is [κ]. Then the 2-form Ωcan +pr∗κ is closed and non-degenerate
on T∗B and it makes the footpoint projection into a Lagrangian fibration.

The author is grateful to the organisers of the working seminar on symplectic geometry for the opportunity to present the
above material, and to the people who attended the seminars for their attention, comments, criticisms and observations which

have definitely improved the quality of these notes.
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Exercise 1. The Lagrangian fibration

pr : (T∗B,Ωcan + pr∗κ)→ B

admits a Lagrangian section s : B → T∗B if and only if [κ] = 0.

Notation. A Lagrangian fibration which is a fibre bundle is called a Lagrangian bundle.

2.1.2. Local model of Lagrangian fibre bundles with compact fibres. Consider the Lagrangian bundle pr :
(T∗B,Ωcan)→ B and let a1, . . . , an be the standard coordinates on Rn. Fix a trivialisation T∗Rn ∼= Rn×Rn,
so that there exist coordinates a1, . . . , an, p1, . . . , pn on Rn × Rn with

Ωcan =

n∑
i=1

dai ∧ dpi.

Define a Zn-action on T∗Rn
Zn × T∗Rn → T∗Rn

(k, (a,p)) 7→ (a,p + k).
(1)

The action of equation (1) is free and properly discontinuous, so that the quotient T∗Rn/Zn is a smooth
manifold. Moreover, it preserves the canonical symplectic form Ωcan; thus T∗Rn/Zn inherits a symplectic
form ω0. Finally, the above action preserves the footpoint projection pr; this map descends to a well-defined
map

(T∗Rn/Zn, ω0)→ Rn

whose fibres are Lagrangian tori.

Exercise 2. Check the above claims.

This example provides the local model for Lagrangian bundles with compact and connected fibres. It
turns out that if B is the base of such a bundle, then B inherits the structure of an integral affine manifold,
i.e. a (maximal) atlas A whose changes of coordinates, on each connected component, are restrictions of
elements of the group

AffZ(Rn) := GL(n;Z) nRn

of integral affine transformations of Rn (cf. Section 4).

2.1.3. Completely integrable Hamiltonian systems.

Definition 2.3. Let (M,ω) be a 2n-dimensional symplectic manifold. A completely integrable Hamiltonian
system (CIHS for short) on (M,ω) is a map (called momentum map

(f1, . . . , fn) : (M,ω)→ Rn

whose components satisfy

• (involutivity) {fi, fj} = 0 for all i, j;
• (functional independence) df1 ∧ . . . ∧ dfn 6= 0 almost everywhere on M1.

There are several reasons to study CIHS, coming from within and outwith mathematics. For instance,
CIHS can be used to model interesting physical and chemical problems which have ‘real life’ applications (cf.
[ELS09]). In particular, it is important to provide scientists with appropriate tools to study the dynamical
properties of these systems, to determine whether two such systems are equivalent (up to some specified
notion) and to deal with motion around singularities, i.e. fibres of the momentum map which contain crit-
ical points. On the other hand, from a mathematical point of view, a CIHS is a Hamiltonian Rn-action
on (M,ω); as such, they generalise toric manifolds and present a much richer (but harder to understand)
structure due to the non-compactness of the group acting. For instance, in general it is not true that the
fibres of the momentum map are connected, unlike the toric case. Moreover, the types of singularities that
can arise are much more complicated than in the toric case, as illustrated in some examples below.

1Note that this condition is loosely stated here as the conventions vary depending on the point of view taken to study

integrable systems. For the purposes of these notes, ‘almost everywhere on M ’ means ‘on a dense open subset of M ’.
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Seeing as singularities of CIHS play an important role in the study of Lagrangian fibrations, it may be
helpful to present a few of the simplest examples which are discussed in further detail in 5.

i) Elliptic: Consider the Lagrangian fibration given by

(T∗R2,Ωcan)→ R
(a, p) 7→ a2 + p2.

(2)

The only critical point is the origin, which is, in fact, a fibre, while all other fibres are diffeomorphic
to S1. By taking products of the fibration of equation (2), it is possible to construct all local models
for the singularities of toric manifolds (cf. and [Sym03]).

ii) Hyperbolic: Consider the Lagrangian fibration

(T∗R2,Ωcan)→ R
(a, p) 7→ ap.

(3)

Like the elliptic case above, there is only one critical point at the origin, but the fibre on which it lies
is not compact. Moreover, all fibres have two connected components, while the critical fibre (i.e. the
one containing the origin) with the origin removed has four connected components. The topology of
this singularity is more complicated than in the elliptic case and, as such, it makes the construction
of Lagrangian fibrations with this type of singularity harder. However, it is important to remark
that the vast majority of CIHS have both elliptic and hyperbolic singularities.

iii) Focus-focus: Consider the following (holomorphic) Lagrangian fibration

(C2,Re(dz ∧ dw))→ C
(z, w) 7→ zw.

(4)

In this example the momentum map is given by the real and imaginary parts of the above complex
function. In some sense this singularity is the complex analogue of the hyperbolic case presented
above; as such, all fibres are connected and the fibre containing the only critical point consists of
two Lagrangian discs in C2 transversely intersecting. Focus-focus singularities have been central
in the development of the theory of Lagrangian fibrations as their presence indicates non-trivial
dynamical phenomena (cf. [DDSZ09]). In particular, Duistermaat’s paper [Dui80] on the local
structure of Lagrangian fibrations was motivated by the presence of such a singularity in the case
of the integrable system given by a spherical pendulum. On the other hand, these singular points
occur naturally in the study of Lagrangian fibrations from the point of view of mirror symmetry (cf.
[CB04]) and exhibit interesting symplectic invariants (cf. Section 5 and [Ngo03]).

2.2. A simple example. In this section the cotangent bundle

pr : (T∗B,Ωcan)→ B

is studied in further details, in order to present some important properties enjoyed by a large family of
Lagrangian fibrations which allow to develop a classification theory (cf. Section 3).

2.2.1. Infinitesimal fibrewise action. Let U ⊂ B be an open set and consider α : U → T∗U ⊂ T∗B be a
locally defined 1-form. By definition α is also a locally defined section of pr. The equation

(5) ι(Xpr∗α)Ωcan = pr∗α,

where ι denotes interior product, defines a local vector field on T∗U .

Claim 2.4. Xpr∗α ∈ ker pr∗.

Proof. Let q1, . . . , qn be local coordinates on U and set

α =

n∑
i=1

αidq
i

for some smooth functions αi : U → R, i = 1, . . . , n. Then, by definition,

(6) Xpr∗α =

n∑
i=1

(pr∗αi)Xpr∗dqi .

3



Seeing as the condition that needs checking is pointwise, it suffices to prove that for all locally defined smooth
functions f ∈ C∞(U), Xpr∗df ∈ ker pr∗. Fix such a function and let Y ∈ ker pr∗. Since pr∗f is constant
along the fibres of pr, it follows that Y (pr∗f) = 0. On the other hand,

Y (pr∗f) = (pr∗(df))(Y ) = Ωcan(Xpr∗df , Y )

by definition of the vector field Xpr∗df . Therefore

(7) Ωcan(Xpr∗df , Y ) = 0;

since equation (7) holds for all Y ∈ ker pr∗, it follows that Xpr∗df ∈ (ker pr∗)
Ωcan , where the upper script

denotes the symplectic orthogonal with respect to the canonical form. The map pr defines a Lagrangian
fibration, which means that (ker pr∗)

Ωcan = ker pr∗ and the result follows. �

Exercise 3.

i) If (q,p) are local canonical coordinates on T∗U , so that q1, . . . , qn are coordinates on U and

Ωcan =

n∑
i=1

dqi ∧ dpi,

find a coordinate expression for Xpr∗α for any α : U → T∗U ;
ii) Using the result of part (i), prove that for all functions f, g ∈ C∞(U),

[Xpr∗df , Xpr∗dg] = 0,

where [., .] denotes the standard Lie bracket of vector fields. Hence, or otherwise, prove that for all
α, β : U → T∗U

[Xpr∗α, Xpr∗β ] = 0.

Using Claim 2.4 and the results of Exercise 3 it is possible to define a smooth fibrewise infinitesimal action
of T∗B → B on itself, defined by

Γ(T∗B)→ Γ(TT∗B)

α 7→ Xpr∗α;
(8)

note that, in fact, the image of the action is tangent to the fibres of the footpoint projection. The most
appropriate framework to define this action is that of Lie algebroids (cf. Section 3), as each cotangent
space (considered as an abelian Lie algebra) acts infinitesimally on itself by the above map. Moreover, the
image of a local frame α1, . . . , αn of T∗B gives n linearly independent vector fields tangent to the fibres of
pr : (T∗B,Ωcan)→ B by non-degeneracy of Ωcan.

2.2.2. Smooth fibrewise action. Given an action of a finite dimensional Lie algebra g on a manifold M it
is natural to ask whether it can be integrated to an action of the corresponding Lie group G on M . This
section shows that the above fibrewise infinitesimal action can, in fact, be integrated to a smooth action;
this follows immediately once it is observed that, for any α : U → T∗U , its flow φtα is defined for all t ∈ R,
i.e. the image of the infinitesimal action of equation (8) consists of complete vector fields.

Exercise 4. Let α : U → T∗U . Prove that the flow of Xpr∗α is given by

φtα : T∗U → T∗U

β 7→ β + tα.
(9)

Consider the fibre product

T∗B ×pr pr T∗B := {(α, β) ∈ T∗B × T∗B : pr(α) = pr(β)};

it can be checked that this is a smooth manifold (since pr is a surjective submersion). The map

µ : T∗B ×pr pr T∗B → T∗B

(α, β) 7→ φ1
α(β) = β + α

(10)

defines a smooth fibrewise action of T∗B on the fibres of pr : (T∗B,Ωcan) → B. Note that since the
infinitesimal action of equation (8) sends a local frame of T∗B to a local frame of vector fields tangent to
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the fibres of pr, it follows that the fibrewise action defined by µ is transitive. As in the infinitesimal case,
the best framework to describe µ as an action is using the language of Lie groupoids (cf. Section 3).

2.2.3. Smooth trivialisations. Since pr : (T∗B,Ωcan) → B is a submersion, there exist local sections. Upon
a choice of one such σ : U → pr−1(U), the map µ of equation (10) allows to define a smooth diffeomorphism
between pr−1(U)(= T∗U) and T∗U which identifies σ with the zero section in T∗U . While this is almost
tautological in this simple example, the underlying principle is the key to understanding the smooth classi-
fication of a large class of Lagrangian fibrations.

Pick a section σ as above and define a smooth map

ψσ : T∗U → pr−1(U)(= T∗U)

β 7→ φ1
β(σ ◦ pr(β))(= β + σ ◦ pr(β));

(11)

it is evident that this is a diffeomorphism which maps the zero section of T∗U → U to the chosen section σ.
Moreover, note that pr ◦ ψσ = pr, i.e. the above diffeomorphism preserves the fibration defined by pr.

Remark 2.5. In general, the diffeomorphism ψσ does not yield a symplectomorphism. In fact, it can be
checked that

ψ∗σΩcan − Ωcan = pr∗dσ.

2.2.4. Symplectic trivialisations. In light of Remark 2.5, the diffeomorphism ψσ is a symplectomorphism if
and only if pr∗dσ = 0. Since pr is a submersion, it follows that pr∗dσ = 0 if and only if dσ = 0. However, this
condition can be rephrased as stating that σ : U → pr−1(U) is a Lagrangian section of pr : (T∗B,Ωcan)→ B.

Exercise 5. Check that a 1-form σ : U → T∗U is closed if and only if σ∗Ωcan = 0, i.e. if and only if σ is a
Lagrangian section of pr : (T∗B,Ωcan)→ B.

Note that, locally, it is possible to pick a Lagrangian section of pr : (T∗B,Ωcan) → B, as any locally
defined closed section works. Fix such a choice σ : U → pr−1(U) and construct ψσ as in equation (11). By
construction this map is a symplectomorphism between (T∗U,Ωcan) and (pr−1(U),Ωcan) which maps the
zero section to σ and satisfies pr ◦ ψσ = pr.

3. Global topological and symplectic classification

In this section the topology and symplectic geometry of an important family of Lagrangian fibrations is
studied. The aim is to generalise the Liouville-Mineur-Arnol’d theorem concerning the existence of action-
angle coordinates in a neighbourhood of a compact and connected fibre of a Lagrangian fibration (cf. Theorem
3.1 below) and to study, in the spirit of Duistermaat’s seminal work [Dui80], global consequences of this
generalised theorem.

Assumption 1. Throughout this section, any Lagrangian fibration π : (M,ω)→ B has connected fibres and
is a surjective submersion unless otherwise stated.

Suppose, in addition to the above assumption, that the fibration is proper. It follows from a theorem
of Ehresmann (cf. [CB97]) that π : (M,ω) → B is a fibre bundle with compact fibres. Then the following
theorem holds.

Theorem 3.1 (Liouville-Mineur-Arnol’d, Duistermaat [Dui80]). There exists an atlas A = {Ui, χi} of B
such that π can be trivialised over Ui via symplectomorphisms

ϕi : (π−1(Ui), ω|π−1(Ui))→ (χ∗i (T
∗Rn/Zn), χ∗iω0),

where pr : (χ∗i (T
∗Rn/Zn), χ∗iω0) → Ui is the Lagrangian fibration obtained by pulling back Example 2.1.2

along the coordinate map χi : Ui → Rn.

Remark 3.1. The Liouville-Mineur-Arnol’d theorem also describes the dynamics of a CIHS in a neighbour-
hood of a compact and connected fibre of the momentum map (cf. [Arn78]); while this result is important
for mechanical purposes, it shall not be considered further in these notes.

As a corollary to the above theorem, obtain the following.
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Corollary 3.2. Under the above assumptions, the fibres of π : (M,ω)→ B are n-dimensional tori.

Note that the trivialisations of Theorem 3.1 are given by quotients of the cotangent bundle by some
smoothly varying lattice (which is also a Lagrangian submanifold of the cotangent space). In what follows
the aim is to try and mimick this construction in a greater degree of generality. Furthermore, Theorem 3.1
also allows to describe the topological and symplectic classification of Lagrangian fibre bundles with compact
and connected fibres (cf. [DD87, Dui80]).

3.1. Infinitesimal action of T∗B → B along π : (M,ω) → B. Henceforth, fix a Lagrangian fibration
π : (M,ω) → B. Recall that if (M,ω) is a symplectic manifold, ω induces a Poisson bracket {., .}ω on the
space of (locally defined) smooth functions C∞(M) by setting, for all f, q ∈ C∞(M)

{f, g} := ω(Xdf , Xdg),

where Xdef , Xdg are the Hamiltonian vector fields of the functions f, g, defined as in equation (5).

Definition 3.2. Let (Pi, {., .}i) be Poisson manifolds for i = 1, 2 and let F : P1 → P2 be a smooth map.
Say that F is a Poisson morphism if for all f, g ∈ C∞(P2)

F ∗{f, g}2 = {F ∗f, F ∗g}1.

The following proposition explains the importance of the Poisson structure induced by ω on the total
space of π : (M,ω)→ B; it is stated without proof (cf. [Vai94]).

Proposition 3.3. The Lagrangian fibration π : (M,ω)→ B induces the zero Poisson structure on B so that
the map

π : (M, {., .}ω)→ (B, 0)

is a Poisson morphism.

Thus B is henceforth considered as a Poisson manifold with trivial Poisson structure. Recall that any
Poisson structure ., . on a manifold P defines a Lie algebroid structure on pr : T∗P → P (cf. [CF04]). In
particular, associated to the zero Poisson structure on B there is a Lie algebroid structure on pr : T∗B → B,
which makes it into a bundle of abelian Lie algebras. The advantage of using the formalism of Lie algebroids
is that there is a natural notion of action for such objects.

Let U ⊂ B be an open set and consider a locally defined 1-form α : U → T∗U . Define a vector field
Xπ∗α ∈ Γ(TM) by setting

(12) ι(Xπ∗α)ω = π∗α,

(cf. equation (5)). Note that, for all b ∈ B and m ∈ π−1(b), equation (12) can be used to define a map

T∗bB → TmM ;

viewing T∗bB as an abelian Lie algebra, the above map can be seen as an infinitesimal action of T∗bB. The
following proposition states that this pointwise infinitesimal action is in fact a smooth action of T∗B → B
on M .

Proposition 3.4. The map

A : Γ(T∗B)→ Γ(TM)

α 7→ Xπ∗α
(13)

defines a Lie algebroid action of T∗B → B with structure induced by the zero Poisson structure on B along
the Lagrangian fibration π : (M,ω)→ B.

Proof. It can be checked that the above statement is equivalent to proving the following four properties (cf.
[MM03]): –

(i) for all α, β ∈ Γ(T∗B), Xπ∗(α+β) = Xπ∗α +Xπ∗β);
(ii) for all α ∈ Γ(T∗B), for all f ∈ C∞(B), Xπ∗(fα) = (π∗f)Xπ∗α;
(iii) for all α ∈ Γ(T∗B), Xπ∗α ∈ kerπ∗;
(iv) for all α, β ∈ Γ(T∗B), [Xπ∗α, Xπ∗β ] = 0.
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Properties (i) and (ii) follow immediately from the definition of the map A. The proof of property (iii) is
identical to the proof of Claim 2.4 and is thus omitted. It remains to prove property (iv). Choose local
coordinates q1, . . . , qn on B and set

α =

n∑
i=1

αidq
i β =

n∑
j=1

βjdq
j

for smooth functions αi, βj . Then

[Xπ∗α, Xπ∗β ] =

n∑
i,j=1

[(π∗αi)Xπ∗dqi , (π
∗βj)Xπ∗dqj ] =

n∑
i,j=1

(
(π∗αi)(π

∗βj)[Xπ∗dqi , Xπ∗dqj ]

+ (π∗αi)(Xπ∗dqi(π
∗βj))Xπ∗dqj − (π∗βj)(Xπ∗dqj (π

∗αi))Xπ∗dqi

)

=

n∑
i,j=1

(π∗αi)(π
∗βj)[Xπ∗dqi , Xπ∗dqj ]

where the first equality follows from properties (i) and (ii) and the last from property (iii). Thus it suffices
to show that for any f, g ∈ C∞(B), [Xπ∗df , Xπ∗dg] = 0. Note that the homomorphism

C∞(M)→ Γ(TM)

h 7→ Xdh

is a Lie algebra homomorphism with respect to the Poisson bracket {., .}ω and the Lie bracket [., .]. In
particular, this implies that for f, g ∈ C∞(B),

[Xπ∗df , Xπ∗dg] = X{π∗f,π∗g}ω = 0,

where the second equality follows from the fact that π : (M, {., .}ω) → (B, 0) is a Poisson morphism. This
completes the proof of property (iv) and of the proposition. �

Remark 3.3.

i) Note that what really lies at the heart of the proof of Proposition 3.4 is the Poisson structure on M
rather than its symplectic structure;

ii) The action of equation (13) is not symplectic, i.e. the vector fields Xπ∗α do not, in general satisfy
LXπ∗αω = 0;

iii) For each b ∈ B and each m ∈ π−1(b), A(T∗bB) = kerπ∗(m), since by Proposition 3.4, A(T∗bB) ⊂
kerπ∗(m) and dimA(T∗bB) = dim T∗bB as the symplectic form is non-degenerate. Since

dim kerπ∗(m) = n = dim T∗bB,

the claim follows.

Exercise 6. Find necessary and sufficient conditions on α ∈ Γ(T∗B) so that LXπ∗α = 0.

3.2. Groupoid action of the cotangent bundle. In this section, the Lie algebroid action of Proposition
3.4 is integrated to a Lie groupoid T∗B // //B action on M along π : (M,ω)→ B. However, just as in the
case of integration of infinitesimal Lie algebra actions on manifolds, some restriction on the topology of M
is required so as to be able to integrate the vector fields of equation (13).

Assumption 2. Henceforth, consider only complete Lagrangian fibrations, i.e. for every compactly supported
1-form α on the base space the vector field Xπ∗α constructed via equation (12) is complete.

Remark 3.4. The above assumption is reasonable, not only because it allows to integrate the Lie algebroid
action of equation (13), but also because almost all Lagrangian fibrations arising from CIHS and in mirror
symmetry are complete away from the singular points.

In light of the above assumption, for each compactly supported locally defined 1-form α : U → T∗U , let
φtα : π−1(U) → π−1(U) be the flow of the vector field Xπ∗α. Note that for each covector αb ∈ T∗bB there
exists a compactly supported locally defined 1-form α : U → T∗U such that α(b) = αb. The vector field
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Xπ∗α is tangent to the fibres of π : (M,ω)→ B by Proposition 3.4; therefore, its flow φtα lies along the fibres
of π : (M,ω) → B for all t ∈ R. Note that for each m ∈ π−1(b) the value of Xπ∗α(m) only depends on αb
and not on the choice of compactly supported 1-form α : U → T∗U satisfying α(b) = αb. Therefore, for each
αb ∈ T∗bB, there is a well-defined diffeomorphism

(14) φ1
αb

:= φ1
α|π−1(b) : π−1(b)→ π−1(b),

where α : U → T∗U is any compactly supported form such that α(b) = αb. Note that, in fact, the assignment

T∗bB → Diff(π−1(b))

αb 7→ φ1
αb

(15)

is a Lie group homomorphism, where T∗bB has the structure of an abelian Lie group.

The fibrewise Lie group structure of T∗B → B yields a structure of Lie groupoid (in fact, simply a
bundle of abelian Lie groups), with source and target maps being the footpoint projection pr, multiplication
given by fibrewise addition of covectors, unit being the zero section and inversion given by taking negatives
of covectors. Denote this Lie groupoid by T∗B ////B . The following proposition merely states that the
fibrewise actions defined by equation (15) for each b ∈ B vary smoothly as b ∈ B varies and is a simple
consequence of Proposition 3.4 (for a definition of Lie groupoid action, see [MM03]).

Proposition 3.5. Let π : (M,ω)→ B be a complete Lagrangian fibration. The following smooth map

µ : T∗B ×pr π M →M

(α,m) 7→ φ1
α(m)

(16)

defines a smooth left-action of T∗B ////B on M along π : (M,ω)→ B.

Remark 3.5.

i) The fibrewise action defined by equation (15) is, in fact, transitive, since the infinitesimal fibrewise
action mapped T∗bB onto Tmπ

−1(b) for all m ∈ π−1(b) (cf. Remark 3.3.iii);
ii) Note further that since for all b ∈ B the fibrewise action of equation (15) is by abelian Lie groups,

the isotropy subgroups at points m,m′ ∈ π−1(b) can be identified canonically. Therefore, it makes
sense to consider the subgroup of periods Λb ⊂ T∗bB, defined by

(17) Λb = {αb ∈ T∗bB : ∃m ∈ π−1(b) s.t. φ1
αb

(m) = m},

since if φ1
αb

(m) = m for some m ∈ π−1(b), then φ−1
αb

= id. Moreover, since dim T∗bB = dimπ−1(b),

for each b ∈ B the subgroup Λb is discrete, i.e. isomorphic to Zk for k ≤ n.

Definition 3.6 ([DD87, Dui80, Vai94]). The subset

(18) Λ :=
∐
b∈B

Λb ⊂ T∗B

is called the period net associated to the Lagrangian fibration π : (M,ω)→ B.

Remark 3.7. When dealing with CIHS, the period net is also known as period lattice or period lattice
bundle, since, in this case, the dimension of each period subgroup Λb is maximal and thus it forms a lattice
inside T∗bB. The period lattice associated to a CIHS is one of its most important topological and symplectic
invariants (cf. Sections 4, 5 and [Dui80, Ngo03]). The terminology used throughout these notes comes from
the theory of symplectic realisations of regular Poisson manifolds (cf. [DD87, Vai94]).

The period net Λ associated to a Lagrangian fibration π : (M,ω) → B plays a fundamental role in the
topological and symplectic classification problems. A priori, it is not clear that Λ is a smooth submanifold
of T∗B and, in fact, its smoothness follows from the fact that there exists of a Lagrangian fibration π :
(M,ω)→ B associated to it (cf. [Zun03]).

Theorem 3.6. Fix a complete Lagrangian fibration π : (M,ω)→ B and let Λ be the associated period net.
Then

i) Λ is a closed Lagrangian submanifold of T∗B;
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ii) The quotient T∗B/Λ is a smooth manifold.

Proof. The idea of the proof is to show that Λ is given, locally, as the graph of some sections ασ : U → T∗U ,
where σ : U → π−1(U) denotes a local section of π : (M,ω)→ B.

Firstly, note that since π : (M,ω)→ B is a surjective submersion, then for each b ∈ B there exists a local
section σ : U → π−1(U) defined in an open neighbourhood U of b. Fix such a section σ and consider the
smooth map

ψσ : T∗U → π−1(U)

α 7→ φ1
α(σ ◦ pr(α))

(19)

(cf. equation (11)). The claim is that ψσ is a local diffeomorphism at all points of T∗U . Note that since
dim T∗U = dimπ−1(U), it suffices to prove that kerDψσ(α) = 0 for all α ∈ T∗U . Fix a point α0 ∈ T∗U and
begin by observing that if X ∈ Tα0

T∗U is tangent to the fibres of pr, then Dψσ(α0)(X) = 0 if and only if
X = 0 by Remark 3.3.iii. Therefore, if kerDψσ(α0)(Y ) = 0 and Y 6= 0, then Dpr(α0)(Y ) 6= 0. Any such
vector Y ∈ Tα0

T∗U is mapped to a non-zero vector Y ′ ∈ Tψσ(α0)π
−1(U) such that Dπ(ψσ(α)0) 6= 0, since

σ is an immersion and the action of equation (16) preserves the Lagrangian fibration π : (M,ω)→ B. Thus
kerDψσ(α0) = 0 as claimed.

Let b0 ∈ U and α0 ∈ Λb0 . By definition

ψσ(α0) = σ ◦ pr(α0).

Since ψσ is a local diffeomorphism, there exists an inverse ψ−1
σ defined on an open neighbourhood V ⊂ π−1(U)

of σ ◦ pr(α0). By shrinking U if needed, may assume that U = π(V ). The composite

(20) ασ = ψ−1
σ ◦ σ : U → T∗U

is a locally defined 1-form, since pr = π ◦ ψσ. This local section of pr : (T∗B,Ωcan)→ B is what yields the
smooth structure on Λ. By definition, for all b ∈ U

σ(b) = ψσ ◦ ασ(b) = φ1
ασ(b)(σ(b));

therefore, for all b ∈ U , ασ(b) ∈ Λb. Set W = ψ−1
σ (V ); since ψ−1

σ is an open map, W is an open neighbour-
hood (diffeomorphic to V ). The above argument shows that ασ(U) ⊂ W ∩ Λ. If the reverse inclusion also
holds, then Λ is a smooth submanifold of T∗B.

Suppose that β ∈ W ∩ Λ; the aim is to show that β = ασ(pr(β)). Since β ∈ W , then there exists
m ∈ V = ψσ(W ) such that

(21) m = ψσ(β) = φ1
β(σ ◦ pr(β)).

On the other hand, β ∈ Λpr(β) implies that for all m′ ∈ π−1(pr(β)), φ1
β(m′) = m′. Therefore

(22) φ1
β(σ ◦ pr(β)) = σ ◦ pr(β);

in light of equation (22), it is possible to rewrite equation (21) as

ψσ(β) = σ ◦ pr(β).

Applying ψ−1
σ to both sides of the above equality, obtain that

β = ψ−1
σ ◦ σ ◦ pr(β) = ασ ◦ pr(β),

thus proving that β ∈ ασ(U). This completes the proof that Λ is a smooth submanifold of T∗B.

In order to show that Λ is closed, let (βn) ⊂ Λ be a sequence that converges to β ∈ T∗B. The aim is to
prove that β ∈ Λ. By taking a small enough neighbourhood W ′ of β in T∗B, it is possible to ensure that
all but finitely many βn lie in W ′ and that there exists a locally defined section σ : U ′ = pr(W ′) ⊂ B →M .
Consider the diffeomorphism ψσ constructed as in equation (19). For all but finitely many n, have that

ψσ(βn) = σ ◦ pr(βn),
9



since, for all n, βn ∈ Λpr(βn). By continuity of σ and pr, the left hand side converges to σ ◦ pr(β). On the
other hand, the right hand side converges to ψσ(β), again by continuity of ψσ. Since M is assumed to be
Hausdorff, limits in M are unique and, therefore, ψσ(β) = σ ◦ pr(β). By definition of ψσ, it follows that
β ∈ Λ and the proof of (i) is complete.

The proof of (ii) hinges upon the following important property (cf. [Vai94]). If M ′ is a smooth manifold
and Q is an equivalence relation on M ′ whose graph in M ′ ×M ′ is a closed submanifold, then the quotient
M ′/Q is a smooth manifold2. In this case, two elements α, β ∈ T∗B are equivalent if and only if α− β ∈ Λ.
The proof that

{(α, β) ∈ T∗B × T∗B : α− β ∈ Λ} ⊂ T∗B × T∗B

is a closed submanifold of T∗B×T∗B is left as an exercise to the reader, as it can be proved using existence
of the sections ασ constructed in the proof of (i) and by following the above arguments. �

Exercise 7. Complete the proof of part (ii) of Theorem 3.6.

Remark 3.8. Existence of the open sets W ⊂ T∗B in the proof of part (i) of Theorem 3.6 uses crucially
the fact that Λ ⊂ T∗B is defined using a smooth Lagrangian fibration π : (M,ω) → B, as these open sets
are constructed from open sets of M .

Theorem 3.6 implies the following corollary.

Corollary 3.7.

i) The inclusion Λ ↪→ T∗B makes Λ the space of arrows of a wide, étale, Lie subgroupoid of T∗B ////B ;
ii) The quotient T∗B/Λ inherits the structure of Lie groupoid over B. The left Lie groupoid action of

T∗B // //B on M along π : (M,ω) → B of equation (16) descends to a a free left Lie groupoid

action of T∗B/Λ ////B on M along π : (M,ω)→ B denoted by

µ̂ : T∗B/Λ ×s π M →M

where s : T∗B/Λ→ B denotes the source map of T∗B/Λ ////B ;

iii) A choice of locally defined section σ : U ⊂ B → π−1(U) induces a diffeomorphism

ψ̂σ : T∗U/Λ|U → π−1(U)

which commutes with the projections onto U .

Proof. The proofs of (i) and (ii) are left as exercises to the reader. The proof of (iii) follows from the fact

that ψ̂σ is a bijective local diffeomorphism; this, in turn, is implied by the fact that ψσ constructed in the
proof of Theorem 3.6 is a local diffeomorphism. �

Exercise 8. Prove parts (i) and (ii) of Corollary 3.7.

Remark 3.9. The diffeomorphism ψ̂σ of Corollary 3.7 should be thought of as a local trivialisation of

π : (M,ω)→ B. Fix a local section σ : U → π−1(U) and, thus, a local trivialisation ψ̂σ. It is immediate to

check that the zero section of T∗U → U is mapped to the image of σ under ψ̂σ.

3.3. Smooth classification of Lagrangian fibrations. The diffeomorphisms ψ̂σ constructed in Corollary
3.7 can be used to develop a topological (in fact smooth) classification theory of complete Lagrangian fibra-
tions. The key issue is the fact that a Lagrangian fibration π : (M,ω)→ B may not admit a globally defined
section and, therefore, there is no natural choice of locally defined sections σ : U → π−1(U) to construct the

trivialisations ψ̂σ. This is analogous to the classification of principal G-bundles for a Lie group G.

Let Ui, Uj ⊂ B be open sets such that Ui ∩ Uj 6= ∅. Pick sections σi : Ui → π−1(Ui), σj : Uj → π−1(Uj)

and construct local trivialisations ψ̂σi , ψ̂σj as in Corollary 3.7. Consider the diffeomorphism

ψ̂−1
σj ◦ ψ̂σi : T∗(Ui ∩ Uj)/Λ|Ui∩Uj → T∗(Ui ∩ Uj)/Λ|Ui∩Uj ,

2If the graph is not closed, the quotient M ′/Q is a non-Hausdorff manifold.
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which, by definition, leaves the projection onto B invariant. Moreover, notice that ψ̂−1
σj ◦ ψ̂σi sends the zero

section to ψ̂−1
σj (σi). By part (ii) of Corollary 3.7, this suffices to show that

(23) ψ̂−1
σj ◦ ψ̂σi(α) = α+ ψ̂−1

σj (σi ◦ pr(α))

for all α ∈ T∗(Ui∩Uj)/Λ|Ui∩Uj . If each diffeomorphism ψ̂σi is thought of as a trivialisation of π : (M,ω)→ B,

then the diffeomorphisms ψ̂−1
σj ◦ ψ̂σi are transition functions for the above trivialisations. What equation (23)

shows is that these transition functions are given by smooth sections of T∗(Ui ∩ Uj)/Λ|Ui∩Uj → Ui ∩ Uj . It

is important to notice that ψ̂−1
σj (σi) can be intrinsically defined using the groupoid action of T∗B/Λ ////B

on M along π : (M,ω) → B. In fact, ψ̂−1
σj (σi) is the unique section sji of T∗(Ui ∩ Uj)/Λ|Ui∩Uj → Ui ∩ Uj

satisfying

(24) φ1
sji(σj) = σi.

Fix a good open cover U = {Ui} in the sense of Leray, i.e. all subsets Ui and all finite intersections of
these subsets are contractible. The above construction yields locally defined smooth sections sji : Ui ∩
Uj → T∗(Ui ∩ Uj)/Λ|Ui∩Uj for each pair i, j whose respective open sets in U intersect non-trivially. Let
C∞(T∗B/Λ) denote the sheaf of smooth sections of T∗B/Λ → B. By definition, the family sji defines a

Čech 1-cocycle for the cohomology of B with coefficients in C∞(T∗B/Λ) and, therefore, a cohomology class
in η ∈ H1(B; C∞(T∗B/Λ)). The cohomology class η classifies the Lagrangian fibration π : (M,ω) → B up
to fibrewise diffeomorphism (cf. [DD87, Gro58]).

Remark 3.10. Another way to see that the class η classifies π : (M,ω)→ B up to fibrewise diffeomorphism
is to notice that the action µ̂ of part (ii) of Corollary 3.7 endows π : (M,ω) → B with the structure of a
principal T∗B/Λ ////B -bundle (cf. [Ros04]). With this interpretation, the cohomology class η should be
seen as the obstruction for π : (M,ω)→ B to be globally diffeomorphic to T∗B/Λ→ B, which is equivalent
to asking that π : (M,ω)→ B admits a globally defined section.

Let PΛ be the sheaf of smooth sections of Λ → B. There is a short exact sequence of sheaves (cf.
[DD87, Dui80])

(25) 0→ PΛ → C∞(T∗B)→ C∞(T∗B/Λ)→ 0

where the first non-trivial map is given by the inclusion Λ ↪→ T∗B and C∞(T∗B) is the sheaf of 1-forms
of B (equivalently, the sheaf of sections of T∗B → B). Recall that C∞(T∗B) is a fine sheaf (cf. [GH94]),
which, for the purposes of these notes, can be taken to mean that the sheaf satisfies the following property:
for any locally defined smooth function f ∈ C∞(B) and any locally defined smooth section s : U → T∗U ,
the product fs : U → T∗U is also a smooth section wherever defined. In particular, this property implies
that for all kgeq1

H1(B; C∞(T∗B)) = 0.

This, in turn, means that the long exact sequence in cohomology induced by equation (25) induces an
isomorphism

(26) δ : H1(B; C∞(T∗B/Λ))→ H2(B;PΛ).

Definition 3.11 ([DD87, Dui80]). The image δη = c ∈ H2(B;PΛ) is the Chern class associated to the
Lagrangian fibration π : (M,ω)→ B.

In light of the above discussion, the Chern class of a Lagrangian fibration is the obstruction to the
existence of a globally defined section. This completes the topological (smooth) classification of complete
Lagrangian fibrations. Given π : (M,ω)→ B, there are two topological (smooth) invariants which completely
characterise the fibration, namely

i) its period net Λ ⊂ T∗B;
ii) its Chern class c ∈ H2(B;PΛ).

What the above statement means is that two Lagrangian fibrations are fibrewise diffeomorphic if and only
if they have diffeomorphic period nets and equal (up to the diffeomorphism relating the period nets) Chern
classes.
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3.4. Symplectic classification of Lagrangian fibrations. The results of Section 3.3 leave unanswered
the question of classifying complete Lagrangian fibrations up to fibrewise symplectomorphism. It is natural

to ask whether the diffeomorphisms ψ̂σ of Corollary 3.7 can be chosen so that they are symplectomorphisms;
however, in order for this question to make sense, the space T∗B/Λ must be endowed with a reference
symplectic structure. This is precisely the analogue of constructing action-angle coordinates in the Liouville-
Mineur-Arnol’d theorem (cf. Theorem 3.1).

As a first step, it must be noticed that the groupoid action µ of T∗B // //B on M along π : (M,ω)→ B
given by Proposition 3.5 is not by symplectomorphisms. In fact, the following proposition holds.

Proposition 3.8. Fix a locally defined 1-form α : U → T∗U . Then

(φ1
α)∗ω − ω = π∗dα.

Proof. Note that

(φ1
α)∗ω − ω =

1∫
0

d

dt
(φtα)∗ωdt =

1∫
0

(φtα)∗(LXπ∗αω)dt

=

1∫
0

(φtα)∗d(ι(Xπ∗α)ω)dt =

1∫
0

(φtα)∗d(π∗α)dt

1∫
0

(π ◦ φtα)∗dαdt =

1∫
0

π∗dαdt

= π∗dα,

since π ◦ φtα = π for all t. The above calculation finishes the proof of the proposition. �

Corollary 3.9. Any section α : U → Λ|U is a closed 1-form.

Proof. Note that Λ is defined as the isotropy subgroupoid of µ. In patricular, for any section α : U → Λ|U ,
φ1
α = id, which implies that (φ1

α)∗ω = ω. Therefore π∗dα = 0 by Proposition 3.8. Since π is a submersion,
it follows that dα = 0 as required. �

Remark 3.12.

i) Corollary 3.9 implies that Λ is a Lagrangian submanifold of (T∗B,Ωcan), since it is given locally by
the image of closed 1-forms;

ii) There is a natural groupoid action of Λ ////B on T∗B along pr : (T∗B,Ωcan) → B. As a conse-
quence of Corollary 3.9, this action is by symplectomorphisms. In particular, this implies that the
quotient space T∗B/Λ inherits a symplectic form ω0 which makes the induced projection

(T∗B/Λ, ω0)→ B

into a complete Lagrangian fibration.

Definition 3.13. Given a complete π : (M,ω) → B with period net Λ ⊂ T∗B, the complete Lagrangian
fibration given by

(27) pr : (T∗B/Λ, ω0)→ B

is called the symplectic reference or Jacobian Lagrangian fibration associated to π : (M,ω)→ B.

Remark 3.14. Note that any symplectic reference Lagrangian fibration admits a globally defined Lagrangian
section.

Exercise 9. Prove the statement of Remark 3.14. [Hint: consider what happens to the zero sectionB → T∗B
under the action of Λ on T∗B.]
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Part (iii) of Corollary 3.7 can be interpreted as saying that a choice of locally defined section σ : U →
π−1(U) of a Lagrangian fibration π : (M,ω)→ B yields a local fibrewise diffeomorphism between the given
Lagrangian fibration and its associated symplectic reference fibration. The result of the proposition below
shows that not all such local trivialisations are symplectomorphisms with respect to the symplectic structure
ω0 on T∗B/Λ. In fact, what goes wrong is that the section σ may not be Lagrangian.

Proposition 3.10. For any locally defined section σ : U → π−1(U),

ψ̂∗σω = ω0 + pr∗ ◦ σ∗ω.

Proof. Let α : U → T∗U be a locally defined form and set q : T∗U → T∗U/Λ|U be the quotient map. Then
q ◦ α : U → T∗U/Λ|U is a locally defined section of the symplectic reference Lagrangian fibration associated
to π : (M,ω)→ B. By construction, q∗ω0 = Ωcan. Proposition 3.8 gives that

(28) (φ1
α)∗ω = ω + π∗α∗Ωcan = ω + π∗(q ◦ α)∗ω0,

where the identity dα = α∗Ωcan is used (cf. [MS95]). Applying σ∗ to both sides of equation (28) and recalling
that π ◦ σ = idU , obtain that

(φ1
σ ◦ σ)∗ω = σ∗ω + (q ◦ α)∗ω0.

By definition, φ1
σ ◦ σ = ψ̂σ ◦ q ◦ α and pr ◦ q ◦ α = idU , so that the above equation can be written as

(29) (q ◦ α)∗((ψ̂σ)∗ω − pr∗σ∗ω − ω0) = 0.

The result follows if (ψ̂σ)∗ω − ω0 = pr∗(β) for some β locally defined 2-form on U . This is a consequence of
the fact that, for all locally defined α : U → T∗U , the following equation holds

(30) Dψ̂σ(Xpr∗α) = Xπ∗α

(cf. [Gro01]). This completes the proof of the proposition. �

Exercise 10. Prove the formula of equation (30).

The following corollary is immediate from Proposition 3.10.

Corollary 3.11. ψ̂∗σω = ω0 if and only if σ∗ω = 0, i.e. σ is a Lagrangian section.

Corollary 3.11 implies that if σ : U → π−1(U) is a Lagrangian section, then the local trivialisation ψ̂σ
constructed as in Corollary 3.7 is a symplectomorphism

(T∗U/Λ|U , ω0)→ (π−1(U), ω|U )

which satisfies π ◦ ψ̂σ = pr, i.e. it preserves the fibrations pr and π. The next lemma shows that near each
point b ∈ B there exists a Lagrangian section σ; as a consequence, it follows that B can be covered by open
sets over which there exist local symplectic trivialisations.

Lemma 3.12. For each b ∈ B there exists an open neighbourhood U ⊂ B of b and a Lagrangian section
σ : U → π−1(U).

Proof. Fix b ∈ B and let U be an open neighbourhood of b over which there exists a section σ̄ : U → π−1(U)

and small enough that H2(U ;R) = 0. Proposition 3.10 implies that the local smooth trivialisation ψ̂σ̄ yields
a symplectomorphism

(T∗U/Λ|U ,pr∗ ◦ σ̄∗ω + ω0)→ (π−1(U), ω).

Therefore it suffices to prove that

(31) pr : (T∗U/Λ|U ,pr∗ ◦ σ̄∗ω + ω0)→ U

admits a Lagrangian section. Note that, since H2(U ;R), σ̄∗ω = dβ for some locally defined 1-form β :
U → T∗U . Set s := q ◦ (−β) : U → T∗U/Λ|U be the composite of the negative of β and the quotient map
q : T∗U → T∗U/Λ|U . Then

s∗(pr∗ ◦ σ̄∗ω + ω0) = σ̄∗ω + (−β)∗Ωcan = dβ − dβ = 0,

since q∗ω0 = Ωcan. This proves that s is a Lagrangian section of the Lagrangian fibration of equation (31),
thus finishing the proof of the lemma. �
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Lemma 3.12 implies that it is possible to construct a symplectic classification theory for Lagrangian
fibrations. Fix such a fibration π : (M,ω) → B and choose a good open cover U = {Ui} of B over which
there exist Lagrangian sections σi : Ui → π−1(Ui). This can always be achieved, since any open cover of a
manifold admits a good refinement (cf. [BT99]). Construct local symplectomorphisms

ψ̂σi : (T∗U/Λ|Ui , ω0)→ (π−1(Ui), ω|π−1(Ui)),

and consider, for each pair of indices i, j such that Ui ∩ Uj 6= ∅, the symplectomorphisms

ψ̂−1
σj ◦ ψ̂σi : (T∗(Ui ∩ Uj)/Λ|Ui∩Uj , ω0)→ (T∗(Ui ∩ Uj)/Λ|Ui∩Uj , ω0)

α 7→ α+ ψ̂−1
σj (σi ◦ pr(α))

(32)

Since, for each pair i, j, the map of equation (32) is a symplectomorphism, the sections sji := ψ̂−1
σj (σi)

are Lagrangian sections of pr : (T∗(Ui ∩ Uj)/Λ|Ui∩Uj , ω0) → Ui ∩ Uj . Denote this sheaf of sections by

Z1(T∗B/Λ). As in Section 3.3, these locally defined Lagrangian sections sji define a cohomology class
l ∈ H1(B;Z1(T∗B/Λ).

Definition 3.15 ([DD87, Dui80, Zun03]). l is called the Lagrangian Chern class associated to the complete
Lagrangian fibration π : (M,ω)→ B.

As in Section 3.3, it can be shown that two Lagrangian fibrations π : (M,ω)→ B and π′ : (M ′, ω′)→ B
(with associated period nets Λ, Λ′) are fibrewise symplectomorphic if and only if the following two conditions
hold

i) there exists a diffeomorphism f : B → B′ whose induced symplectomorphism of (T∗B,Ωcan) maps
Λ diffeomorphically to Λ′;

ii) their Lagrangian Chern classes l, l′ coincide (up to the above symplectomorphism of (T∗B,Ωcan).

Remark 3.16. Fix a complete Lagrangian fibration π : (M,ω)→ B with period net Λ. There exists a short
exact sequence of sheaves

(33) 0→ PΛ → Z1(T∗B)→ Z1(T∗B/Λ)→ 0,

where Z1(T∗B) denotes the sheaf of closed 1-forms of B, which can also be equivalently described as the
sheaf of Lagrangian sections of pr : (T∗B,Ωcan)→ B (Cf. [DD87]). The long exact sequence in cohomology
induced by equation (33) gives homomorphisms

(34) . . . // H1(B;Z1(T∗B/Λ)) // H2(B;PΛ)
DΛ // H2(B;Z1(T∗B)) // . . .

l
� // c � // 0,

where c ∈ H2(B;PΛ) is the Chern class associated to π : (M,ω) → B (cf. Definition 3.11). In particular, c
lies in the kernel of the Dazord-Delzant homomorphism

(35) DΛ : H2(B;PΛ)→ H2(B;Z1(T∗B)) ∼= H3(B;R),

where the isomorphism follows, say, from the structure of the Čech-de Rham double complex on B (cf.
[BT99]). It is importante to notice that the Dazord-Delzant homomorphism depends on the period net Λ
(hence, the subscript in the notation above).

In fact, the following theorem (stated below without proof) can be proved.

Theorem 3.13 ([DD87, Vai94]). For a fixed period net Λ ⊂ (T∗B,Ωcan), all elements lying in the kernel
of the Dazord-Delzant homomorphism DΛ arise as the Chern class of some complete Lagrangian fibration
π : (M,ω)→ B whose associated period net is diffeomorphic to Λ.
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4. Integral affine geometry and Lagrangian fibrations

This section studies the relation between the geometry of affine manifolds and Lagrangian fibrations. On
the one hand, it is known that the leaves of any Lagrangian foliation on a symplectic manifold are affine
manifolds (cf. [Wei71]); Section 4.1 provides a direct proof of this fact and a first definition of affine manifolds.
These are studied in more details in Section 4.2 where several examples and constructions relating to these
manifolds are presented. The connection between affine geometry and Lagrangian fibrations runs deeper
than the affine structure on the fibres, as the base of a Lagrangian bundle with compact and connected
fibres is also an affine manifold which satisfies a special integrality condition. This is proved in Section 4.3,
where it is shown that the integral affine geometry of the base of such a bundle is intimately connected to
the period net Λ constructed in Section 3.2. Using the results of Sections 4.2 and 4.3, Section 4.4 proves
that the Dazord-Delzant homomorphism of equation (35) is determined by the integral affine geometry of
the base of a Lagrangian bundle.

Assumption 3. Throughout this section, any Lagrangian fibration π : (M,ω)→ B has connected fibres and
is a surjective submersion unless otherwise stated.

4.1. Affine structure on the fibres of a Lagrangian fibration. Let π : (M,ω) → B be a Lagrangian
fibration and fix bo ∈ B. Set Fb0 = π−1(b0). For any 1-form α defined locally near b0 and for each m ∈ F ,
the vector Xπ∗α(m) ∈ TmF ; conversely, if y ∈ TmF , there exists a 1-form αY defined locally near b0 with
Xπ∗αY = Y (cf. Proposition 3.4). Define a connection ∇ on TF by setting

(36) ∇Xπ∗αXπ∗β = 0

for all 1-forms α, β defined locally near b0 and extend to all vector fields on F . The only property that needs
checking in order to prove that equation (36) gives a well-defined connection on F is that if f is a smooth
function defined locally near b0, then for all α, β as above

∇Xπ∗αXπ∗(fβ) = 0.

This follows from calculations akin to those of Claim 2.4.

Exercise 11. Prove the above statement.

Fixing a choice of 1-forms α1, . . . , αn defined locally near b0 whose corresponding vector fields

Xπ∗α1
, . . . , Xπ∗αn

give a basis of TmF for all m ∈ F (why do such forms exist?), equation (36) can be seen as setting all
Christoffel symbols Γkij of ∇ to be identically zero in the above coordinates (which are, therefore, geodesic

coordinates for this connection). This implies that ∇ is torsion-free, since Γkij = Γkji for all i, j, and flat, i.e.
with zero curvature.

Definition 4.1 ([AM55]). A flat, torsion-free affine connection ∇ on TF is called a affine structure on F .
The pair (F,∇) is called an affine manifold.

In light of Definition 4.1 and of the above discussion, the following lemma holds.

Lemma 4.1. Let π : (M,ω)→ B be a Lagrangian fibration. Its fibres admit an affine structure ∇ determined
by equation (36).

Remark 4.2. Note that, for a fixed fibre F , the vector fields Xπ∗α1
, . . . , Xπ∗αn form a global frame of TF

by geodesic vector fields.

For an affine manifold (F,∇) there is a natural notion of completeness which generalises complete Rie-
mannian manifolds.

Definition 4.3. An affine manifold (F,∇) is complete if all the geodesics of ∇ exist for all t ∈ R.

Recall that the topological and symplectic classification of Lagrangian fibrations studied in Section 3
relies upon an assumption that the fibrations under consideration are complete in the sense of Assumption
2. In fact, the following proposition states that this notion of completeness is equivalent to the one given in
Definition 4.3.
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Proposition 4.2. A Lagrangian fibration π : (M,ω) → B is complete if and only if all fibres are complete
as affine manifolds with affine structure defined as in equation (36).

Exercise 12. Prove the above proposition. [Hint: use geodesic coordinates induced by the vector fields
Xπ∗α1 , . . . , Xπ∗αn ]

4.2. Generalities on (integral) affine manifolds. In light of Definition 4.1, affine manifolds are gener-
alisations of flat Riemannian manifolds. However, it important to notice some crucial differences. Firstly,
generally it is not true that, given an affine manifold (F,∇), its affine structure ∇ is obtained as the Levi-
Civita connection of some flat metric. Secondly, a compact affine manifold need not be complete. The
following exercise illustrates both these observations.

Exercise 13 ([FGH81]). Let
R+ := {x ∈ R : x > 0 }.

Define a Z-action on R+ by

Z× R+ → R+

(k, x) 7→ 2kx.

Let d denote the restriction of the standard flat, torsion-free connection on R to R+. Prove that

i) the above action preserves d;
ii) the quotient Q = R+/Z is a smooth, compact manifold;

iii) Q inherits an affine structure ∇ from d which is incomplete;
iv) ∇ is not the Levi-Civita connection of any flat Riemannian metric g on Q [Hint: compute the

holonomy of ∇].

Notation. Henceforth, Rn with its standard affine structure d (i.e. the Levi-Civita connection of the standard
Euclidean metric on Rn) is denoted by Rn so as to simplify notation (cf. Remark 4.5).

Chronologically, affine manifolds were first defined using affine connections as in Definition 4.1 (cf.
[AM55]). More recently, an equivalent definition in terms of local coordinate charts has been preferred
(cf. [FGH80, GH84]).

Definition 4.4. Let B be a topological n-dimensional manifold. An affine structure on B is a choice of
smooth atlas A = {Ui, χi} with coordinate charts χi : Ui → Rn whose changes of coordinates χj ◦ χ−1

i are
restrictions of elements of

Aff(Rn) := GL(n;R) nRn,
on each connected component of Ui ∩ Uj . Say the affine structure A is integral if its changes of coordinates
are restrictions of elements of

AffZ(Rn) := GL(n;Z) nRn,
on each connected component. An (integral) affine manifold consists of a pair (B,A), where B is a topological
manifold and A an (integral) affine structure.

Exercise 14. Prove the equivalence of Definitions 4.1 and 4.4 (cf. [AM55]).

Remark 4.5.

i) The groups
Aff(Rn) and AffZ(Rn)

are called the group of affine (resp. integral affine) transformations of Rn;
ii) An (integral) affine structure A on B determines a unique maximal smooth atlas. However, a

given topological manifold B which admits an (integral) affine structure may in fact admit several
‘inequivalent’ such structures (cf. Definition 4.8 for a notion of equivalence and Example 4.10);

iii) Note that some authors define integral affine structures as atlases whose changes of coordinates lie
in GL(n;Z) n Zn (cf. [GS06]).

Having defined (integral) affine manifolds, it is natural to consider maps between (integral) affine manifolds
which ‘preserve’ the (integral) affine structures. The next definitions make this notion precise.
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Definition 4.6. A map f : Rn → Rm is said to be affine (resp. integral affine) if

f ∈ hom(Rn,Rm)× Rm (resp. hom(Zn,Zm)× Rm).

If n = m, an (integral) affine map f which admits a smooth inverse f−1 is an (integral) affine diffeomorphism
if both f and f−1 are (integral) affine maps.

Remark 4.7. Note that when n = m in Definition 4.6, an (integral) affine map f is required to be an
element of the monoid

hom(Rn,Rn) nRn (resp. hom(Zn,Zn) nRn),

where the action of hom(Rn,Rn) (resp. hom(Zn,Zn)) on Rn ∼= Zn ⊗Z R is the standard one.

Definition 4.8. Let (B,A) and (B′,A′) be (integral) affine manifolds of dimension n and m respectively.
A smooth map f : B → B′ is said to be (integral) affine if it is an (integral) affine map in local (integral)
affine coordinates. Denote such a map by f : (B,A) → (B′,A′). If n = m, a diffeomorphism f : B → B′

with inverse f−1 is an (integral) affine diffeomorphism if both f and f−1 are (integral) affine maps. In this
case, say that (B,A) and (B′,A′) are diffeomorphic as (integral) affine manifolds.

Remark 4.9. While an affine map which admits an inverse is an affine diffeomorphism, this is not true in
general for integral affine maps, as the inverse has to be an integral affine map.

It is high time for some constructions and examples of (integral) affine manifolds.

Example 4.10.

i) Any open subset U ⊂ Rn is an (integral) affine manifold;
ii) More generally, let (B,A) be an (integral) affine manifold and suppose that f : B′ → B is a local

diffeomorphism. Then there exists an (integral) affine structure A′ such that f : (B′,A′) → (B,A)
is an (integral) affine map. For instance, if H denotes the upper-half plane with complex coordinate
w, then the map

δ : H → R2

w 7→

(
R(e2πiw),R

(
e2πıw(w − 1

2πı
)
))(37)

induces an (integral) affine structure on H (cf. [GS06]);
iii) Let (B,A) be an (integral) affine manifold and let Γ be a discrete group acting on (B,A) by (integral)

affine diffeomorphisms and such that B/Γ is a topological manifold. Then B/Γ inherits an (integral)
affine structure AΓ which makes the quotient map

q : (B,A)→ (B/Γ,AΓ)

into an (integral) affine map. This generalises the idea of Exercise 13. As an application, note that
the standard action of Zn on Rn is by (integral) affine diffeomorphisms. Therefore the quotient
(homeomorphic to an n-torus) inherits an (integral) affine structure; denote the resulting (integral)
affine manifold by Rn/Zn;

iv) Setting n = 1 in the construction above, obtain an affine manifold R/Z which is complete, as the
action of Z on R is by isometries on the standard Euclidean metric on R. Therefore, R/Z cannot
be affinely isomorphic to the example constructed in Exercise 13, thus showing that there may exist
several affine structures on a given topological manifold which are not affinely diffeomorphic;

v) As another example of the construction in (iii), consider the (integral) affine manifold (H, Ã) defined
by equation (37). Consider the action of Z on H defined by

Z×H → H
(k,w) 7→ w + k.

(38)

It can be checked that the above action is by (integral) affine diffeomorphisms of (H, Ã) and that
the quotient H/Z is a topological manifold. In fact, H/Z can be identified with

B0 := {z ∈ C : |z|2 < 1} \ 0;
17



with this identification, the quotient map is given by

q : H → B0

w 7→ e2πıw,
(39)

(cf. [GS06]). In light of (iii), it follows that B0 is an (integral) affine manifold with (integral) affine
structure A such that the quotient map q of equation (39) is an (integral) affine map (in fact, a local
diffeomorphism);

vi) A theorem proved independently by Benzecri in [Ben60] and Milnor in [Mil58] states that the only
closed topological surfaces which admit affine structures are the 2-torus T 2 and the Klein bottle K2.
Affine structures on these surfaces have been classified by Arrowsmith and Furness in [FA75] and
[FA76].

Exercise 15. Prove the various claims made in Example 4.10.

The various constructions of Example 4.10 can be used to define a developing map associated to a given
(integral) affine manifold (B,A). Let q : B̃ → B be the universal covering; since it is a local diffeomorphism,

by (ii) above, there exists an (integral) affine structure Ã which makes q into an (integral) affine map. The

(integral) affine structure Ã also arises from a local diffeomorphism δ : B̃ → Rn, which, intuitively, arises

from fixing an open set V in B̃ diffeomorphic under q to an (integral) affine coordinate neighbourhood U

with coordinate chart χ : U → Rn. Define δ : V → Rn to be χ ◦ q; this map can be extended uniquely to B̃
by using analyticity of the action of Aff(Rn) (resp. AffZ(Rn)) on Rn (cf. [FGH81, Smi81]). This is entirely
akin to analytic continuation of complex maps. In fact, the following theorem, stated below without proof,
holds.

Theorem 4.3 ([FGH81]). Let (B,A) be an (integral) affine manifold and let B̃ be its universal cover. There

exists a local diffeomorphism δ : B̃ → Rn, called developing map of (B,A), which induces an (integral) affine

structure on B̃ which is (integral) affinely diffeomorphic to Ã defined above.

Remark 4.11.

i) For a given (integral) affine manifold (B,A), there exist several developing maps associated to (B,A).

There are two reasons for this. Firstly, if δ : B̃ → Rn is a developing map of (B,A) and f : Rn → Rn
is an (integral) affine diffeomorphism, then f ◦ δ is also a developing map of (B,A). Secondly, the
construction of a developing map δ depends upon a choice of basepoint b ∈ B; if b′ ∈ B is another
basepoint with corresponding developing map δ′, then there exists an (integral) affine diffeomorphism

f : Rn → Rn such that δ′ = f ◦δ. This proves that any two developing maps δ, δ′ : B̃ → Rn associated
to an (integral) affine manifold (B,A) differ by an (integral) transformation of Rn;

ii) The map δ : H → R2 of equation (37) is a developing map for the (integral) affine manifold (B0,A)
constructed in Example 4.10.(v);

iii) Given an (integral) affine manifold (B,A) and a choice of developing map δ : B̃ → Rn depending on

a basepoint b ∈ B, the action of the fundamental group π1(B; b) on B̃ by deck transformations is by
(integral) affine diffeomorphisms. This is equivalent to stating that for all γ ∈ π1(B; b) there exists
a(γ) ∈ Aff(Rn) (resp. AffZ(Rn)) which makes the following diagram commutative

(40) B̃
δ //

γ

��

Rn

a(γ)

��
B̃ δ

// Rn.

4.2.1. Holonomy and the radiance obstruction. The map

a : π1(B; b)→ Aff(Rn) (resp. AffZ(Rn))

γ 7→ a(γ)
(41)

defined by equation (40) is, in fact, a group homomorphism (cf. [AM55]) and it plays an important role in
the study of (integral) affine manifolds.
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Definition 4.12. The homomorphism a : π1(B; b)→ Aff(Rn) (resp. AffZ(Rn)) is called the affine holonomy
associated to (B,A) (with respect to the basepoint b ∈ B).

Note that the groups Aff(Rn) and AffZ(Rn) admit surjective homomorphisms onto GL(n;R) and GL(n;Z)
respectively obtained by taking the linear part of the (integral) affine transformation. Denote this homo-
morphism by Lin.

Definition 4.13. The composite

l := Lin ◦ a : π1(B; b)→ GL(n;R) (resp. GL(n;Z))

is called the linear holonomy associated to (B,A) (with respect to the basepoint b ∈ B).

Exercise 16. Compute the linear and affine holonomies of the (integral) affine manifolds (with respect to
some basepoint) constructed thus far.

Remark 4.14. The affine (resp. linear) holonomy associated to an (integral) affine manifold (B,A) is
precisely the holonomy of the underlying connection ∇ viewed as an affine (resp. linear) connection on TB.

One of the defining characteristics of (integral) affine manifolds is the difference between linear and affine
objects. For instance, a natural question to ask is whether the affine holonomy a of an (integral) affine
manifold (B,A) has a fixed point (like its linear counterpart l). This is akin to asking whether, given an
(integral) affine structure A on B, there exists another (integral) affine structure A′ whose changes of co-
ordinates are linear and an (integral) affine diffeomorphism f : (B,A) → (B,A′). It turns out that there
exists a cohomology class which measures the obstruction to being able to give an affirmative answer to the
above questions; it is known as the radiance obstruction of an (integral) affine manifold (B,A) and plays
an important role in the study of (integral) affine geometry. In what follows, the radiance obstruction is
presented from several points of view to illustrate the interplay between topology, differential and algebraic
geometry that characterises (integral) affine manifolds.

Consider the map

Trans : Aff(Rn) (resp. AffZ(Rn))→ Rn

(A,b) 7→ b,
(42)

where A ∈ GL(n;R) (resp. GL(n;Z)) and b ∈ Rn.

Exercise 17. For (A,b), (A′,b′) ∈ Aff(Rn) (resp. AffZ(Rn)), show that

Trans((A,b) · (A′,b′)) = Trans(A,b) + Lin(A,b)Trans(A′,b′).

The result of Exercise 17 shows that Trans defines a crossed homomorphism from Aff(Rn) (resp. AffZ(Rn))
into Rn, viewed as an Aff(Rn)− (resp. AffZ(Rn)−) module via the representation Lin. Crossed homomor-
phisms are 1-cocycles in group cohomology (cf. [Bro94]); therefore equation (42) defines a cohomology class
rU ∈ H1(Aff(Rn);RnLin), which, in fact, is non-zero (cf. Exercise 18).

Definition 4.15. rU is called the universal (algebraic) radiance obstruction.

Fix an (integral) affine manifold (B,A), a basepoint b ∈ B and set a, l to be the associated affine and
linear holonomies respectively.

Definition 4.16. The pullback r(B,A) = a∗rU ∈ H1(π1(B);Rnl ) is called the radiance obstruction associated
to (B,A).

Remark 4.17. It is important to note that while r(B,A) depends upon a choice of basepoint b ∈ B, its
vanishing does not. Moreover, r(B,A) vanishes if and only if a is conjugate to a linear representation, i.e.
there exists b0 ∈ Rn such that, for all γ ∈ π1(B; b), a(γ)(b0) = b0.

Exercise 18. Consider the (integral) affine manifold R/Z defined in Example 4.10.(iii). Prove that its
radiance obstruction rR/Z 6= 0. Deduce that rU 6= 0.
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Thus far the radiance obstruction r(B,A) is, a priori, an invariant of π1(B) and of the affine holonomy a.
In fact, it also defines a topological invariant of B itself (which depends on a choice of basepoint) via the
natural isomorphism

H1(π1(B);Rnl ) ∼= H1(B;Rnl ),

where the cohomology on the righthand side is taken with respect to the local coefficient system defined by
the linear holonomy l (cf. [GH84]).

Lemma 4.4 ([GH84]). Let (B,A) be an (integral) affine manifold and let ∇ denote the associated affine
flat, torsion-free connection. The radiance obstruction r(B,A) is the obstruction to the existence of a parallel
section σ : B → TB for ∇.

Lemma 4.4 can be seen as a geometric way to define the radiance obstruction. This is because the tangent
bundle TB → B of an affine manifold (B,A) can be endowed with the structure of a flat affine bundle, i.e.

the structure group can be reduced to Affδ(Rn), where superscript δ denotes the group endowed with the
discrete topology. This can be seen explicitly as follows. Let A = {Ui, χi} denote the given affine structure
on B. For each i, define local affine trivialisations

ψi : TUi → Ui × Rn

v 7→ (pr(v), (Dφi(pr(v)))(v) + χi(pr(v))),
(43)

where pr : TB → B denotes the footpoint projection.

Exercise 19. If, on a connected component of Ui ∩ Uj , χj ◦ χ−1
i = (Aji,bji) ∈ Aff(Rn), then prove that

the transition function ψj ◦ ψ−1
i is given by (Aji,bji).

The result of Exercise 19 implies that the local trivialisations of equation (43) endow the tangent bundle
to B with the structure of a flat affine bundle, which is henceforth denoted by TAffB → B. Lemma 4.4
simply states that the radiance obstruction r(B,A) can be interpreted as the obstruction to finding a globally
defined flat section, i.e. a section which is constant in the local affine trivialisations given by equation (43)
(cf. [GH84]).

There is yet another equivalent description of the radiance obstruction which arises in a more algebro-
geometric setting (cf. [GS06]). Fix an affine manifold (B,A) and let Aff((B,A);R) denote the sheaf of
locally defined affine functions f : U ⊂ (B,A) → R. Endow T∗B → B with a flat affine structure (cf.
equation (43)) and let F denote the sheaf of flat sections of this flat affine bundle. There is a short exact
sequence of sheaves

(44) 0 //R //Aff((B,A);R)
d //F //0,

where R denotes the constant sheaf with values in the real numbers (by abuse of notation) and d denotes
the morphism which maps an affine function to its differential. The following lemma, stated below without
proof, relates the radiance obstruction of (B,A) with the topology of the above short exact sequence.

Lemma 4.5 ([GS06]). The radiance obstruction r(B,A) is the extension class of the short exact sequence of
sheaves of equation (44), i.e. it measures the obstruction to the existence of a global splitting of the above
short exact sequence.

This interpretation of the radiance obstruction is useful to solve the problem of constructing Lagrangian
bundles over a given integral affine manifold (cf. Section 4.4).

4.3. Integral affine geometry of Lagrangian bundles.

Assumption 4. Henceforth, assume that any Lagrangian fibration π : (M,ω)→ B has compact and connected
fibres. This is equivalent to asking that π : (M,ω) → B is a fibre bundle. Such fibrations are called
Lagrangian bundles

Remark 4.18. Note that Assumption 4 implies that the fibres of π : (M,ω) → B are tori (cf. Corollary
3.2).
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The aim of this section is to prove that the base space B of a Lagrangian bundle π : (M,ω)→ B inherits
an integral affine structure A defined by the period net Λ ⊂ (T∗B,Ωcan) associated to π : (M,ω) → B.
Conversely, given an integral affine manifold (B,A), it is possible to construct a Lagrangian bundle over
B which induces the given integral affine structure A on B. This bundle is called the symplectic reference
Lagrangian bundle associated to (B,A); the Liouville-Mineur-Arnol’d theorem can be viewed as stating
that any Lagrangian bundle π : (M,ω) → B is locally fibrewise symplectomorphic to the symplectic ref-
erence Lagrangian bundle associated to (B,A), where A is the integral affine structure on B induced by
π : (M,ω)→ B.

Lemma 4.6. Let π : (M,ω) → B be a Lagrangian bundle as above. Then B admits an integral affine
structure A.

Proof. Let Λ ⊂ (T∗B,Ωcan) be the period net associated to π : (M,ω) → B. Compactness of the fibres
implies that for each b ∈ B Λb ∼= Zn, where n = dimB. Moreover, the map pr : Λ → B is a fibre bundle.
In order to see this, note that the proof of Theorem 3.6 implies that there exist local smooth sections
α1, . . . , αn : U ⊂ B → Λ such that for all b ∈ U , α1(b), . . . , αn(b) are a Z-basis of Λb. These sections yield a
local trivialisation of pr : Λ→ B by setting

U × Zn 7→ Λ|U

(b, (k1, . . . , kn)) 7→
n∑
l=1

klα
l(b).

(45)

Let ᾱ1, . . . , ᾱn : Ū → Λ be a different choice of local smooth frame for Λ|Ū , where U ∩ Ū 6= ∅ is, without loss
of generality, connected. Then there exists a matrix A ∈ GL(n;Z) such that for all b ∈ U ∩ Ū and for all l

(46) ᾱl(b) =

n∑
p=1

Alpα
p(b);

note that, a priori, A : U ∩ Ū → GL(n;Z) is a smooth function, but since U ∩ Ū is connected, then it must
be constant.

The construction of equation (45) can be carried out near each point b ∈ B, i.e. B can be covered with
open sets Ui such that equation (45) yield local trivialisations of pr : Λ → B over each Ui. Moreover, the
transition functions for pr : Λ → B with respect to this choice of local trivialisations are given by equation
(46). Choose each Ui small enough that π1(Ui) is trivial (this can always be achieved by taking a refinement
of the original open cover) and, for each i, let α1

i , . . . , α
n
i be the local frame of Λ|Ui constructed above. Recall

that any local section α : U → Λ is a closed 1-form (cf. Corollary 3.9). Since each Ui is simply connected,
any closed 1-form is exact, so there exist locally defined functions a1

i , . . . , a
n
i : Ui → R such that for each l

dali = αli.

Note that the fact that α1
i (b), . . . , α

n
i (b) are a Z-basis for Λb for all b ∈ Ui implies that the map

(47) χi := (a1
i , . . . , a

n
i ) : Ui → Rn

is a local diffeomorphism. The maps χi of equation (47) are going to give integral affine coordinates on B.
For this to be true, the change of coordinates has to be a restriction of an element of AffZ(Rn) on each
connected component.

Consider i, j such that Ui ∩ Uj 6= ∅ and, by restricting to a connected component, assume that it is
connected. Then equation (46) implies that there exists a matrix Aji ∈ GL(n;Z) such that for all b ∈ Ui∩Uj
and for all l

dalj =

n∑
p=1

Alpjida
p
i = d

(
n∑
p=1

Alpjia
p
i

)
.

Therefore, there exist a constant cji ∈ Rn such that

(48) aj = Ajiai + cji,
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where aj = (a1
j , . . . , a

n
j ) and similarly for i. Equation (48) proves that the coordinates χi : Ui → Rn define

an integral affine structure A on B as required. �

Conversely, let (B,A) be an integral affine manifold and set A = {Ui, χi}, with χi : Ui → Rn. Recall
that there exists a period net of full rank ΛRn ⊂ (T∗Rn,Ωcan) which is a closed Lagrangian submanifold (cf.
Example 2.1.2). The resulting Lagrangian bundle over Rn is denoted by

(T∗Rn/ΛRn , ω0,Rn)→ Rn.
For each i, consider the Lagrangian bundle

(χ∗iT
∗Rn/ΛRn , ω0,i)→ Ui,

where ω0,i denotes the symplectic form obtained by pulling back ω0,Rn . Set Λ|Ui := χ∗iΛRn and note that

χ∗iT
∗Rn/ΛRn ∼= T∗Ui/Λ|Ui ;

the above diffeomorphism identifies ω0,i with the symplectic form on T∗Ui/Λ|Ui which descends from the
canonical symplectic form Ωcan on T∗Ui. The fact that A is an integral affine structure implies that these
locally defined Lagrangian bundles patch together to give a smooth, globally defined bundle

(49) (T∗B/ΛA, ω0)→ B,

where ΛA ⊂ (T∗B,Ωcan) is a closed Lagrangian submanifold and ω0 is the symplectic form induced by Ωcan.

Exercise 20.

i) Check that the above construction works;
ii) Check that the integral affine structure induced by the Lagrangian bundle of equation (49) on B is

integral affinely diffeomorphic to A.

Definition 4.19. The closed smooth Lagrangian submanifold ΛA constructed above is called the period net
associated to the integral affine manifold (B,A).

The bundle of equation (49) plays an important role in the classification and construction of Lagrangian
bundles.

Definition 4.20. The bundle of equation (49) is called the symplectic reference Lagrangian bundle associated
to the integral affine manifold (B,A).

Remark 4.21.

i) The symplectic reference Lagrangian bundle associated to (any) (B,A) admits a globally defined
Lagrangian section, e.g. the zero section;

ii) Henceforth, let π : (M,ω) → (B,A) denote a Lagrangian bundle which induces the integral affine
structure A on B;

iii) The above results present a different way of understanding integral affine structures on a given
manifold B, namely as closed, smooth Lagrangian submanifolds Λ ⊂ (T∗B,Ωcan) which are the
total space of Zn-bundles over B. This point of view may be generalised to deal with integral affine
structures which have singularities (work in progress).

4.4. Construction of Lagrangian bundles.

5. Singularities of Lagrangian fibrations
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