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Higher dimensions

Question

What happens in Z3? What is the canonical way to define a UST?

Consider a UST on finite exhaustions of the ∞ graph.

Take Gn = [−n, n]d ∩ Zd and sample a UST on Gn.

By the monotonicity arguments from electrical networks, we can take the
limit of these trees as n→∞.

Question

Is the resulting object a tree?

By construction, it has no cycles! So it is definitely a forest. We call it
the uniform spanning forest USF.

Question

Is the USF connected?
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USF – connectivity

Theorem (Pemantle (1991))

The USF on Zd has one tree with probability 1 for d ≤ 4 and infinitely
many trees for d ≥ 5.

Proof idea

By Wilson’s algorithm, it reduces to the question of intersections of two
independent SRW’s on Zd.
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USF – more properties

More refined connectivity properties of the USF change with dimension.

Theorem (Benjamini, Kesten, Peres and Schramm (2004))

For 5 ≤ d ≤ 8 every tree in the USF is adjacent to every other tree in the
USF. For d ≥ 9 there are trees that are adjacent to none.

Lots of other properties of USF’s change with dimension.
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RW on USF

Consider the USF on Zd for all d. Pick a tree and perform a SRW on it.

Question

Is this RW transient or recurrent? (Does it visit every vertex ∞ often?)

Theorem (Morris, 2003)

RW on any tree of the USF is recurrent with probability 1.

Proof uses electrical network theory.

Perla Sousi USF and LERW



RW on USF

Consider the USF on Zd for all d. Pick a tree and perform a SRW on it.

Question

Is this RW transient or recurrent? (Does it visit every vertex ∞ often?)

Theorem (Morris, 2003)

RW on any tree of the USF is recurrent with probability 1.

Proof uses electrical network theory.

Perla Sousi USF and LERW



RW on USF

Consider the USF on Zd for all d. Pick a tree and perform a SRW on it.

Question

Is this RW transient or recurrent? (Does it visit every vertex ∞ often?)

Theorem (Morris, 2003)

RW on any tree of the USF is recurrent with probability 1.

Proof uses electrical network theory.

Perla Sousi USF and LERW



RW on USF

Consider the USF on Zd for all d. Pick a tree and perform a SRW on it.

Question

Is this RW transient or recurrent? (Does it visit every vertex ∞ often?)

Theorem (Morris, 2003)

RW on any tree of the USF is recurrent with probability 1.

Proof uses electrical network theory.

Perla Sousi USF and LERW



Recurrence of USF

Conjecture

Consider the tree containing 0 in the USF in Zd for d ≥ 5. Take the
induced subgraph of Zd that this defines (connect all vertices of the tree that
are adjacent in Zd). Is this graph recurrent?

Theorem (Lyons, Peres and Sun, 2017)

Yes, when d ≥ 8.

Open what happens for d = 5, 6, 7.
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Scaling limit

Start with a simple random walk on Z. Rescale space and accelerate time.
Then what you will get is a Brownian motion.

Brownian motion is a fractal curve – central object in modern probability.
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Scaling limit

Take a loop erased random walk on Z2 and rescale space. In the limit it is
an SLE(2) curve.

SLE(κ) for different values of κ are the proven or conjectured scaling limits
of macroscopic interfaces in several models from statistical physics.
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Loop erased random walk

Scaling limit of loop erased random walk on Z2 is an SLE(2) curve.

When d ≥ 4, the scaling limit is Brownian motion.

Theorem (Kozma)

The scaling limit of loop erased random walk exists for d = 3.

Question

d = 3 What is the scaling factor? What is the expected displacement?
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Thanks!
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