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I Ring maps, and specific non-Noetherian examples
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Let T be a tensor-triangulated category generated by the tensor
unit 1.

For example, take T = D(R), where R is a commutative ring,
D(R) is the derived category of unbounded chain complexes.

The tensor product X ∧ Y := X ⊗L
R Y, and R is the unit. Every

X ∈ D(R) can be built from R using triangles, retracts, and
coproducts.

Other examples: the stable homotopy category, the stable
module category StMod(kG) when G is a finite p-group and
char(k) = p.
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Let S ⊆ T be a full subcategory.

Definition
1. S is a thick subcategory if it is closed under triangles and

retracts (so X
∐

Y ∈ S implies X,Y ∈ S).
2. th(X) is the smallest thick subcategory containing X.
3. S is a localizing subcategory if it is closed under triangles

and coproducts (and hence retracts).
4. loc(X) is the smallest localizing subcategory containing X.

Henceforth, let T be a tensor-triangulated category with
T = loc(1). The thick subcategory th(1) is the finite objects.
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BIG GOAL:
Classify the thick subcategories of finite objects in T, and the
localizing subcategories of T.

Done for:
I Thick subcats of finites: the stable homotopy category,

D(R), StMod(kG).
I Localizing subcats: D(R) when R is Noetherian,

StMod(kG).

Motto: “Localizing subcategories are hard.”
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Question.
Is there a set of localizing subcategories?

The answer is yes for:

I the stable homotopy category [Okhawa 1989]
I a Brown category [Dwyer-Palmieri 2001]
I a well-generated category [Iyengar-Krause 2011]

– e.g. whenever T = loc(1).
I any category with a combinatorial model structure

[Casacuberta-Gutiérrez-Rosický 2012]

Question.
If there is a set, then what?
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Definition
The Bousfield class of an object X ∈ T is 〈X〉 = {W |W ∧ X = 0}.

Every Bousfield class is a localizing subcategory [show], so there is
a set of them.

Bousfield classes are given a partial ordering by reverse
inclusion, so we say 〈X〉 ≤ 〈Y〉when

W ∧ Y = 0 implies W ∧ X = 0.

Then 〈0〉 is the minimum, and 〈1〉 is the maximum [show].

Note that 〈X〉 = 〈0〉 if and only if X = 0.
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There is a join operation given by

∨
i∈I

〈Xi〉 :=

〈∐
i∈I

Xi

〉
.

There is a meet given by

〈X〉f 〈Y〉 :=
∨

〈W〉≤〈X〉 and 〈W〉≤〈Y〉

〈W〉.

Thus the collection of Bousfield classes forms a complete
lattice, called the Bousfield lattice BL(T). We’ll do stuff with it.
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Question.
But is every localizing subcategory a Bousfield class?

This was conjectured for the stable homotopy category in
[Hovey-Palmieri 1999].

The answer is yes for D(R) when R is Noetherian, and for
StMod(kG) (and slightly more generally).

In October [Stevenson 2012] found a non-Noetherian ring S
such that the answer is no for D(S).
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Theme for Bousfield lattice and localizing subcategories:
When R is Noetherian, D(R) is very nice... too nice.
The stable homotopy category is very hard... and complicated.

Some are working to extend the niceness as much as possible.
Some are trying to simplify the category of spectra using
localizations. Some are looking at non-Noetherian rings. In
particular, we know a lot about D(Λ) for

Λ =
k[x1, x2, x3, ...]

(xn1
1 , x

n2
2 , x

n3
3 ...)

,

where k is a countable field, ni ≥ 2, and deg(xi) = 2i.
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IN THIS TALK

Let S,T be tensor-triangulated categories generated by their
tensor units. Sometimes a functor F : S→ T will induce a map
of lattices

BL(S)→ BL(T), where 〈X〉 7→ 〈FX〉.

What can this tell us about BL(S) and BL(T)?

Specifically:
I the Verdier quotient functor π : T→ T/〈Z〉
I a ring map between two commutative rings f : R→ S

induces f• : D(R)→ D(S) via extension of scalars.
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BOUSFIELD LATTICE SUBSTRUCTURE

The tensor (smash) product gives another operation on
Bousfield classes:

〈X〉 ∧ 〈Y〉 := 〈X ∧ Y〉.

In general 〈X〉 ∧ 〈Y〉 ≤ 〈X〉f 〈Y〉.

Definition

DL(T) = {〈X〉 such that 〈X ∧ X〉 = 〈X〉}.

This is a sublattice of BL(T).

Proposition. (Bousfield)
In DL the meet agrees with the smash. Hence DL is a
distributive lattice.
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Definition
1. 〈X〉 ∈ BL is complemented if there exists 〈Xc〉 such that

〈X〉 ∧ 〈Xc〉 = 〈0〉 and 〈X〉 ∨ 〈Xc〉 = 〈1〉.

2. BA(T) = {complemented 〈X〉} ⊆ BL(T).

Note that complements, if they exist, are unique. BA is a
Boolean algebra, and

BA ⊆ DL ⊆ BL.
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What we know:

I If R is Noetherian, then in D(R) we have BA = DL = BL.

I In D(Λ), IΛ = Hom∗k(Λ, k) has IΛ ∧ IΛ = 0, so 〈IΛ〉 /∈ DL.

Furthermore, BA = {〈0〉, 〈Λ〉}.

I In the stable homotopy category, the Brown-Comenetz
dual IS0 of the sphere has IS0 ∧ IS0 = 0, so DL ( BL.

Every finite spectrum 〈F〉 ∈ BA. But, for example,
〈HZ〉 ∈ DL\BA.
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Definition
For any 〈X〉 ∈ BL, define

a〈X〉 =
∨

〈X∧Y〉=〈0〉

〈Y〉.

Note that 〈X〉 ∧ a〈X〉 = 〈0〉 and 〈X〉 ∨ a〈X〉 ≤ 〈1〉.

Lemma. (Bousfield)
1. If 〈X〉 is complemented, then 〈Xc〉 = a〈X〉.
2. 〈Y〉 ≤ a〈X〉 if and only if 〈Y〉 ∧ 〈X〉 = 〈0〉.[show]

3. 〈X〉 ≤ 〈Y〉 if and only if a〈X〉 ≥ a〈Y〉.
4. a2〈X〉 = 〈X〉.
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Definition
We say X ∈ T is square-zero if it is nonzero but X ∧ X = 0.

Recall 〈0〉 ≤ 〈X ∧ X〉 ≤ 〈X〉 for all X.

Proposition. (W.)
There are no square-zero objects in T if and only if
BA = DL = BL.

Proof. [show]
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QUOTIENTS
Given a localizing subcategory S of a tensor-triangulated
category T, the Verdier quotient T/S is tensor-triangulated, and
the quotient functor π : T→ T/S is exact.

Question.
Does π induce a map on Bousfield lattices?

BL(T)→ BL(T/S), where 〈X〉 7→ 〈πX〉.

[Aside: π(〈X〉) is not usually triangulated.]
Does 〈X〉 = 〈Y〉 imply 〈πX〉 = 〈πY〉?
Does 〈X〉 ≤ 〈Y〉 imply 〈πX〉 ≤ 〈πY〉?
In general, no. However:

Proposition. (W.)
Suppose S = 〈Z〉 for some 〈Z〉. Then π : T→ T/〈Z〉 induces an
order-preserving map of lattices BL(T)→ BL(T/〈Z〉).
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Definition

〈X〉↓ = {〈Y〉 | 〈Y〉 ≤ 〈X〉} ⊆ BL.

〈X〉↑ = {〈Y〉 | 〈Y〉 ≥ 〈X〉} ⊆ BL.

We can form a quotient lattice BL/〈X〉↓ of equivalence classes
of Bousfield classes, where [〈Y〉] = [〈Z〉] if and only if
〈Y〉 ∨ 〈X〉 = 〈Z〉 ∨ 〈X〉.

Likewise [〈Y〉] ≤ [〈Z〉] in BL/〈X〉↓ if and only if
〈Y〉 ∨ 〈X〉 ≤ 〈Z〉 ∨ 〈X〉 in BL.

There is an isomorphism of lattices BL/〈X〉↓ ∼−→ 〈X〉↑, given by
[〈Y〉] 7→ 〈Y〉 ∨ 〈X〉.



BACKGROUND SUBSTRUCTURE QUOTIENTS RING MAPS

The picture is this:

BL(T) BL(T/〈Z〉)

BL(T)/(a〈Z〉↓)

π

π

Proposition. (W.)
The map π : [〈X〉] 7→ 〈πX〉 is a well-defined, order-preserving
epimorphism of lattices, such that if π[〈X〉] = 〈0〉 then
[〈X〉] = [〈0〉].
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Proposition. (W.)
If 〈Z〉 is complemented, then this is an isomorphism

〈Zc〉↑ ∼= BL(T)/〈Zc〉↓ ∼−→ BL(T/〈Z〉).

Corollary. (W.)
If there are no square-zero objects in T, then π is an
isomorphism for all 〈Z〉.

Proposition. (W.)
If 〈Z〉 ∈ DL\BA, then π is NOT an isomorphism of lattices.

This is the case with the stable homotopy category, if we take
〈Z〉 = 〈HFp〉. Then, in fact, we have IS0 ∈ 〈HFp〉 ∨ a〈HFp〉 < 〈1〉.
This is also the case in D(Λ), if we take 〈Z〉 = 〈k〉. Then we have
IΛ ∈ 〈k〉 ∨ a〈k〉 < 〈1〉.
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RING MAPS

Let f : R→ S be a ring map between commutative rings. This
induces a map on modules, via extension of scalars.

f∗ : Mod-R→ Mod-S, by M 7→M⊗R S.

This induces a functor f∗ : Ch(R)→ Ch(S), which is left adjoint
to f ∗ : Ch(S)→ Ch(R) induced by the forgetful functor.

By abstract nonsense, there is a pair of adjoint functors on the
derived categories

f• = L(f∗) : D(R)� D(S) : R(f ∗) = f •.
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Lemma.
1. f•R = S
2. f• is exact, and commutes with coproducts
3. f•(X ∧ Y) = f•X ∧ f•Y
4. (Every object is fibrant, so) f •(Z) = f ∗(Z), and f • is exact

and commutes with products and coproducts.

In general, f •(X ∧ Y) 6= f •X ∧ f •Y.

Proposition. (W.)
f• and f • induce order-preserving maps on Bousfield lattices

f• : BLR → BLS, where 〈X〉 7→ 〈f•X〉, and

f • : BLS → BLR, where 〈Y〉 7→ 〈f •Y〉.
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Lemma.
For all A ∈ D(R) and B ∈ D(S) we have

f•A ∧ B = 0 if and only if A ∧ f •B = 0.

So 〈f•X〉 = 〈0〉 iff X ∧ f •S = 0 iff 〈X〉 ≤ a〈f •S〉.

Definition

〈Mf 〉 =
∨

〈f•X〉=〈0〉

〈X〉 =
∨

〈X∧f•S〉=〈0〉

〈X〉 = a〈f •S〉.

Then 〈f•X〉 = 〈0〉 if and only if 〈X〉 ≤ 〈Mf 〉, i.e. Ker f• = 〈Mf 〉↓.
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Lemma. (W.)
The following are equivalent:

1. f•f •〈X〉 = 〈X〉 for all 〈X〉
2. f •Y ∧ f •X = 0 if and only if f •(Y ∧ X) = 0
3. f •〈Y ∧ X〉 = 〈f •Y〉 ∧ 〈f •X〉 for all Y and X.

Proposition. (W.)
Assume 〈f•f •X〉 = 〈X〉 for all 〈X〉.

1. f• sends DLR onto DLS and the map f • injects DLS into DLR.
2. f• sends BAR onto BAS, and if 〈f •S〉 ∨ 〈Mf 〉 = 〈R〉 then f •

injects BAS into BAR.
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Recall Ker f• = 〈Mf 〉↓ = (a〈f •S〉)↓.

The picture is:

BL(R) BL(S)

BL(R)/〈Mf 〉↓ BL(D(R)/〈f •S〉)

f•

(∗)

(†)
∃

The map (∗) is an isomorphism when 〈f •S〉 ∨ 〈Mf 〉 = 〈R〉.

The map (†) exists and is an isomorphism when f•f •〈X〉 = 〈X〉
for all X.
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EXAMPLE WITH SOME NON-NOETHERIAN RINGS

Definition
Fix a prime p and choose ni ≥ 2. Let deg(xi) = 2i and define the
following.

1. ΛZ(p) =
Z(p)[x1,x2,x3,...]

(xn1
1 ,xn2

2 ,xn3
3 ...)

,

ΛFp =
Fp[x1,x2,x3,...]

(xn1
1 ,xn2

2 ,xn3
3 ...)

,

ΛQ = Q[x1,x2,x3,...]

(xn1
1 ,xn2

2 ,xn3
3 ...)

.

2. Let g : ΛZ(p) → ΛZ(p)/pΛZ(p) = ΛFp be the projection map.
3. Let h : ΛZ(p) → ΛQ be the inclusion map.
4. Let g• : D(ΛZ(p))� D(ΛFp) : g• and

h• : D(ΛZ(p))� D(ΛQ) : h• be the induced adjoint pairs.
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It turns out that 〈g•ΛFp〉 and 〈h•ΛQ〉 are a complemented pair in
BL(ΛZ(p)). Recall that BL(ΛFp) and BL(ΛQ) have no nontrivial
complemented classes.

Furthermore, 〈g•g•X〉 = 〈X〉 for all X ∈ D(ΛFp). Thus we get the
following picture.

BL(ΛZ(p)) BL(ΛFp)

BL(ΛZ(p))/〈h•ΛQ〉↓ BL(D(ΛZ(p))/〈g•ΛFp〉)

g•

∼=

∼=

On the other hand, 〈h•h•Y〉 = 〈Y〉 is not true for all Y ∈ D(ΛQ).
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Theorem. (W.)

BL(ΛZ(p))
∼−→ 〈g•ΛFp〉↓ × 〈h•ΛQ〉↓, via

〈X〉 7→ (〈X ∧ g•ΛFp〉, 〈X ∧ h•ΛQ〉).

From the work we did with quotients, we get the following.

Proposition. (W.)

〈g•ΛFp〉↓ ∼= BL(ΛFp).

In fact, the inclusion functors induce the following
isomorphisms.

Lemma. (W.)

BL(loc(g•ΛFp))
∼−→ 〈g•ΛFp〉↓ ⊆ BL(ΛZ(p)) and

BL(loc(h•ΛQ))
∼−→ 〈h•ΛQ〉↓ ⊆ BL(ΛZ(p)).
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Putting all this together, we get a complete splitting of the
Bousfield lattice of D(ΛZ(p)) and its sublattices.

Theorem. (W.)

BL(ΛZ(p))
∼= BL(ΛFp)× BL(loc(h•ΛQ)),

DL(ΛZ(p))
∼= DL(ΛFp)× DL(loc(h•ΛQ)),

BA(ΛZ(p))
∼= BA(ΛFp)× BA(loc(h•ΛQ)).

Corollary. (W.)

The cardinality of BL(ΛZ(p)) is 22ℵ0 .

... Thank you.
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