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Abstract

We present the classi�cation of quadratic forms over the rationals and

then describe a partial classi�cation of quadratic forms over Z/mZ, when
4 6 |m.
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Introduction

The study of quadratic forms dates back many centuries and is a very impor-
tant part of Number Theory and Algebra, with applications to other parts of
Mathematics, such as Topology.

The theory of quadratic forms is a very vast one and in this article we mention
only a very small part of it. In the �rst section we introduce quadratic forms
and their associated bilinear forms and state some general results. The second
section is dedicated to the classi�cation of quadratic forms over the rationals
(following [1, pp. 19 � 45]) and in the third section we focus on quadratic
forms over Z/mZ, obtaining a classi�cation of suitably regular quadratic forms
over Z/mZ, when 4 6 |m. Presumably, the full classi�cation is already well
understood, but we are not aware of a reference for these results.

We assume some previous knowledge on the part of the reader, the most
important being basic linear algebra. We also assume some knowledge of basic
abstract algebra, such as the concepts of a ring, a module, and a group and
some of their properties, as well as some important facts about �nite �elds (for
�nite �elds see, for example, [1, p.1�6]). In number theory, we assume knowl-
edge of some important properties of the rings Z/mZ, quadratic reciprocity and
familiarity with the �elds Qp of p-adic numbers (for quadratic reciprocity and
the p-adic �elds see, for example, [1, pp.6�18]).
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1 Quadratic Forms

In this section, we introduce quadratic forms, as well as some of their general
properties.

De�nition 1.1. If M is a module over a commutative ring R, then a quadratic
form on M is a function q :M → R such that:

1. q(rm) = r2q(m), for r ∈ R and m ∈M .

2. The function β(x, y) = q(x+ y)− q(x)− q(y) is bilinear.

The pair (M, q) is called a quadratic module and β is called the associated
bilinear form of q.

We often refer to the moduleM as a quadratic module, leaving the quadratic
form implicit. In the following, we assume that M is a free R-module of �nite
dimension. The dimension of M is called the rank of the quadratic form.

De�nition 1.2. If (M, q) and (M ′, q′) are quadratic modules, then a linear map
f :M →M ′ is called a morphism of quadratic modules (or a metric morphism)
if f ◦ q = q′.

We say that the two quadratic modules are equivalent (and write (M, q) ∼
(M ′, q′)) if there is a metric isomorphism (i.e. a bijective metric morphism)
(M, q)→ (M ′, q′). If M =M ′, we abreviate this as q ∼ q′.

Lemma 1.3. Let (M, q) be a quadratic module with basis {e1, · · · , en} and let
x ∈M . Writing x =

∑
i xiei, we have

q(x) =

n∑
i=1

∑
j>i

xixjβ(ei, ej) +

n∑
i=1

x2i q(ei).

Therefore q(x) = xtQx where Q is a matrix with entries

qij =


β(ei, ej) if i<j

q(ei) if i=j

0 otherwise

.
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Proof. The proof of the �rst statement will be done by induction on the number
m of nonzero xi. When m = 1, the statement is clearly true. Now

q(x1e1 + · · ·+ xmem) =

x21q(e1) + q(x2e2 + · · ·+ xmem) + β(x1e1, x2e2 + · · ·+ xmem) =

x21q(e1) + q(x2e2 + · · ·+ xmem) +

m∑
j=2

x1xjβ(e1, ej).

By the induction hypothesis, we have

q(x2e2 + · · ·+ xmem) =

m∑
i=2

∑
j>i

xixjβ(ei, ej) +

m∑
i=2

x2i q(ei)

and therefore

q(x) =

m∑
i=1

∑
j>i

xixjβ(ei, ej) +

m∑
i=1

x2i q(ei),

as claimed.
The second statement clearly follows from the �rst.

The previous Lemma shows that, given a basis of M , a quadratic form
corresponds to a homogeneous polynomial of degree 2 with coe�cients in R.
For this reason we also say that a quadratic form of rank n is a quadratic form
is n variables. We often identify a quadratic form with the polynomial to which
it corresponds in some basis.

Fixing the module M , an isomorphism of quadratic forms over M is just a
linear change of basis of M taking one form to the other, which translates to a
linear invertible change of variables in the polynomial.

In the case where 2 is invertible in R, we can de�ne

x.y =
1

2
β(x, y).

This is a symmetric bilinear form and we have

x.x =
1

2
(q(x+ x)− q(x)− q(x)) = q(x).

Conversely, given a symmetric bilinear form (x, y) 7→ x.y, we de�ne q(x) = x.x
and this is a quadratic form, therefore we see that in this case the study of
quadratic forms is essentially the same as the study of symmetric bilinear forms.

Lemma 1.4. Let (M, q) be a quadratic module over a ring R, with basis B =
{e1, · · · , en} and suppose that 2 is invertible in R. Then, for any x ∈M , writing
x =

∑
i xiei, we have

q(x) =

n∑
i=1

n∑
j=1

xixjei.ej .

Therefore q(x) = xtBx where B is a matrix with entries qij = ei.ej.
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Proof. Follows immediately from the previous Lemma.

De�nition 1.5. Let q be a quadratic form on a module M over a ring R and
B a basis of M . If 2 ∈ R× then the matrix representation of q in the basis B is
the matrix B of Lemma 1.4. When 2 6∈ R×, the matrix representation of q in
the basis B is the matrix Q of Lemma 1.3.

We often identify a quadratic form with its matrix representation in some
basis. Note that if A is the matrix representation of q in the basis B and X is
the column vector whose entries are the coordinates of x in the basis B, then
q(x) = XtAX. For simplicity, we write q(x) = xtAx.

Suppose q ∼ p are quadratic forms on a module M over R and φ is an
isomorphism, q(x) = p(φ(x)). Suppose we �x a basis B, let Q and P be the
matrix representations of q and p with respect to this basis and let T be the
matrix representation of φ in this basis. Then

xtQx = (Tx)tP (Tx) = xt(T tPT )x.

If 2 ∈ R×, this implies Q = T tPT (because Q and T tPT are symmetric) and
thus we have proved the following result:

Proposition 1.6. Suppose p, q are quadratic forms over a ring R with 2 ∈ R×
and p ∼ q. Then, if P,Q are the matrix representations of p, q with respect to a
�xed basis, we have Q = T tPT , for some invertible matrix T .

This does not always hold when 2 6∈ R×. For example, the quadratic forms
x2 + y2 and x2 are equivalent over F2 (as we will see later on), but there is no
invertible matrix T such that

T t
(

1 0
0 1

)
T =

(
1 0
0 0

)
,

because the left side is invertible whereas the right side is not.
We have seen that symmetric bilinear forms are closely related to quadratic

forms, especially, but not only, in characteristic 6= 2. For this reason, we now
focus on symmetric bylinear forms, stating some relevant facts whose proof can
be found in [2, pp.1�7].

De�nition 1.7. Given a symmetric bilinear form β : M ×M → R, we call
(M,β) a bilinear form space.

We say that two bilinear form spaces (M,β) and (M ′, β′) are isomorphic if
there is a linear bijection f :M →M ′ such that β′(f(x), f(y)) = β(x, y).

De�nition 1.8. Picking a basis (ei)i of M over R, we de�ne the matrix repre-
sentation B of β in this basis by bij = β(ei, ej). If this matrix is invertible, we
say that β is nondegenerate, and it is not hard to see that this does not depend
on the choice of basis.

When β is nondegenerate we say that it is an inner product and call (M,β)
an inner product space.

We now mention the relation between the matrix representation Q of a
quadratic form and the matrix representation B of its associated bilinear form

4



β. When 2 ∈ R×, we have Q = 1
2B. When 2 6∈ R×, we have qij = bij for i < j,

qij = 0 for i > j and bii = 2aii, therefore in general we can not �nd the diagonal
of Q just by looking at B.

If β and β′ are bilinear forms with matrix representations B and B′, respec-
tively, then the bilinear form spaces (M,β) and (M ′, β′) are isomorphic if and
only if there is an invertible matrix A such that B′ = ABAt. Taking determi-
nants, we get det(B′) = det(A)2 det(B), so we see that the determinant of the
matrix associated to a symmetric bilinear form is invariant under isomorphism,
up to a product by an element in (R×)2. The form is nondegenerate if and only
if det(B) ∈ R×.

De�nition 1.9. Let β be a nondegenerate symmetric bilinear form. We de�ne
its discriminant as the element of R×/(R×)2 determined by the determinant of
any associated matrix.

Given a submodule N of M , we de�ne it's orthogonal submodule by

N⊥ = {x ∈M : β(x, y) = 0, ∀ y ∈ N}.

De�nition 1.10. Given two bilinear form modules (M,α) and (N, β) we de�ne
their orthogonal sum as the bilinear form module (M ⊕N,α⊕ β), where

α⊕ β(x, y) = α(x) + β(y).

An orthogonal basis of a bilinear form space (M,β) is a basis (ei)i ofM over
R, such that β(ei, ej) = δij .

Theorem 1.11. ([2, p.6, Corollary 3.4])
If R is a local ring where 2 is a unit and (M,β) is an inner product space

over R, then (M,β) has an orthogonal basis.

We say that a bilinear form β is symplectic if β(x, x) = 0 for all x ∈M . An
inner product space (M,β) where β is symplectic is called a symplectic inner
product space.

Theorem 1.12. ([2, p.7, Corollary 3.5])
If R is a local ring and (M,β) is a symplectic inner product space over R,

then it has a symplectic basis (i.e. a basis such that the matrix associated to β

has the form

(
0 I
−I 0

)
).

De�nition 1.13. The radical of a quadratic module (V, q) is

V ⊥ = {x ∈ V : β(x, y) = 0, ∀ y ∈ V },

where β is the associated bilinear form.
We say that a quadratic form is nondegenerate if its associated symmetric

bilinear form is nondegenerate, or equivalently if V ⊥ = 0.

De�nition 1.14. If 2 ∈ R× and q is a quadratic form over R, we de�ne its
discriminant as the discriminant of the symmetric bilinear form 1

2β, where β is
the associated symmetric bilinear form. We denote it by d(q) or d.
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Specializing to the case where R = k is a �eld of characteristic 6= 2, the
previous facts about symmetric bilinear forms tell us that any quadratic form
over k can be diagonalized, meaning that there is a basis (ei)i ofM such that its
matrix representation is diagonal. This means that we can always �nd a change
of coordinates such that the polynomial corresponding to the quadratic form
becomes a1x

2
1 + · · · + anx

2
n for some ai ∈ k. A useful and easily proved fact is

that multiplying any of the ai by a square will produce an equivalent quadratic
form.

One important aspect of the theory of quadratic forms is representability:

De�nition 1.15. A quadratic form q on a module M over a commutative ring
R represents an element r ∈ R if there is an m ∈M \ {0} such that q(m) = r.

It is clear that if q represents r, then q represents a2r for any a ∈ R×,
because if q(x) = r then q(ax) = a2q(x) = a2r.

Translating to polynomials, asking whether a quadratic form q over R repre-
sents some r ∈ R is the same as asking if an equation of the form

∑
i,j aijxixj = r

with aij ∈ R has any solutions xi ∈ R.
We now state some useful results about quadratic forms over �elds of char-

acteristic 6= 2.

De�nition 1.16. If q and q′ are quadratic forms on vector spaces V and V ′

over the same �eld k, we denote by q⊕ q′ the quadratic form on V ⊕V ′ de�ned
by (q ⊕ q′)(v, v′) = q(v) + q′(v′). Similarly, we denote by q 	 q′ the quadratic
form on V ⊕ V ′ de�ned by (q 	 q′)(v, v′) = q(v)− q′(v′).

Proposition 1.17. ([1, p.33, Corollary 1])
Let g be a quadratic form in n variables over a �eld k of characteristic 6= 2

and let a ∈ k×. The following are equivalent:

(i) g represents a.

(ii) g ∼ h⊕ aZ2, where h is a form in n− 1 variables.

(iii) g 	 aZ2 represents 0.

Proposition 1.18. ([1, p.34, Theorem 4])
Let f = g ⊕ h and f ′ = g′ ⊕ h′ be nondegenerate quadratic forms over the

same �eld k. If f ∼ f ′ and g ∼ g′, then h ∼ h′.

2 Quadratic forms over Q
In this section we present the classi�cation of quadratic forms overQ. The proofs
of all the results can be read in [1, pp.19�45]. We assume that all quadratic
forms are nondegenerate.

As a warm-up, we begin with the classi�cation of quadratic forms over R. As
seen in the previous section, any quadratic form over R can be diagonalized, so
we assume we have a quadratic form a1x

2
1 + · · ·+ anx

2
n, with all the ai nonzero.

It is clear that we can multiply the ai by nonzero squares without changing the
equivalence class of the form and doing so we can turn all the positive ai into 1′s
and all the negative ai into −1′s, because in R any positive number is a square.
This way we see that any form over R is equivalent to x21+ · · ·+x2r−y21−· · ·−y2s

6



for some r, s ∈ N and we call (r, s) the signature of the form. It can be seen
that the signature is an invariant of the form and therefore we have classifed all
quadratic forms over R, the only invariant being the signature.

The case of Q is much harder, and we can immediately see that the method
used for R fails, because there are many positive rational numbers that are not
squares. The fact that it was so easy to do the classi�cation over R, suggests
that it might be useful to look at the other completions of Q, namely the p-
adic �elds Qp. It turns out that this works, because we can understand the
classi�cation of quadratic forms over the p-adic �elds and this information is
enough to classify the quadratic forms over Q, as will be made precise later.

We now focus on the classi�cation of quadratic forms over the Qp.

De�nition 2.1. Take a, b ∈ Q×v and consider the equation z2 − ax2 − by2 = 0.
We de�ne the Hilbert symbol by

(a, b)v =

{
1 if the equation has a nontrivial solution in Qv
−1 otherwise.

Here v ranges over V , the set of primes together with the symbol ∞, with
the convention Q∞ = R and "nontrivial" means (x, y, z) 6= (0, 0, 0).

In view of Proposition 1.17, it is clear that (a, b)v = 1 if and only if the
quadratic form ax2 + by2 represents 1 over Qv. We see from the de�nition that
(a, b)v = (b, a)v = (a, bc2)v for any a, b, c ∈ Q×v .

De�nition 2.2. Let u ∈ (Z2)
× . We de�ne

ε(u) =

{
0 if u ≡ 1 (mod 4)

1 if u ≡ −1 (mod 4)
ω(u) =

{
0 if u ≡ ±1 (mod 8)

1 if u ≡ ±5 (mod 8)
.

De�nition 2.3. We de�ne the Legendre symbol by(
u

p

)
= u(p−1)/2 mod p =

{
1 if u is a square mod p

−1 otherwise
,

where p is an odd prime and u ∈ Z×p .

The following identities (together with quadratic reciprocity) allow for simple
computation of the Hilbert symbol:

Proposition 2.4. If a, b ∈ R, we have (a, b)∞ =

{
1 if a > 0 or b > 0

−1 otherwise
.

If a, b ∈ Qp, we write a = pαu and b = pβv with u, v ∈ Z×p . Then

i) (a, b)p = (−1)αβε(p)
(
u
p

)β (
v
p

)α
, for p 6= 2.

ii) (a, b)2 = (−1)ε(u)ε(v)+αω(v)+βω(u).

Setting k = Qv, the previous identities immediatley imply that

(·, ·)v : k×/(k×)2 × k×/(k×)2 → {±1}
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is a symmetric bilinear form on the F2-vector space k
×/(k×)2. It can also be

proved that it is nondegenerate.
Here is another important property of the Hilbert symbol, which is essentially

equivalent to quadratic reciprocity:

Theorem 2.5. If a, b ∈ Q×, we have (a, b)v = 1 for all but �nitely many v and∏
v

(a, b)v = 1.

De�nition 2.6. We de�ne the Hasse-Witt invariant of a quadratic form f =
a1x

2
1 + · · ·+ anx

2
n over Qp by

εv(f) =
∏
i<j

(ai, aj).

When no confusion should arise, we use ε instead of ε(f).

This de�nition makes sense, because it can be shown that if we pick two
di�erent diagonalizations a1x

2
1+ · · ·+anx2n and b1x

2
1+ · · ·+ bnx2n of a quadratic

form, then
∏
i<j(ai, aj) =

∏
i<j(bi, bj). It is also possible to prove that this is

in fact an invariant of the quadratic form, meaning that equivalent quadratic
forms have the same Hasse-Witt invariant.

We now let k = Qp for some prime p. The following results about repre-
sentability are the key to obtaining the classi�cation of quadratic forms over the
Qp.

Theorem 2.7. A quadratic form f over k represents 0 if and only if its invari-
ants satisfy one of the following conditions:

i) n = 2 and d = −1.

ii) n = 3 and (−1,−d) = ε.

iii) n = 4 and d 6= 1.

iv) n = 4, d = 1 and ε = (−1,−1).

v) n ≥ 5.

(All the identities are in k×/(k×)2.)

Using this theorem and Proposition 1.17 we obtain the following result:

Corollary 2.8. Let a ∈ k×. A quadratic form f over k represents a if and only
if its invariants satisfy one of the following conditions:

i) n = 1 and a = d.

ii) n = 2 and (a,−d)v = ε.

iii) n = 3 and a 6= −d.

iv) n = 3, a = −d and (−1,−d) = ε.

v) n ≥ 4.
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(All the identities are in k×/(k×)2.)

Using the previous results, we can now obtain the classi�cation of quadratic
forms over Qp:

Theorem 2.9. Two quadratic forms f, g over k = Qp are equivalent if and only
if they have the same rank, discriminant and Hasse-Witt invariant.

Proof. We have already mentioned that equivalent forms have the same invari-
ants. For the converse, we use induction on the rank n of f and g. The case
n = 0 is obvious. For n ≥ 1, by the previous theorems on representability and
the fact that f and g have the same invariants, we know that f and g represent
the same elements of k. Therefore, there is some a ∈ k× that is represented by
both f and g (because f and g are nondegenerate, hence not identically zero).
By Proposition 1.17, we can write

f ∼ aZ2 ⊕ f ′ and g ∼ aZ2 ⊕ g′,

where f ′ and g′ are forms of rank n−1. It is easy to see that f ′ and g′ have the
same invariants, therefore, by the induction hypothesis, f ′ ∼ g′, hence f ∼ g.

We now go back to the connection between quadratic forms over Qp and Q,
which is the content of the Hasse-Minkowski Theorem:

Theorem 2.10 (Hasse-Minkowski). A quadratic form f over Q represents 0 if
and only if fv represents zero for all v, where fv is the form over Qv obtained
from f by looking at its coe�cients as elements of Qv.

The following is a simple corollary, using Proposition 1.17.

Corollary 2.11. A quadratic form over Q represents a ∈ Q× if and only if fv
represents a for all v.

Once again, a result about representability is the key to proving a result
about equivalence of quadratic forms:

Theorem 2.12. Two quadratic forms over Q are equivalent if and only if they
are equivalent over R and over Qp for all p.

Proof. Equivalence over Q clearly implies equivalence over the Qv. For the
converse, we use induction on the rank n of f and f ′. When n = 0, there is
nothing to prove. When n ≥ 1, there exists a ∈ Q× represented by f and by
the previous corollary f ′ also represents a. By Proposition 1.17, we have

f ∼ aZ2 ⊕ g and f ′ ∼ aZ2 ⊕ g′,

where g and g′ are forms of rank n − 1. We have f ∼ f ′ over Qv, for all
v, therefore g ∼ g′ over Qv for all v, by Proposition 1.18. By the induction
hypothesis, we then have g ∼ g′ over Q, hence f ∼ f ′ over Q.

Using this theorem and the classi�cation of quadratic forms over the Qv, we
obtain a complete set of invariants for quadratic forms over Q:
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Theorem 2.13. Two quadratic forms over Q are equivalent if and only if they
have the same rank, discriminant, signature (as forms over R) and Hasse-Witt
invariants (over all the Qp).

Now the only thing left to complete the classi�cation is to determine whether,
given a set of values for the invariants, there is a form whose invariants take
those values.

Proposition 2.14. Let f be a quadratic form over Q with rank n, discriminant
d, signature (r, s) and Hasse-Witt invariants (εv)v∈V (where εv denotes ε(fv)).
Then:

(1) εv = 1 for all but �nitely many v and
∏
v εv = 1;

(2) If n = 1 then εv = 1;

(3) If n = 2 and the image dv of d in Q×v /(Q×v )2 is −1 then εv = 1;

(4) r, s ≥ 0 and r + s = n;

(5) d∞ = (−1)s;

(6) ε∞ = (−1)s(s−1)/2.

Having identi�ed these relations, we have the following theorem (whose proof
depends on Dirichlet's Theorem on primes in arithmetic progression):

Theorem 2.15. If d, (εv)v∈V and (r, s) satisfy the relations of the previous
proposition, then there is a quadratic form of rank n over Q having d, (εv)v and
(r, s) for invariants.

We now present an example of a solution of a representability problem, using
the Hasse-Minkowski Theorem and Theorem 2.7.

Lemma 2.16. If a, b ∈ Z×p , then (a, b)p = 1 for p 6= 2 and (a, b)p = (−1)ε(u)ε(v)
for p = 2.

Proof. Clear, from the formulas for the Hilbert Symbol in Proposition 2.4.

Example 2.17. We claim that the equation f(x, y, z) = 5x2 + 7y2 − 13z2 = 0
has a nontrivial rational solution (nontrivial meaning that (x, y, z) = (0, 0, 0)).
This amounts to saying that the quadratic form f represents 0 over Q. By the
Hasse-Minkowski Theorem, we only need to prove that it represents 0 over R
and over the Qp, for all primes p. It is clear that the equation has a real solution,
therefore we concentrate on the p-adic solutions. By Theorem 2.7, we only need
to show that, for each p, we have (−1,−d)p = εp.

• p 6 | 2.5.7.13
We have

εp = (5, 7)p(5,−13)p(7,−13)p = 1× 1× 1 = 1

by the previous Lemma, because 5, 7,−13 ∈ Z×p . Similarly,

(−1,−d)p = (−1, 5× 7× 13)p = 1.
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• p = 2

By the previous Lemma,

(−1,−d)2 = (−1, 5× 7× 13)2 = (−1)ε(−1)ε(5×7×13).

It is easy to check that ε(−1) = ε(5× 7× 13) = 1, therefore

(−1,−d)2 = −1.

Similarly,

(5, 7)2 = (−1)ε(5)ε(7) = (−1)0×1 = 1 = (5,−13)2

and
(7,−13)2 = −1,

hence ε2 = −1.

• p = 5

By the formula in Theorem 2.4,

(−1,−d)5 = (−1, 5×7×13)5 = (−1)0×1×ε(5)
(
−1
5

)1(
5× 7× 13

5

)0

=

(
−1
5

)
= 1.

By the previous Lemma, (7,−13)5 = 1, therefore

ε5 = (5,−7× 13)5 = (−1)1×0×ε(5)
(
1

5

)0(−7× 13

5

)1

=

(
−7
5

)(
13

5

)
=

(
−2
5

)(
3

5

)
=

(
3

5

)2

= 1.

• p = 7

We have

(−1, 5× 7× 13)7 = (−1)0×1×ε(7)
(
−1
7

)1( −1
5× 7× 13

)0

=

(
−1
7

)
= −1,

and

ε7 = (5, 7)7(5,−13)7(7,−13)7 = (7,−5×13)7 =

(
−5× 13

7

)
=

(
2

7

)(
−1
7

)
= −1.

• p = 13

We have

(−1, 5× 7× 13)13 =

(
−1
13

)
= 1

and
ε13 = (5, 7)13(5,−13)13(7,−13)13 = (5× 7,−13)13 =
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(
5× 7

13

)
=

(
5

13

)(
7

13

)
=

(
13

5

)
(−1)ε(5)ε(13)

(
13

7

)
(−1)ε(7)ε(13) =(

13

5

)(
13

7

)
=

(
3

5

)(
−1
7

)
= −

(
3

5

)
=

−
(
5

3

)
(−1)ε(5)ε(3) = −

(
5

3

)
= −

(
2

3

)
= 1,

where we have used quadratic reciprocity.

3 Quadratic forms over Z/mZ
In this section we describe the results obtained regarding the classi�cation of
quadratic forms over Z/mZ, for m ∈ N. Namely, we present the classi�cation of
nondegenerate quadratic forms over Z/pkZ for p an odd prime, and of regular
quadratic forms over Z/2Z. By the Chinese Remainder Theorem, this will
give the classi�cation of regular quadratic forms over Z/mZ for all m ∈ N not
divisible by 4.

We begin by stating the classi�cation of nondegenerate quadratic forms over
the �nite �elds Fq of characteristic 6= 2. The proofs of these results can be found
in [1, pp. 34, 35].

Theorem 3.1. There are two equivalence classes of nondegenerate quadratic
forms of rank n over Fq:

i) x21 + · · ·+ x2n−1 + x2n and

ii) x21 + · · ·+ x2n−1 + ax2n, where a is not a square in Fq.

Theorem 3.2. A nondegenerate quadratic form over Fq of rank ≥ 2 (resp.
≥ 3) represents all elements of F×q (resp. Fq).

3.1 Z/pkZ, p 6= 2

Now we present the classi�cation of nondegenerate quadratic forms over R =
Z/pkZ, with p an odd prime. In this section, "quadratic form" will mean "non-
degenerate quadratic form". The ring R = Z/pkZ is a local ring where 2 is a
unit, therefore all quadratic forms can be diagonalized, with the elements in the
diagonal being units.

We have
(Z/pkZ)×

((Z/pkZ)×)2
∼=

Z/φ(pk)Z
2(Z/φ(pk)Z)

∼= Z/2Z,

where φ is the Euler totient function. We can choose 1 as a representative for
the squares and denote by a a representative of the non-squares.

Proposition 3.3. Let f be a quadratic form over R. Then

f ∼ x21 + · · ·+ x2r + a(y21 + · · ·+ y2s)

for some r, s ∈ N. Furthermore, if

f ′ = x21 + · · ·+ x2r′ + a(y21 + · · ·+ y2s′),

then f ∼ f ′ if and only if s ≡ s′ (mod 2) and r + s = r′ + s′.

12



Proof. We can write f ∼ a1x
2
1 + · · · + anx

2
n with a1, · · · , an ∈ R× and then,

multiplying the ai by squares, we get f ∼ x21 + · · · + x2r + a(y21 + · · · + y2s) for
some r, s ∈ N.

If f ∼ f ′, then we have s ≡ s′ (mod 2), because the discriminant of a
quadratic form is an invariant in R×/(R×)2 and d(f) = as, d(f ′) = as

′
. It is

clear that n = r+ s is the rank of f and n′ = r′ + s′ is the rank of f ′, therefore
r + s = r′ + s′.

Conversely, if s ≡ s′ mod 2 and r + s = r′ + s′, we will prove that f ∼ f ′,
but �rst we need the following Lemma:

Lemma 3.4. We have x21 + x22 ∼ ax21 + ax22.

Proof. We start by �nding

x =

(
x1
x2

)
and y =

(
y1
y2

)
such that xtIy = 0 and xtIx = a where I is the 2× 2 identity matrix, with the
additional constraint that x1y2−x2y1 must be a unit, to ensure that the matrix

A =

(
x1 y1
x2 y2

)
is invertible. If we can do this, we will have(

1 0
0 1

)
∼
(
a 0
0 y21 + y22

)(
because At

(
1 0
0 1

)
A =

(
a 0
0 y21 + y22

))
and the fact that the discriminant is an invariant forces y21 + y22 to be a non-
square, so that (

a 0
0 y21 + y22

)
∼
(
a 0
0 a

)
,

because we can multiply the diagonal coe�cients by squares.
To �nd x and y, we notice that x21+x

2
2 ≡ a (mod p) has a solution, according

to Theorem 3.2, and using Hensel's Lemma we can lift this solution to a solution
mod pk (alternatively, one can observe that if the sum of two squares mod p was
always a square mod p, than the set of squares would be a nontrivial subgroup
of Z/pZ). We must have x1x2 6≡ 0 mod p because a is a non-square. Now we
can solve x1y1 + x2y2 ≡ 0 (mod p) just by taking y1 = x−11 and y2 = (−x2)−1
and we can lift this to a solution mod pk using Hensel's Lemma. For the
invertibility of A, we notice that it su�ces to prove the invertibility of AtA,
because det(AtA) = det(A)2. We have

AtA =

(
a 0
0 y21 + y22

)
,

therefore we only need to prove that y21 + y22 is invertible mod p. But

y21 + y22 ≡ x−21 + x−22 (mod p)

and x−21 + x−22 ≡ 0 (mod p) is equivalent to x21 + x22 ≡ 0 (mod p) ( by clearing
denominators, since x1x2 6≡ 0 (mod p)) and we know that x21+x

2
2 6≡ 0 (mod p).
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Now we return to the proof of the Proposition, writing r′ = r + 2m and
s′ = s− 2m, for some m ∈ Z. We can suppose, without loss of generality, that
m ≥ 0 and then we decompose the matrices(

Ir 0
0 aIs

)
and

(
Ir′ 0
0 aIs′

)
representing f and f ′, respectively, into three blocks (changing the order of the
diagonal elements). The �rst and second blocks are of the form Ir and aIs′ ,
respectively, and are common to both f and f ′. The third block is of the form
aI2m for f and I2m for f ′:

f ∼

 Ir 0 0
0 aIs′ 0
0 0 aI2m

 ,

f ′ ∼

 Ir 0 0
0 aIs′ 0
0 0 I2m

 .

Applying the Lemma, we �nd that I2m ∼ aI2m, hence f ∼ f ′.

The following Theorem is now clear:

Theorem 3.5. Let p be an odd prime and n, k ∈ N. Then there are two
equivalence classes of nondegenerate quadratic forms of rank n over Z/pkZ:

i) x21 + · · ·+ x2n−1 + x2n and

ii) x21 + · · ·+ x2n−1 + ax2n, where a is not a square in Z/pkZ.

In particular, quadratic forms over Z/pkZ are classi�ed by their discrimi-
nant.

3.2 Z/2Z
Now we explain the classi�cation of quadratic forms over Z/2Z. Here we have
the problem of being in characteristic 2, which implies that we can no longer
de�ne the symmetric bilinear form x.y = 1

2 (q(x + y) − q(x) − q(y)). For this
reason, we work with the symmetric bilinear form β(x, y) = q(x+y)−q(x)−q(y).

Recall that a quadratic form is called nondegenerate if the corresponding
bilinear form β is nondegenerate and degenerate otherwise. Note that, for ex-
ample, the quadratic form of rank one over F2 x

2 is degenerate (its associated
bilinear form β is such that β(x, y) = 0 for all x, y) and we don't want to exclude
it from our classi�cation. Therefore we need the notion of regularity:

De�nition 3.6. A quadratic form q on a vector space V over a �eld k is called
regular if there is no nonzero subspace W ⊆ V ⊥ such that q|W = 0.

It is clear from the de�nition that a nondegenerate form is always regular,
but x2 is regular and degenerate. However, in the case of �elds of characteristic
6= 2, regular and nondegenerate forms coincide, because if x ∈ V ⊥, then q(x) =
1
2β(x, x) = 0.

14



In polynomial terms, a quadratic form is regular if it can not be written using
a smaller number of variables. From now on, we assume that all quadratic forms
are regular.

Proposition 3.7. Let q be a quadratic form over F2. Then

q ∼ x21 + · · ·+ x2k + (b1y
2
1 + y1z1 + d1z

2
1) + · · ·+ (b`y

2
` + y`z` + d`z

2
` ),

for some k, ` ∈ N and bi, di ∈ F2.

Proof. Let V = Fn2 be the vector space on wich q is de�ned and β the associated
bilinear form. Let A = V ⊥ and let B be a subspace of V such that V = A⊕B.
We have A ⊥ B, β is zero on A and nondegenerate on B.

We have β(x, x) = q(x+x)−q(x)−q(x) = 0, therefore β is symplectic, hence
the restriction of β to B is a symplectic inner product. By Corollary 1.12, we
can choose a basis for B such that the restriction of β to B is represented by
the matrix (

0 I
−I 0

)
.

But in characteristic 2 we have 1 = −1 and by changing the order of the basis
vectors, the restriction of β to B becomes

0 1
1 0

. . .

0 1
1 0

 .

Then β is of the form 

0k
0 1
1 0

. . .

0 1
1 0


,

where 0k is the k × k zero matrix, k = dim(A). Recalling the relation between
the matrix representations of a quadratic form and of its associated symmetric
bilinear form, we conclude that, in this basis, q is associated to the polynomial

f = a1x
2
1 + · · ·+ akx

2
k + (b1y

2
1 + y1z1 + d1z

2
1) + · · ·+ (b`y

2
` + y`z` + d`z

2
` ).

The ai are all equal to 1, because the form is regular, and this ends the proof.

Lemma 3.8. We have x2 + y2 ∼ u2.

Proof. Consider the linear change of varibles u = x+ y and v = y. This change
of variables is easily seen to be invertible and furthermore

x2 + y2 = (u− v)2 + v2 = u2 + v2 + v2 = u2.
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Proposition 3.9. Let f be a quadratic form of rank n over F2. Then:

(i) If n is odd, we have

f ∼ x2 + (b1y
2
1 + y1z1 + d1z

2
1) + · · ·+ (b`y

2
` + y`z` + d`z

2
` ),

or in matrix form

f ∼



1
b1 1
0 d1

. . .

b` 1
0 d`


,

for some ` ∈ N and bi, di ∈ F2.

(ii) If n is even, then

f ∼ (b1y
2
1 + y1z1 + d1z

2
1) + · · ·+ (b`y

2
` + y`z` + d`z

2
` ),

or in matrix form 
b1 1
0 d1

. . .

b` 1
0 d`

 ,

for some ` ∈ N and bi, di ∈ F2.

Proof. This is immediate from Lemma 3.8, Proposition 3.7 and the regularity
of f .

Now we focus on forms of even rank. We start by presenting the classi�cation
of regular forms of rank 2.

De�nition 3.10. The Arf invariant of a quadratic form q on a vector space V
over F2 is de�ned by

#q = #{x ∈ V : q(x) = 1}.

It is clear that #q is in fact an invariant of the quadratic form q, meaning
that if p ∼ q, then #p = #q.

Lemma 3.11. There are two equivalence classes of regular quadratic forms of
rank 2 over F2: {x2 + y2 + xy} and {xy + y2, xy + x2, xy}.

Proof. There are only 5 di�erent homogeneous polynomials of degree 2 in two
variables, with coe�cients in F2: x

2+y2, x2+y2+xy, xy+y2, xy+x2 and xy. We
have already seen that x2+ y2 does not correspond to a regular quadratic form.
On the other hand it is clear that the remaining quadratic forms are regular,
because they are nondegenerate. The change of variables x = a + b; y = b
provides an equivalence of quadratic forms between xy and ab+ b2:

xy = (a+ b)b = ab+ b2.
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Moreover, it is clear that xy + y2 ∼ xy + x2, therefore the only thing left to
prove is xy 6∼ x2 + y2 + xy and this can be seen from the fact that #xy = 1 and
#x2+y2+xy = 3.

By the last Lemma, there are only 2 possibilities for each 2× 2 block in the
matrix representation of Proposition 3.9 for a quadratic form of even rank over
F2: (

1 1
0 1

)
and

(
0 1
0 0

)
.

But not all combinations of these blocks will give di�erent quadratic forms:

Lemma 3.12. We have
1 1
0 1

1 1
0 1

 ∼


0 1
0 0

0 1
0 0

 .

Proof. If we let

A =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 , B =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 and T =


1 0 1 0
1 1 1 0
0 1 0 1
0 1 1 1


then we have

T tBT =


1 1 1 0
0 1 1 1
1 1 1 0
0 1 1 1


and it is clear that xt(T tBT )x = xtAx for all x, therefore A ∼ B. This corre-
sponds to the change of variables x = r+t; y = r+s+t; z = s+u; w = s+t+u:

xy + zw = (r + t)(r + s+ t) + (s+ u)(s+ y + u) = r2 + rs+ s2 + t2 + ut+ u2.

Using this fact, we can transform all 2 × 2 blocks, except possibly one of
them, into (

0 1
0 0

)
,

therefore the form is always equivalent to

0 1
0 0

. . .

0 1
0 0

0 1
0 0


or



0 1
0 0

. . .

0 1
0 0

1 1
0 1


.

These two forms are regular, because they are nondegenerate, and to com-
plete the classi�cation of regular forms of even rank we need to show that they
are not equivalent.
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Lemma 3.13. We have

#q⊕q′ = #q(2
k −#q′) + #q′(2

` −#q) = 2k#q + 2`#q′ − 2#q#q′ ,

where k = dim(V ′) and ` = dim(V ).

Proof. This formula is a direct consequence of the fact that q(v) + q′(v′) = 1 if
and only if exactly one of q′(v), q′(v′) is equal to 1.

Lemma 3.14. We have

0 1
0 0

. . .

0 1
0 0

0 1
0 0


6∼



0 1
0 0

. . .

0 1
0 0

1 1
0 1


.

Proof. Let B be the form (
0 1
0 0

)
,

C the form (
1 1
0 1

)
and Ak the sum of k copies of B. We want to show that Ak ⊕B 6∼ Ak ⊕ C for
all k ∈ N.

Suppose that Ak ⊕ B ∼ Ak ⊕ C for some k ∈ N and let ak, b and c be the
Arf invariants of Ak, B and C, respectively. Then we have #Ak⊕B = #Ak⊕C ,
that is 22ak +22kb− 2akb = 22ak +22kc− 2akc. It is easy to see that b = 1 and
c = 3 and solving the previous equation for ak, we get ak = 22k−1.

On the other hand, we have Ak = Ak−1 ⊕B, therefore ak = ak−1(2
2 − b) +

b(22(k−1) − ak−1) which is equivalent to ak = 2ak−1 + 22(k−1). This recurrence
relation allows us to prove, by induction, that ak < 22k−1 for all k ∈ N: for
k = 1, we have a1 = 1 < 2. For k ≥ 2, we have

ak = 2ak−1 + 22(k−1) < 2× 22(k−1)−1 + 22(k−1) = 22k−1,

where we have used the induction hypothesis. This contradicts ak = 22k−1, thus
completing the proof.

The previous results also imply that all regular forms of odd rank are equiv-
alent to one of the two following forms:

1
0 1
0 0

. . .

0 1
0 0

0 1
0 0


and



1
0 1
0 0

. . .

0 1
0 0

1 1
0 1


.
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We start by mentioning that they are regular, because both their radicals have
dimension 1 and are generated by an element e with q(e) = 1, but we will show
that they are actually equivalent. More generally, we have the following Lemma:

Lemma 3.15. We have

B =



1
0 1
0 0

. . .

0 1
0 0

0 1
0 0


∼



1
b1 1
0 d1

. . .

b`−1 1
0 d`−1

b` 1
0 d`


,

for any bi, di ∈ F2.

Proof. Let V = (Z/2Z)n, where n = 2` + 1, and let q be the quadratic form
on V represented by the matrix B in the canonical basis {e1, · · · , en}. Let
W = span{e2, · · · , en}. We have V ⊥ = span{e1} and V = V ⊥⊕W . LetA be the
matrix representation of the restriction of q to W in the basis B = {e2, · · · , en}.

Let φ :W → F2 be a linear function and de�neW
′ = {w+φ(w)e1 : w ∈W}.

Now observe that V ⊥ ∩W ′ = 0 and ψ :W →W ′ given by ψ(w) = w + φ(w)e1
is an isomorphism of vector spaces. In particular dim(W ′) = dim(W ) and
therefore V = V ⊥⊕W ′, which means that W ′ is another complement of V ⊥ in
V . We have

q(ψ(w)) = q(w + φ(w)e1) = q(w) + φ(w)2q(e1) + φ(w)β(w, e1) = q(w) + φ(w),

because φ(w)2 = φ(w), q(e1) = 1 and β(w, e1) = 0, therefore q ◦ ψ = q + φ.
Now B′ = ψ(B) is a basis of W ′. Let A′ be the matrix representation of

the restriction of q to W ′ in the basis B′. If x′, y′ ∈ B′ then x′ = ψ(x) and
y′ = ψ(y), for some x, y ∈ B and we have

q(x′) = q(ψ(x)) = q(x) + φ(x),

therefore a′ii = aii + φ(ei+1) for all i (by the de�nition of matrix representation
in section 1, we have aii = q(ei+1) and a

′
ii = q(ei+1)

′ ). Moreover

β(x′, y′) = q(x′ + y′)− q(x′)− q(y′) = q(ψ(x+ y))− q(ψ(x))− q(ψ(y)) =

q(x+y)+φ(x+y)−q(x)−φ(x)−q(y)−φ(y) = q(x+y)−q(x)−q(y) = β(x, y),

therefore aij = a′ij for i 6= j (by the de�nition of matrix representation in
section 1, we have aij = β(ei+1, ej+1) and a′ij = β(e′i+1, e

′
j+1), for i < j and

aij = a′ij = 0, for i > j).
This means that the matrix

B′ =

(
1

A′

)
representing q in the basis B′ ∪ {e1} is obtained from the matrix

B =

(
1

A

)
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representing q in the basis {e1, · · · , en} by adding the value φ(ei) to the ith

diagonal entry, for all i ≥ 2. Because φ is arbitrary, this ends the proof.

The following theorem is now clear:

Theorem 3.16. (i) If n is even, there are two equivalence classes of regular
quadratic forms of rank n over F2, with representatives

0 1
0 0

. . .

0 1
0 0

0 1
0 0


and



0 1
0 0

. . .

0 1
0 0

1 1
0 1


.

In particular, regular quadratic forms of even rank over F2 are classi�ed
by their rank and Arf invariant.

(ii) If n is odd, there is only one equivalence class of regular quadratic forms
of rank n over F2, with representative

1
0 1
0 0

. . .

0 1
0 0

0 1
0 0


.

In particular, regular quadratic forms of even rank over F2 are classi�ed
by their rank.

3.3 Z/mZ, with 4 6 |m
In this section we apply the Chinese Remainder Theorem to obtain the clas-
si�cation of quadratic forms over Z/mZ with 4 6 |m, from the classi�cation of
quadratic forms over Z/pkZ for p and odd prime and over Z/2Z. In this sec-
tion, the matrix representation of a quadratic form q with respect to a basis
B = {e1, · · · , en} will always mean the matrix Q with entries

qij =


β(ei, ej) if i<j

q(ei) if i=j

0 otherwise

.

De�nition 3.17. Let q be a quadratic form over Z/mZ, for some m,n ∈ Z and
suppose that c|m. Let Q be a matrix representation of q. Then the reduction of
q mod c is the quadratic form qc over Z/cZ represented by the matrix Qc whose
entries are the reduction modc of the entries of Q.
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For this de�nition to make sense, we need to prove the following Lemma:

Lemma 3.18. If q, p are forms over Z/mZ, such that p ∼ q and c|m, then
pc ∼ qc.

Proof. We can assume that q, p are de�ned on (Z/mZ)n and pc, qc are de�ned
on (Z/cZ)n. Let φ : (Z/mZ)n → (Z/mZ)n be an equivalence of quadratic forms
(q(x) = p(φ(x)) for all x) and let P,Q, T be the matrix representations of p, q and
φ, with respect to the canonical basis. We have xtQx = xt(T tPT )x for all x ∈
(Z/mZ)n, therefore, reducing everything mod c, we have xtQcx = xt(T tcPcTc)x
for all x ∈ (Z/cZ)n, where Tc is the reduction mod c of T . Furthermore, Tc is
invertible, because its determinant is the reduction mod c of det(T ) and det(T )
is invertible in Z/mZ. We conclude that the function φc : (Z/cZ)n → (Z/cZ)n
de�ned by the matrix Tc is an equivalence of quadratic forms between qc and
pc.

Example 3.19. Consider the quadratic form q over Z/6Z given in matrix form
by  0 1 2

0 0 4
0 0 0


or in polynomial form by f(x, y, z) = xy + 2xz + 4yz. Its reduction mod 2 is 0 1 0

0 0 0
0 0 0


or f2(x, y, z) = xy in polynomial form. Its reduction mod 3 is 0 1 2

0 0 1
0 0 0


or f2(x, y, z) = xy + 2xz + yz in polynomial form.

De�nition 3.20. We say that a quadratic form q over Z/mZ, with 4 6 |m, is
regular provided the following conditions are satis�ed:

(i) If p is an odd prime such that p|m, then qp is nondegenerate.

(ii) If 2|m, then q2 is regular.

Notice that when m = 2 this de�nition coincides with the previous de�nition
of regularity and whenm is odd it is equivalent to nondegeneracy. The following
result shows that knowing the classi�cation of quadratic forms over Z/2Z and
Z/pkZ for odd primes p is enough to classify quadratic forms over Z/mZ, for
4 6 |m.

Proposition 3.21. Suppose f, g are regular quadratic forms over Z/mZ (4 6 |m)
such that:

(i) If p is an odd prime and k ≥ 1 is its exponent in the prime factorization
of m, then fpk ∼ gpk .
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(ii) If 2|m, then f2 ∼ g2.

Then f ∼ g.

Proof. Let F,G (resp. Fp, Gp) be the matrix representations of f, g (resp.
fpk , gpk) and Tp be the matrix representation of an equivalence between fpk
and gpk , for each prime p dividing m and where k is the exponent of p in the
prime factorization of m. Then for each p|m, we have xt(T tpGpTp)x = xtFpx,
for all x. By the Chinese Remainder Theorem, we can �nd a unique matrix T
whose entries are congruent to those of Tp mod pk for each p, k such that pk|m.
We then have

xt(T tGT )x ≡ xtFx (mod pk)

for each p, k such that pk|m (where we say that x ≡ y (mod k) for column
vectors x, y when xi ≡ yi (mod k) for all i). Then, by the CRT, we must have
xt(T tGT )x ≡ xtFx (mod m). It is also clear that T is invertible, because all
the Tp are invertible, therefore f ∼ g.

The following theorem is now clear:

Theorem 3.22. Let m = 2apk11 · · · p
k`
` , where the pi are odd primes, a ∈ {0, 1},

and ki ∈ N. Suppose f, g are regular quadratic forms over Z/mZ, of ranks n(f)
and n(g), respectively. Then f ∼ g if and only if the following conditions hold:

(i) n(f) = n(g).

(ii) d(f
p
ki
i

) = d(f
p
ki
i

) for all i.

(iii) If n(f) is even and a = 1, then #f2 = #g2 .
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