Capítulo 1: Análise exploratória de dados



Exercício 1.1

Considere os dados disponíveis abaixo, referentes ao peso (em Kg) de 40 bicicletas:

4.3 | 6.8 | 9.2 | 7.2 | 8.7 | 8.6 | 6.6 | 5.2 | 8.1 | 10.9
7.4 | 4.5 | 3.8 | 7.6 | 6.8 | 7.8 | 8.4 | 7.5 | 10.5 | 6.0
7.7 | 8.1 | 7.0 | 8.2 | 8.4 | 8.8 | 6.7 | 8.2 | 9.4 | 7.7
6.3 | 7.7 | 9.1 | 7.9 | 7.9 | 9.4 | 8.2 | 6.7 | 8.2 | 6.5

  1. Obtenha algumas medidas descritivas dos dados e comente.
peso = c(4.3,6.8,9.2,7.2,8.7,8.6,6.6,5.2,8.1,10.9,7.4,4.5,3.8,7.6,6.8,7.8,8.4,7.5,10.5,6.0,7.7,8.1,7.0,8.2,8.4,8.8,6.7,8.2,9.4,7.7, 6.3,7.7,9.1,7.9,7.9,9.4,8.2,6.7,8.2,6.5)

mean(peso)
## [1] 7.6
median(peso)
## [1] 7.75
var(peso)
## [1] 2.265128
sd(peso)
## [1] 1.505034
summary(peso)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   3.800   6.775   7.750   7.600   8.400  10.900
  1. Determine o intervalo dos 25% menores pesos e o intervalo dos 25% maiores pesos da amostra, bem como a amplitude inter-quantil.
quantile(peso,c(0.25,0.5,0.75))
##   25%   50%   75% 
## 6.775 7.750 8.400
IQR(peso)
## [1] 1.625
quantile(peso,type=1)
##   0%  25%  50%  75% 100% 
##  3.8  6.7  7.7  8.4 10.9
quantile(peso,type=2)
##    0%   25%   50%   75%  100% 
##  3.80  6.75  7.75  8.40 10.90
  1. Indique o quantil amostral de 0.68.
quantile(peso,0.68)
## 68% 
## 8.2
?quantile
## starting httpd help server ... done
  1. Construa o diagrama de caule-e-folhas.
stem(peso)
## 
##   The decimal point is at the |
## 
##    3 | 8
##    4 | 35
##    5 | 2
##    6 | 03567788
##    7 | 02456777899
##    8 | 11222244678
##    9 | 1244
##   10 | 59
  1. Obtenha o histograma e a caixa de bigodes identificando possíveis outliers.
par(mfrow=c(1,2))
hist(peso, col="blue")
boxplot(peso, col="red", main="Boxplot of peso")

dev.off()
## null device 
##           1
?hist
?boxplot


Exercício 1.3

A taxa de mortalidade infantil corresponde ao número médio de mortes, de entre 1000 crianças nascidas vivas, antes de completarem um ano de vida. Os dados referentes à União Europeia (UE), relativos aos anos de 1960 até 2019 estão disponíveis em https://www.pordata.pt/Europa/Taxa+de+mortalidade+infantil-1589

  1. Identifique a(s) populações e indique a variável em estudo.
rm(list=ls())
#setwd("C:/Privado/Disciplinas/PE/Exercicios/")
# https://www.math.tecnico.ulisboa.pt/~gsilva/PE_Ex1.3.csv

mortdata <-read.csv("PE_Ex1.3.csv",sep=";", header=TRUE)
dim(mortdata)
## [1] 60 35
head(mortdata)
##    Ano UE27 UE28 ZE19   DE   AT   BE   BG CY   HR   DK   SK   SI   ES   EE   FI
## 1 1960   NA   NA   NA 33.8 37.5 31.4 45.1 NA 70.4 21.5 28.6 35.1 35.4 31.1 21.0
## 2 1961 38.2 36.2 34.8 31.7 32.7 28.1 37.8 40 62.9 21.8 27.8 29.4 37.3 28.0 20.8
## 3 1962 36.5 34.7 33.3 29.3 32.8 27.5 37.3 38 59.4 20.1 25.5 30.0 32.4 25.2 20.5
## 4 1963 34.4 32.8 31.9 27.0 31.3 27.2 35.7 36 56.4 19.1 26.2 29.6 31.7 26.0 18.2
## 5 1964 32.0 30.5 29.7 25.3 29.2 25.3 32.9 34 53.5 18.7 25.6 28.1 30.8 25.4 17.0
## 6 1965 30.1 28.8 28.4 23.9 28.3 23.7 30.8 32 49.5 18.7 28.5 29.6 29.4 20.3 17.6
##     FR   GR   HU   IE   IT   LV   LT   LU   MT   NL   PL   PT   CZ   RO   SE
## 1 27.7 40.1 47.6 29.3 43.9 27.0 38.0 31.5 38.3 16.5 56.1 77.5 20.0 75.7 16.6
## 2 26.0 39.8 44.1 30.5 40.7 24.1 35.4 26.2 31.8 15.4 54.1 88.8 19.3 71.4 15.8
## 3 26.1 40.3 47.9 29.1 41.8 24.2 36.3 31.1 35.0 15.3 54.8 78.6 21.1 60.3 15.4
## 4 25.8 39.3 42.9 26.6 40.1 25.9 35.1 28.6 34.2 15.8 50.5 73.1 19.7 55.2 15.4
## 5 23.7 35.8 40.0 26.7 36.1 22.0 29.9 29.8 34.3 14.8 49.5 69.0 19.1 48.6 14.2
## 6 22.4 34.3 38.8 25.2 36.0 18.9 24.7 24.0 34.8 14.4 41.6 64.9 23.7 44.1 13.3
##     IS   NO   UK   CH
## 1 13.0 16.0 22.5 21.1
## 2 19.5 15.6 22.1 21.0
## 3 17.0 15.3 22.3 21.2
## 4 17.0 14.5 21.8 20.5
## 5 17.5 14.6 20.6 19.0
## 6 15.0 14.6 19.6 17.8
colnames(mortdata)
##  [1] "Ano"  "UE27" "UE28" "ZE19" "DE"   "AT"   "BE"   "BG"   "CY"   "HR"  
## [11] "DK"   "SK"   "SI"   "ES"   "EE"   "FI"   "FR"   "GR"   "HU"   "IE"  
## [21] "IT"   "LV"   "LT"   "LU"   "MT"   "NL"   "PL"   "PT"   "CZ"   "RO"  
## [31] "SE"   "IS"   "NO"   "UK"   "CH"
#install.packages("psych")
library("psych")
describe(mortdata)
##      vars  n    mean    sd  median trimmed   mad    min    max range skew
## Ano     1 60 1989.50 17.46 1989.50 1989.50 22.24 1960.0 2019.0  59.0 0.00
## UE27    2 59   13.59 10.03   10.70   12.51  9.64    3.4   38.2  34.8 0.83
## UE28    3 58   13.37  9.54   10.55   12.38  9.27    3.5   36.2  32.7 0.77
## ZE19    4 59   11.71  9.35    7.90   10.54  6.67    3.2   34.8  31.6 0.96
## DE      5 60   11.38  9.00    7.20   10.26  5.63    3.2   33.8  30.6 0.85
## AT      6 60   12.52 10.14    7.95   11.28  6.97    2.7   37.5  34.8 0.82
## BE      7 60   11.07  8.05    8.40    9.99  6.82    3.2   31.4  28.2 0.88
## BG      8 60   18.14  9.35   15.55   17.26  9.56    5.6   45.1  39.5 0.79
## CY      9 59   13.21 10.38   12.90   12.03 12.01    1.3   40.0  38.7 0.91
## HR     10 60   18.76 17.00   11.65   15.62 10.67    3.6   70.4  66.8 1.37
## DK     11 60    8.46  5.28    7.55    7.66  4.67    3.0   21.8  18.8 1.06
## SK     12 60   14.86  8.21   13.25   14.54 11.12    4.5   28.6  24.1 0.25
## SI     13 60   12.16  9.77    8.65   11.19  9.19    1.6   35.1  33.5 0.65
## ES     14 60   11.50  9.73    7.70    9.94  6.82    2.6   37.3  34.7 1.11
## EE     15 60   12.78  7.33   14.60   12.47  6.82    1.6   31.1  29.5 0.16
## FI     16 60    7.26  5.44    5.80    6.43  4.67    1.7   21.0  19.3 1.08
## FR     17 60    9.93  7.25    7.40    8.80  5.34    3.5   27.7  24.2 1.05
## GR     18 60   14.89 12.09    9.70   13.43  8.90    2.7   40.3  37.6 0.79
## HU     19 60   18.96 13.57   15.65   17.77 14.83    3.3   47.9  44.6 0.57
## IE     20 60   11.02  8.19    8.00    9.91  6.75    2.8   30.5  27.7 0.92
## IT     21 60   13.98 12.65    8.40   12.16  8.15    2.4   43.9  41.5 0.96
## LV     22 60   13.55  6.00   15.15   13.49  5.71    3.2   27.0  23.8 0.00
## LT     23 60   13.82  8.59   12.95   12.68  7.78    3.0   38.0  35.0 1.05
## LU     24 60   10.79  8.39    8.50    9.58  6.82    1.8   31.5  29.7 1.04
## MT     25 60   13.84  9.68    9.85   12.37  6.52    3.7   38.3  34.6 1.07
## NL     26 60    7.91  3.96    6.80    7.52  4.08    3.3   16.5  13.2 0.65
## PL     27 60   20.06 14.66   19.35   18.20 16.98    3.8   56.1  52.3 0.81
## PT     28 60   23.44 24.73   11.50   19.54 12.31    2.5   88.8  86.3 1.07
## CZ     29 60   11.17  7.32   10.60   10.91 11.27    2.4   23.7  21.3 0.15
## RO     30 60   27.38 16.66   23.65   25.52 13.64    5.8   75.7  69.9 0.92
## SE     31 60    6.60  4.21    5.85    6.09  4.30    2.0   16.6  14.6 0.81
## IS     32 60    6.74  5.04    5.50    6.19  4.89    0.7   19.5  18.8 0.78
## NO     33 60    7.01  4.13    7.20    6.59  5.26    2.1   16.0  13.9 0.58
## UK     34 59   10.83  6.43    8.40   10.41  6.52    3.8   22.5  18.7 0.45
## CH     35 60    8.53  5.45    6.80    7.70  4.00    3.3   21.2  17.9 1.06
##      kurtosis   se
## Ano     -1.26 2.25
## UE27    -0.53 1.31
## UE28    -0.66 1.25
## ZE19    -0.39 1.22
## DE      -0.70 1.16
## AT      -0.76 1.31
## BE      -0.50 1.04
## BG      -0.13 1.21
## CY      -0.13 1.35
## HR       0.95 2.19
## DK       0.01 0.68
## SK      -1.54 1.06
## SI      -0.94 1.26
## ES       0.08 1.26
## EE      -0.66 0.95
## FI       0.05 0.70
## FR      -0.22 0.94
## GR      -0.78 1.56
## HU      -1.06 1.75
## IE      -0.44 1.06
## IT      -0.49 1.63
## LV      -0.73 0.78
## LT       0.80 1.11
## LU      -0.04 1.08
## MT      -0.13 1.25
## NL      -0.89 0.51
## PL      -0.19 1.89
## PT      -0.19 3.19
## CZ      -1.61 0.95
## RO       0.33 2.15
## SE      -0.52 0.54
## IS      -0.57 0.65
## NO      -0.82 0.53
## UK      -1.42 0.84
## CH      -0.23 0.70
summary(mortdata)
##       Ano            UE27            UE28            ZE19             DE       
##  Min.   :1960   Min.   : 3.40   Min.   : 3.50   Min.   : 3.20   Min.   : 3.20  
##  1st Qu.:1975   1st Qu.: 4.95   1st Qu.: 5.15   1st Qu.: 4.00   1st Qu.: 4.05  
##  Median :1990   Median :10.70   Median :10.55   Median : 7.90   Median : 7.20  
##  Mean   :1990   Mean   :13.59   Mean   :13.37   Mean   :11.71   Mean   :11.38  
##  3rd Qu.:2004   3rd Qu.:20.25   3rd Qu.:20.43   3rd Qu.:18.15   3rd Qu.:20.12  
##  Max.   :2019   Max.   :38.20   Max.   :36.20   Max.   :34.80   Max.   :33.80  
##                 NA's   :1       NA's   :2       NA's   :1                      
##        AT               BE               BG              CY       
##  Min.   : 2.700   Min.   : 3.200   Min.   : 5.60   Min.   : 1.30  
##  1st Qu.: 4.175   1st Qu.: 3.975   1st Qu.:11.30   1st Qu.: 3.90  
##  Median : 7.950   Median : 8.400   Median :15.55   Median :12.90  
##  Mean   :12.515   Mean   :11.067   Mean   :18.14   Mean   :13.21  
##  3rd Qu.:21.250   3rd Qu.:16.425   3rd Qu.:24.23   3rd Qu.:16.85  
##  Max.   :37.500   Max.   :31.400   Max.   :45.10   Max.   :40.00  
##                                                    NA's   :1      
##        HR              DK               SK              SI        
##  Min.   : 3.60   Min.   : 3.000   Min.   : 4.50   Min.   : 1.600  
##  1st Qu.: 6.00   1st Qu.: 4.350   1st Qu.: 6.75   1st Qu.: 3.775  
##  Median :11.65   Median : 7.550   Median :13.25   Median : 8.650  
##  Mean   :18.76   Mean   : 8.455   Mean   :14.86   Mean   :12.160  
##  3rd Qu.:23.55   3rd Qu.:10.475   3rd Qu.:23.32   3rd Qu.:19.100  
##  Max.   :70.40   Max.   :21.800   Max.   :28.60   Max.   :35.100  
##                                                                   
##        ES              EE               FI               FR        
##  Min.   : 2.60   Min.   : 1.600   Min.   : 1.700   Min.   : 3.500  
##  1st Qu.: 3.85   1st Qu.: 5.625   1st Qu.: 3.000   1st Qu.: 3.975  
##  Median : 7.70   Median :14.600   Median : 5.800   Median : 7.400  
##  Mean   :11.50   Mean   :12.780   Mean   : 7.258   Mean   : 9.927  
##  3rd Qu.:16.07   3rd Qu.:17.500   3rd Qu.:10.000   3rd Qu.:14.025  
##  Max.   :37.30   Max.   :31.100   Max.   :21.000   Max.   :27.700  
##                                                                    
##        GR               HU              IE               IT        
##  Min.   : 2.700   Min.   : 3.30   Min.   : 2.800   Min.   : 2.400  
##  1st Qu.: 4.075   1st Qu.: 6.50   1st Qu.: 4.425   1st Qu.: 3.375  
##  Median : 9.700   Median :15.65   Median : 8.000   Median : 8.400  
##  Mean   :14.887   Mean   :18.96   Mean   :11.020   Mean   :13.978  
##  3rd Qu.:23.925   3rd Qu.:32.90   3rd Qu.:17.575   3rd Qu.:21.625  
##  Max.   :40.300   Max.   :47.90   Max.   :30.500   Max.   :43.900  
##                                                                    
##        LV              LT               LU              MT        
##  Min.   : 3.20   Min.   : 3.000   Min.   : 1.80   Min.   : 3.700  
##  1st Qu.: 9.10   1st Qu.: 7.175   1st Qu.: 4.30   1st Qu.: 6.675  
##  Median :15.15   Median :12.950   Median : 8.50   Median : 9.850  
##  Mean   :13.55   Mean   :13.822   Mean   :10.79   Mean   :13.840  
##  3rd Qu.:17.70   3rd Qu.:18.125   3rd Qu.:14.20   3rd Qu.:17.100  
##  Max.   :27.00   Max.   :38.000   Max.   :31.50   Max.   :38.300  
##                                                                   
##        NL               PL              PT              CZ        
##  Min.   : 3.300   Min.   : 3.80   Min.   : 2.50   Min.   : 2.400  
##  1st Qu.: 4.700   1st Qu.: 6.70   1st Qu.: 3.75   1st Qu.: 3.625  
##  Median : 6.800   Median :19.35   Median :11.50   Median :10.600  
##  Mean   : 7.907   Mean   :20.06   Mean   :23.44   Mean   :11.173  
##  3rd Qu.:10.850   3rd Qu.:25.75   3rd Qu.:38.15   3rd Qu.:19.150  
##  Max.   :16.500   Max.   :56.10   Max.   :88.80   Max.   :23.700  
##                                                                   
##        RO              SE               IS               NO        
##  Min.   : 5.80   Min.   : 2.000   Min.   : 0.700   Min.   : 2.100  
##  1st Qu.:16.27   1st Qu.: 3.025   1st Qu.: 2.400   1st Qu.: 3.200  
##  Median :23.65   Median : 5.850   Median : 5.500   Median : 7.200  
##  Mean   :27.38   Mean   : 6.603   Mean   : 6.735   Mean   : 7.007  
##  3rd Qu.:34.77   3rd Qu.: 8.850   3rd Qu.:11.300   3rd Qu.: 9.275  
##  Max.   :75.70   Max.   :16.600   Max.   :19.500   Max.   :16.000  
##                                                                    
##        UK              CH        
##  Min.   : 3.80   Min.   : 3.300  
##  1st Qu.: 5.15   1st Qu.: 4.300  
##  Median : 8.40   Median : 6.800  
##  Mean   :10.83   Mean   : 8.525  
##  3rd Qu.:17.35   3rd Qu.:11.150  
##  Max.   :22.50   Max.   :21.200  
##  NA's   :1
head(describe(mortdata))
##      vars  n    mean    sd  median trimmed   mad    min    max range skew
## Ano     1 60 1989.50 17.46 1989.50 1989.50 22.24 1960.0 2019.0  59.0 0.00
## UE27    2 59   13.59 10.03   10.70   12.51  9.64    3.4   38.2  34.8 0.83
## UE28    3 58   13.37  9.54   10.55   12.38  9.27    3.5   36.2  32.7 0.77
## ZE19    4 59   11.71  9.35    7.90   10.54  6.67    3.2   34.8  31.6 0.96
## DE      5 60   11.38  9.00    7.20   10.26  5.63    3.2   33.8  30.6 0.85
## AT      6 60   12.52 10.14    7.95   11.28  6.97    2.7   37.5  34.8 0.82
##      kurtosis   se
## Ano     -1.26 2.25
## UE27    -0.53 1.31
## UE28    -0.66 1.25
## ZE19    -0.39 1.22
## DE      -0.70 1.16
## AT      -0.76 1.31
  1. Selecione 5 países da zona Euro. Represente graficamente a tabela de distribuições de frequências, para cada um desses países e para a média da zona Euro (considerando os 27 países). Comente os resultados obtidos.
mortdata5 = mortdata[c(2,5,14,26,28,34)]
head(mortdata5)
##   UE27   DE   ES   NL   PT   UK
## 1   NA 33.8 35.4 16.5 77.5 22.5
## 2 38.2 31.7 37.3 15.4 88.8 22.1
## 3 36.5 29.3 32.4 15.3 78.6 22.3
## 4 34.4 27.0 31.7 15.8 73.1 21.8
## 5 32.0 25.3 30.8 14.8 69.0 20.6
## 6 30.1 23.9 29.4 14.4 64.9 19.6
summary(mortdata5)
##       UE27             DE              ES              NL        
##  Min.   : 3.40   Min.   : 3.20   Min.   : 2.60   Min.   : 3.300  
##  1st Qu.: 4.95   1st Qu.: 4.05   1st Qu.: 3.85   1st Qu.: 4.700  
##  Median :10.70   Median : 7.20   Median : 7.70   Median : 6.800  
##  Mean   :13.59   Mean   :11.38   Mean   :11.50   Mean   : 7.907  
##  3rd Qu.:20.25   3rd Qu.:20.12   3rd Qu.:16.07   3rd Qu.:10.850  
##  Max.   :38.20   Max.   :33.80   Max.   :37.30   Max.   :16.500  
##  NA's   :1                                                       
##        PT              UK       
##  Min.   : 2.50   Min.   : 3.80  
##  1st Qu.: 3.75   1st Qu.: 5.15  
##  Median :11.50   Median : 8.40  
##  Mean   :23.44   Mean   :10.83  
##  3rd Qu.:38.15   3rd Qu.:17.35  
##  Max.   :88.80   Max.   :22.50  
##                  NA's   :1
par(mfrow=c(2,3))
    boxplot(mortdata[,2], main = "UE27", ylab = "Taxa de mortalidade infantil")
    boxplot(mortdata[,5], main = "Alemanha", ylab = "Taxa de mortalidade infantil" )
    boxplot(mortdata[,14], main = "Espanha", ylab = "Taxa de mortalidade infantil" )
    boxplot(mortdata[,26], main = "Holanda", ylab = "Taxa de mortalidade infantil" )
    boxplot(mortdata[,28], main = "Portugal", ylab = "Taxa de mortalidade infantil" )
    boxplot(mortdata[,34], main = "Reino Unido", ylab = "Taxa de mortalidade infantil" )

dev.off()
## null device 
##           1
  1. Considere apenas os dados relativos a 1961 e a 2018. Elabore um gráfico que lhe permita visualizar a diferença nestes anos, para os países selecionados.
# mortdata[2,c(2,5,14,26,28,34)] - dados para os 5 países para o ano de 1961
# mortdata[59,c(2,5,14,26,28,34)] - dados para os 5 países para o ano de 1981   
matplot(matrix(c(mortdata[2,c(2,5,14,26,28,34)],mortdata[59,c(2,5,14,26,28,34)]),6,2),type="l", ylab="Taxa media de mortalidade infantil",xlab="1961 e 2018")

  1. Considerando os dados relativos a 2018, indique a taxa média, mediana, variância e coeficiente de variação da taxa de mortalidade infantil relativa aos 31 países disponíveis na base de dados.
print(mortdata[59,c(1:4)])
##     Ano UE27 UE28 ZE19
## 59 2018  3.4  3.5  3.3
# apply: aplica uma função arbitrária a um conjunto de dados, incluindo uma matriz
apply(mortdata[59,-c(1:4)],1,mean)
##       59 
## 3.358065
# calculamos a mediana com todas as colunas, excepto com a 1ª, que contêm o ano
apply(mortdata[59,-1],1,median)
##  59 
## 3.3
apply(mortdata[59,-1],1,var)
##       59 
## 1.193948
apply(mortdata[59,-1],1,sd)/apply(mortdata[59,-1],1,mean)
##        59 
## 0.3250315
  1. Analise a evolução temporal da taxa de mortalidade infantil em Portugal.
plot(mortdata[,1],mortdata$PT, main="Evolucao da mortalidade infantil em Pt",
    ylab="Taxa Media", xlab="anos",col="red", pch=16)# type="l")
    points(mortdata[,1],mortdata$UE27, col="blue", pch=16)
    leg_cols <- c("red", "blue")
    leg_sym <- c(16, 16)
    leg_lab <- c("Portugal", "UE")
    legend(x = "topright", col = leg_cols, pch = leg_sym, legend = leg_lab, bty = "n")

  1. Pretendendo estudar uma possível relação entre taxa de mortalidade infantil e o PIB, considere agora os dados relativos ao PIB em Portugal, desde 1961, disponíveis em https://www.pordata.pt/Portugal/Taxa+de+crescimento+real+do+PIB-2298/https://www.pordata.pt/Portugal/Taxa+de+crescimento+real+do+PIB-2298”. Faça uma análise gráfica de forma a explorar uma possível relação entre as duas variáveis.
# https://www.math.tecnico.ulisboa.pt/~gsilva/PE_Ex1.3f.dat

read.table("PE_Ex1.3f.dat", header=TRUE)
##    Anos TaxaPIB
## 1  1961    3.58
## 2  1962   10.53
## 3  1963    3.84
## 4  1964    6.05
## 5  1965    9.41
## 6  1966    4.55
## 7  1967    4.15
## 8  1968    5.07
## 9  1969    2.43
## 10 1970    8.47
## 11 1971   10.49
## 12 1972   10.38
## 13 1973    4.92
## 14 1974    2.91
## 15 1975   -5.10
## 16 1976    2.29
## 17 1977    6.02
## 18 1978    6.17
## 19 1979    7.10
## 20 1980    4.76
## 21 1981    2.17
## 22 1982    2.16
## 23 1983    0.97
## 24 1984   -1.04
## 25 1985    1.64
## 26 1986    3.32
## 27 1987    7.63
## 28 1988    5.34
## 29 1989    6.65
## 30 1990    7.86
## 31 1991    3.37
## 32 1992    3.13
## 33 1993   -0.69
## 34 1994    1.49
## 35 1995    2.31
## 36 1996    3.50
## 37 1997    4.40
## 38 1998    4.81
## 39 1999    3.91
## 40 2000    3.82
## 41 2001    1.94
## 42 2002    0.77
## 43 2003   -0.93
## 44 2004    1.79
## 45 2005    0.78
## 46 2006    1.63
## 47 2007    2.51
## 48 2008    0.32
## 49 2009   -3.12
## 50 2010    1.74
## 51 2011   -1.70
## 52 2012   -4.06
## 53 2013   -0.92
## 54 2014    0.79
## 55 2015    1.79
## 56 2016    2.02
## 57 2017    3.51
## 58 2018    2.85
pib2018 <-read.table("PE_Ex1.3f.dat", header=TRUE)$TaxaPIB

plot(pib2018,mortdata$PT[-c(1,60)],xlab="PIB: Taxa de crescimento real",    ylab="Taxa media de mortalidade infantil (1961 a 2018)")

cor(pib2018,mortdata$PT[-c(1,60)])
## [1] 0.4915946


Referências

R Core Team (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

RStudio Team (2023). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. https://posit.co/.