Background	SUBSTRUCTURE	Quotients	RING MAPS
00000000	00000	0000	000000000

Bousfield lattices, quotients, ring maps, and non-Noetherian rings

Luke Wolcott University of Western Ontario

January 8th, 2013

Background	Substructure	Quotients	RING MAPS
00000000	00000	0000	000000000

OVERVIEW

- The bigger picture and background
- Bousfield lattice substructure
- Quotients of lattices and lattices of quotients
- ► Ring maps, and specific non-Noetherian examples

BACKGROUND	Substructure	Quotients	RING MAPS
00000000	00000	0000	000000000
			/

Let T be a tensor-triangulated category generated by the tensor unit 1.

For example, take T = D(R), where *R* is a commutative ring, D(R) is the derived category of unbounded chain complexes.

The tensor product $X \land Y := X \otimes_R^L Y$, and *R* is the unit. Every $X \in D(R)$ can be built from *R* using triangles, retracts, and coproducts.

Other examples: the stable homotopy category, the stable module category StMod(kG) when *G* is a finite *p*-group and char(k) = p.

BACKGROUND	Substructure	Quotients	RING MAPS
0000000	00000	0000	000000000

Let $\mathsf{S} \subseteq \mathsf{T}$ be a full subcategory.

Definition

- 1. S is a *thick subcategory* if it is closed under triangles and retracts (so $X \coprod Y \in S$ implies $X, Y \in S$).
- 2. th(X) is the smallest thick subcategory containing *X*.
- 3. S is a *localizing subcategory* if it is closed under triangles and coproducts (and hence retracts).
- 4. loc(X) is the smallest localizing subcategory containing X.

Henceforth, let T be a tensor-triangulated category with T = loc(1). The thick subcategory th(1) is the *finite objects*.

Background	Substructure	Quotients	RING MAPS
0000000	00000	0000	000000000

BIG GOAL:

Classify the thick subcategories of finite objects in T, and the localizing subcategories of T.

Done for:

- ► Thick subcats of finites: the stable homotopy category, D(R), StMod(kG).
- ► Localizing subcats: *D*(*R*) when *R* is Noetherian, *StMod*(*kG*).

Motto: "Localizing subcategories are hard."

BACKGROUND	Substructure	QUOTIENTS	RING MAPS
0000000	00000	0000	000000000

Question.

Is there a set of localizing subcategories?

The answer is yes for:

- ▶ the stable homotopy category [Okhawa 1989]
- ▶ a Brown category [Dwyer-Palmieri 2001]
- ▶ a well-generated category [Iyengar-Krause 2011]
 − e.g. whenever T = loc(1).
- any category with a combinatorial model structure [Casacuberta-Gutiérrez-Rosický 2012]

Question.

If there is a set, then what?

Background	Substructure	Quotients	RING MAPS
00000000	00000	0000	000000000

Definition

The *Bousfield class* of an object $X \in \mathsf{T}$ is $\langle X \rangle = \{W \mid W \land X = 0\}$.

Every Bousfield class is a localizing subcategory [show], so there is a set of them.

Bousfield classes are given a partial ordering by reverse inclusion, so we say $\langle X \rangle \leq \langle Y \rangle$ when

 $W \wedge Y = 0$ implies $W \wedge X = 0$.

Then $\langle 0 \rangle$ is the minimum, and $\langle 1 \rangle$ is the maximum [show].

Note that $\langle X \rangle = \langle 0 \rangle$ if and only if X = 0.

BACKGROUND	SUBSTRUCTURE	QUOTIENTS	RING MAPS
000000000	00000	0000	000000000

There is a join operation given by

$$\bigvee_{i\in I} \langle X_i \rangle := \left\langle \coprod_{i\in I} X_i \right\rangle.$$

There is a meet given by

$$\langle X\rangle \mathrel{,} \langle Y\rangle := \bigvee_{\langle W\rangle \leq \langle X\rangle \text{ and } \langle W\rangle \leq \langle Y\rangle} \langle W\rangle.$$

Thus the collection of Bousfield classes forms a complete lattice, called the *Bousfield lattice* BL(T). We'll do stuff with it.

BACKGROUND	Substructure	Quotients	RING MAPS
0000000000	00000	0000	000000000

Question.

But is every localizing subcategory a Bousfield class?

This was conjectured for the stable homotopy category in [Hovey-Palmieri 1999].

The answer is yes for D(R) when *R* is Noetherian, and for *StMod*(*kG*) (and slightly more generally).

In October [Stevenson 2012] found a non-Noetherian ring S such that the answer is no for D(S).

BACKGROUND	Substructure	QUOTIENTS	RING MAPS
000000000	00000	0000	000000000

Theme for Bousfield lattice and localizing subcategories:

When *R* is Noetherian, D(R) is very nice... *too* nice. The stable homotopy category is very hard... and *complicated*.

Some are working to extend the niceness as much as possible. Some are trying to simplify the category of spectra using localizations. Some are looking at non-Noetherian rings. In particular, we know a lot about $D(\Lambda)$ for

$$\Lambda = \frac{k[x_1, x_2, x_3, \ldots]}{(x_1^{n_1}, x_2^{n_2}, x_3^{n_3} \ldots)},$$

where *k* is a countable field, $n_i \ge 2$, and $deg(x_i) = 2^i$.

IN THIS TALK

Let S, T be tensor-triangulated categories generated by their tensor units. Sometimes a functor $F : S \rightarrow T$ will induce a map of lattices

 $\mathsf{BL}(\mathsf{S}) \to \mathsf{BL}(\mathsf{T}), \text{ where } \langle X \rangle \mapsto \langle FX \rangle.$

What can this tell us about BL(S) and BL(T)?

Specifically:

- the Verdier quotient functor $\pi : \mathsf{T} \to \mathsf{T}/\langle Z \rangle$
- ► a ring map between two commutative rings $f : R \to S$ induces $f_{\bullet} : D(R) \to D(S)$ via extension of scalars.

BACKGROUND	SUBSTRUCTURE	Quotients	RING MAPS
00000000	●0000	0000	000000000

BOUSFIELD LATTICE SUBSTRUCTURE

The tensor (smash) product gives another operation on Bousfield classes:

$$\langle X \rangle \wedge \langle Y \rangle := \langle X \wedge Y \rangle.$$

In general $\langle X \rangle \land \langle Y \rangle \leq \langle X \rangle \land \langle Y \rangle$.

Definition

$$\mathsf{DL}(\mathsf{T}) = \{ \langle X \rangle \text{ such that } \langle X \wedge X \rangle = \langle X \rangle \}.$$

This is a sublattice of BL(T).

Proposition. (Bousfield)

In DL the meet agrees with the smash. Hence DL is a distributive lattice.

Background	SUBSTRUCTURE	QUOTIENTS	RING MAPS
00000000	0000	0000	000000000

Definition

1. $\langle X \rangle \in \mathsf{BL}$ is *complemented* if there exists $\langle X^c \rangle$ such that

$$\langle X \rangle \wedge \langle X^c \rangle = \langle 0 \rangle \text{ and } \langle X \rangle \vee \langle X^c \rangle = \langle \mathbf{1} \rangle.$$

2. $BA(T) = \{\text{complemented } \langle X \rangle \} \subseteq BL(T).$

Note that complements, if they exist, are unique. BA is a Boolean algebra, and

$$\mathsf{BA} \subseteq \mathsf{DL} \subseteq \mathsf{BL}.$$

Background 00000000	SUBSTRUCTURE	Quotients 0000	Ring maps 00000000

What we know:

- If *R* is Noetherian, then in D(R) we have BA = DL = BL.
- In $D(\Lambda)$, $I\Lambda = \operatorname{Hom}_{k}^{*}(\Lambda, k)$ has $I\Lambda \wedge I\Lambda = 0$, so $\langle I\Lambda \rangle \notin \mathsf{DL}$.

Furthermore, $\mathsf{BA} = \{ \langle 0 \rangle, \langle \Lambda \rangle \}.$

In the stable homotopy category, the Brown-Comenetz dual *IS*⁰ of the sphere has *IS*⁰ ∧ *IS*⁰ = 0, so DL ⊊ BL.

Every finite spectrum $\langle F \rangle \in BA$. But, for example, $\langle H\mathbb{Z} \rangle \in DL \setminus BA$.

Background	SUBSTRUCTURE	Quotients	RING MAPS
00000000	00000	0000	000000000

Definition

For any $\langle X \rangle \in \mathsf{BL}$, define

$$a\langle X
angle = \bigvee_{\langle X\wedge Y
angle = \langle 0
angle} \langle Y
angle$$

Note that $\langle X \rangle \wedge a \langle X \rangle = \langle 0 \rangle$ and $\langle X \rangle \vee a \langle X \rangle \leq \langle 1 \rangle$.

Lemma. (Bousfield)

- 1. If $\langle X \rangle$ is complemented, then $\langle X^c \rangle = a \langle X \rangle$.
- 2. $\langle Y \rangle \leq a \langle X \rangle$ if and only if $\langle Y \rangle \land \langle X \rangle = \langle 0 \rangle$.[show]
- 3. $\langle X \rangle \leq \langle Y \rangle$ if and only if $a \langle X \rangle \geq a \langle Y \rangle$.
- 4. $a^2 \langle X \rangle = \langle X \rangle$.

Background	SUBSTRUCTURE	QUOTIENTS	RING MAPS
00000000	00000	0000	000000000

Definition

We say $X \in \mathsf{T}$ is *square-zero* if it is nonzero but $X \wedge X = 0$.

Recall $\langle 0 \rangle \leq \langle X \wedge X \rangle \leq \langle X \rangle$ for all *X*.

Proposition. (W.)

There are no square-zero objects in T if and only if BA = DL = BL.

Proof. [show]

Background	Substructure	QUOTIENTS	RING MAPS
00000000	00000	●000	000000000

QUOTIENTS

Given a localizing subcategory S of a tensor-triangulated category T, the Verdier quotient T/S is tensor-triangulated, and the quotient functor $\pi : T \rightarrow T/S$ is exact.

Question.

Does π induce a map on Bousfield lattices?

$$\mathsf{BL}(\mathsf{T}) \to \mathsf{BL}(\mathsf{T}/\mathsf{S}), \text{ where } \langle X \rangle \mapsto \langle \pi X \rangle.$$

[Aside: $\pi(\langle X \rangle)$ is not usually triangulated.] Does $\langle X \rangle = \langle Y \rangle$ imply $\langle \pi X \rangle = \langle \pi Y \rangle$? Does $\langle X \rangle \leq \langle Y \rangle$ imply $\langle \pi X \rangle \leq \langle \pi Y \rangle$? In general, no. However:

Proposition. (W.)

Suppose $S = \langle Z \rangle$ for some $\langle Z \rangle$. Then $\pi : T \to T/\langle Z \rangle$ induces an order-preserving map of lattices $BL(T) \to BL(T/\langle Z \rangle)$.

Background	SUBSTRUCTURE	QUOTIENTS	RING MAPS
00000000	00000	000	00000000

Definition

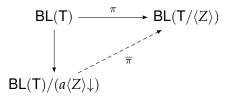
We can form a quotient lattice $\mathsf{BL}/\langle X \rangle \downarrow$ of equivalence classes of Bousfield classes, where $[\langle Y \rangle] = [\langle Z \rangle]$ if and only if $\langle Y \rangle \lor \langle X \rangle = \langle Z \rangle \lor \langle X \rangle$.

Likewise $[\langle Y \rangle] \leq [\langle Z \rangle]$ in BL/ $\langle X \rangle \downarrow$ if and only if $\langle Y \rangle \lor \langle X \rangle \leq \langle Z \rangle \lor \langle X \rangle$ in BL.

There is an isomorphism of lattices $\mathsf{BL}/\langle X \rangle \downarrow \xrightarrow{\sim} \langle X \rangle \uparrow$, given by $[\langle Y \rangle] \mapsto \langle Y \rangle \lor \langle X \rangle$.

Background	SUBSTRUCTURE	QUOTIENTS	RING MAPS
00000000	00000	0000	000000000

The picture is this:



Proposition. (W.)

The map $\overline{\pi} : [\langle X \rangle] \mapsto \langle \pi X \rangle$ is a well-defined, order-preserving epimorphism of lattices, such that if $\overline{\pi}[\langle X \rangle] = \langle 0 \rangle$ then $[\langle X \rangle] = [\langle 0 \rangle]$.

Background	Substructure	QUOTIENTS	RING MAPS
00000000	00000	0000	000000000

Proposition. (W.)

If $\langle Z \rangle$ is complemented, then this is an isomorphism

$$\langle Z^c \rangle \uparrow \cong \mathsf{BL}(\mathsf{T}) / \langle Z^c \rangle \downarrow \xrightarrow{\sim} \mathsf{BL}(\mathsf{T} / \langle Z \rangle).$$

Corollary. (W.)

If there are no square-zero objects in T, then $\overline{\pi}$ is an isomorphism for all $\langle Z \rangle$.

Proposition. (W.)

If $\langle Z \rangle \in \mathsf{DL} \setminus \mathsf{BA}$, then $\overline{\pi}$ is NOT an isomorphism of lattices.

This is the case with the stable homotopy category, if we take $\langle Z \rangle = \langle H \mathbb{F}_p \rangle$. Then, in fact, we have $IS^0 \in \langle H \mathbb{F}_p \rangle \lor a \langle H \mathbb{F}_p \rangle < \langle 1 \rangle$. This is also the case in $D(\Lambda)$, if we take $\langle Z \rangle = \langle k \rangle$. Then we have $I\Lambda \in \langle k \rangle \lor a \langle k \rangle < \langle 1 \rangle$.

Background	Substructure	Quotients	RING MAPS
00000000	00000	0000	

RING MAPS

Let $f : R \to S$ be a ring map between commutative rings. This induces a map on modules, via extension of scalars.

 $f_*: \mathsf{Mod}\text{-}R \to \mathsf{Mod}\text{-}S, \text{ by } M \mapsto M \otimes_R S.$

This induces a functor $f_* : Ch(R) \to Ch(S)$, which is left adjoint to $f^* : Ch(S) \to Ch(R)$ induced by the forgetful functor.

By abstract nonsense, there is a pair of adjoint functors on the derived categories

$$f_{\bullet} = L(f_*) : D(R) \rightleftharpoons D(S) : R(f^*) = f^{\bullet}.$$

Background	Substructure	Quotients	RING MAPS
00000000	00000	0000	000000000
00000000	00000	0000	000000

Lemma.

- 1. $f_{\bullet}R = S$
- 2. f_{\bullet} is exact, and commutes with coproducts

3.
$$f_{\bullet}(X \wedge Y) = f_{\bullet}X \wedge f_{\bullet}Y$$

4. (Every object is fibrant, so) $f^{\bullet}(Z) = f^*(Z)$, and f^{\bullet} is exact and commutes with products and coproducts.

In general, $f^{\bullet}(X \wedge Y) \neq f^{\bullet}X \wedge f^{\bullet}Y$.

Proposition. (W.)

 f_{\bullet} and f^{\bullet} induce order-preserving maps on Bousfield lattices

$$f_{\bullet}: \mathsf{BL}_R \to \mathsf{BL}_S, \text{ where } \langle X \rangle \mapsto \langle f_{\bullet}X \rangle, \text{ and }$$

 $f^{\bullet} : \mathsf{BL}_S \to \mathsf{BL}_R$, where $\langle Y \rangle \mapsto \langle f^{\bullet}Y \rangle$.

Background	SUBSTRUCTURE	Quotients	RING MAPS
00000000	00000	0000	0000000000

Lemma.

For all $A \in D(R)$ and $B \in D(S)$ we have

$$f_{\bullet}A \wedge B = 0$$
 if and only if $A \wedge f^{\bullet}B = 0$.

So $\langle f_{\bullet}X \rangle = \langle 0 \rangle$ iff $X \wedge f^{\bullet}S = 0$ iff $\langle X \rangle \leq a \langle f^{\bullet}S \rangle$.

Definition

$$\langle M_f \rangle = \bigvee_{\langle f_{\bullet} X \rangle = \langle 0 \rangle} \langle X \rangle = \bigvee_{\langle X \land f^{\bullet} S \rangle = \langle 0 \rangle} \langle X \rangle = a \langle f^{\bullet} S \rangle.$$

Then $\langle f_{\bullet}X \rangle = \langle 0 \rangle$ if and only if $\langle X \rangle \leq \langle M_f \rangle$, i.e. $Kerf_{\bullet} = \langle M_f \rangle \downarrow$.

SUBSTRUCTURE	QUOTIENTS	RING MAPS
00000	0000	000000000
		(
		2

Lemma. (W.)

The following are equivalent:

1.
$$f_{\bullet}f^{\bullet}\langle X \rangle = \langle X \rangle$$
 for all $\langle X \rangle$

- 2. $f^{\bullet}Y \wedge f^{\bullet}X = 0$ if and only if $f^{\bullet}(Y \wedge X) = 0$
- 3. $f^{\bullet}\langle Y \wedge X \rangle = \langle f^{\bullet}Y \rangle \wedge \langle f^{\bullet}X \rangle$ for all *Y* and *X*.

Proposition. (W.)

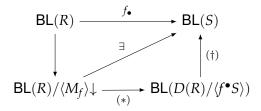
Assume $\langle f \bullet f \bullet X \rangle = \langle X \rangle$ for all $\langle X \rangle$.

- 1. f_{\bullet} sends DL_R onto DL_S and the map f^{\bullet} injects DL_S into DL_R .
- 2. f_{\bullet} sends BA_R onto BA_S , and if $\langle f^{\bullet}S \rangle \vee \langle M_f \rangle = \langle R \rangle$ then f^{\bullet} injects BA_S into BA_R .

Background	Substructure	Quotients	RING MAPS
00000000	00000	0000	000000000

Recall
$$Ker f_{\bullet} = \langle M_f \rangle \downarrow = (a \langle f^{\bullet} S \rangle) \downarrow.$$

The picture is:



The map (*) is an isomorphism when $\langle f^{\bullet}S \rangle \vee \langle M_f \rangle = \langle R \rangle$.

The map (†) exists and is an isomorphism when $f_{\bullet}f^{\bullet}\langle X \rangle = \langle X \rangle$ for all *X*.

Background	Substructure	Quotients	RING MAPS
00000000	00000	0000	0000000000
			/

EXAMPLE WITH SOME NON-NOETHERIAN RINGS

Definition

Fix a prime *p* and choose $n_i \ge 2$. Let $deg(x_i) = 2^i$ and define the following.

1.
$$\Lambda_{\mathbb{Z}_{(p)}} = \frac{\mathbb{Z}_{(p)}[x_1, x_2, x_3, \dots]}{(x_1^{n_1}, x_2^{n_2}, x_3^{n_3} \dots)}, \\ \Lambda_{\mathbb{F}_p} = \frac{\mathbb{F}_p[x_1, x_2, x_3, \dots]}{(x_1^{n_1}, x_2^{n_2}, x_3^{n_3} \dots)}, \\ \Lambda_{\mathbb{Q}} = \frac{\mathbb{Q}[x_1, x_2, x_3, \dots]}{(x_1^{n_1}, x_2^{n_2}, x_3^{n_3} \dots)}.$$

2. Let $g : \Lambda_{\mathbb{Z}_{(p)}} \to \Lambda_{\mathbb{Z}_{(p)}} / p \Lambda_{\mathbb{Z}_{(p)}} = \Lambda_{\mathbb{F}_p}$ be the projection map.

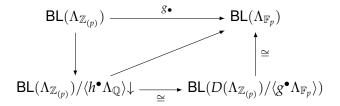
3. Let
$$h : \Lambda_{\mathbb{Z}_{(p)}} \to \Lambda_{\mathbb{Q}}$$
 be the inclusion map.

4. Let
$$g_{\bullet} : D(\Lambda_{\mathbb{Z}_{(p)}}) \leftrightarrows D(\Lambda_{\mathbb{F}_p}) : g^{\bullet}$$
 and $h_{\bullet} : D(\Lambda_{\mathbb{Z}_{(p)}}) \leftrightarrows D(\Lambda_{\mathbb{Q}}) : h^{\bullet}$ be the induced adjoint pairs.

Background	Substructure	QUOTIENTS	RING MAPS
00000000	00000	0000	00000000000

It turns out that $\langle g^{\bullet} \Lambda_{\mathbb{F}_p} \rangle$ and $\langle h^{\bullet} \Lambda_{\mathbb{Q}} \rangle$ are a complemented pair in $\mathsf{BL}(\Lambda_{\mathbb{Z}_{(p)}})$. Recall that $\mathsf{BL}(\Lambda_{\mathbb{F}_p})$ and $\mathsf{BL}(\Lambda_{\mathbb{Q}})$ have no nontrivial complemented classes.

Furthermore, $\langle g \bullet g \bullet X \rangle = \langle X \rangle$ for all $X \in D(\Lambda_{\mathbb{F}_p})$. Thus we get the following picture.



On the other hand, $\langle h_{\bullet}h^{\bullet}Y \rangle = \langle Y \rangle$ is not true for all $Y \in D(\Lambda_{\mathbb{Q}})$.

000000000	00000	0000	0000000
Theorem.	(W.)		
	$BL(\Lambda_{\mathbb{Z}_{(p)}}) \overset{\sim}{\longrightarrow} \langle g^{ullet} \Lambda_{\mathbb{F}_p} \rangle$	$\downarrow \downarrow \times \langle h^{\bullet} \Lambda_{\mathbb{Q}} \rangle \downarrow, $ via	
	$\langle X \rangle \mapsto (\langle X \wedge g^{\bullet} \Lambda_{\mathbb{F}_{p}})$	$\langle \rangle, \langle X \wedge h^{ullet} \Lambda_{\mathbb{Q}} \rangle).$	

DINC MA

From the work we did with quotients, we get the following.

Proposition. (W.)

 $\langle g^{\bullet} \Lambda_{\mathbb{F}_p} \rangle \downarrow \cong \mathsf{BL}(\Lambda_{\mathbb{F}_p}).$

In fact, the inclusion functors induce the following isomorphisms.

Lemma. (W.)

$$\mathsf{BL}(\mathsf{loc}(g^{\bullet}\Lambda_{\mathbb{F}_p})) \xrightarrow{\sim} \langle g^{\bullet}\Lambda_{\mathbb{F}_p} \rangle \downarrow \subseteq \mathsf{BL}(\Lambda_{\mathbb{Z}_{(p)}}) \text{ and }$$

 $\mathsf{BL}(\mathsf{loc}(h^{\bullet}\Lambda_{\mathbb{Q}})) \xrightarrow{\sim} \langle h^{\bullet}\Lambda_{\mathbb{Q}} \rangle \downarrow \subseteq \mathsf{BL}(\Lambda_{\mathbb{Z}_{(p)}}).$

Background	Substructure	Quotients	RING MAPS
00000000	00000	0000	00000000●

Putting all this together, we get a complete splitting of the Bousfield lattice of $D(\Lambda_{\mathbb{Z}_{(p)}})$ and its sublattices.

Theorem. (W.)

$$\begin{aligned} \mathsf{BL}(\Lambda_{\mathbb{Z}_{(p)}}) &\cong \mathsf{BL}(\Lambda_{\mathbb{F}_p}) \times \mathsf{BL}(\mathsf{loc}(h^{\bullet}\Lambda_{\mathbb{Q}})), \\ \mathsf{DL}(\Lambda_{\mathbb{Z}_{(p)}}) &\cong \mathsf{DL}(\Lambda_{\mathbb{F}_p}) \times \mathsf{DL}(\mathsf{loc}(h^{\bullet}\Lambda_{\mathbb{Q}})), \\ \mathsf{BA}(\Lambda_{\mathbb{Z}_{(p)}}) &\cong \mathsf{BA}(\Lambda_{\mathbb{F}_p}) \times \mathsf{BA}(\mathsf{loc}(h^{\bullet}\Lambda_{\mathbb{Q}})). \end{aligned}$$

Corollary. (W.)

The cardinality of $\mathsf{BL}(\Lambda_{\mathbb{Z}_{(p)}})$ is $2^{2^{\aleph_0}}$.

... Thank you.