USF and LERW

Perla Sousi $^{\rm 1}$

¹University of Cambridge

This is the uniform spanning tree of \mathbb{Z}^2

Higher dimensions

Question

What happens in \mathbb{Z}^3 ? What is the canonical way to define a UST?

Higher dimensions

Question

What happens in \mathbb{Z}^3 ? What is the canonical way to define a UST?

Consider a **UST** on finite **exhaustions** of the ∞ graph.

Higher dimensions

Question

What happens in \mathbb{Z}^3 ? What is the canonical way to define a UST?

Consider a **UST** on finite exhaustions of the ∞ graph. Take $G_n = [-n, n]^d \cap \mathbb{Z}^d$ and sample a **UST** on G_n .

What happens in \mathbb{Z}^3 ? What is the canonical way to define a UST?

Consider a **UST** on finite **exhaustions** of the ∞ graph.

Take $G_n = [-n, n]^d \cap \mathbb{Z}^d$ and sample a **UST** on G_n .

By the monotonicity arguments from electrical networks, we can take the limit of these trees as $n \to \infty$.

What happens in \mathbb{Z}^3 ? What is the canonical way to define a UST?

Consider a **UST** on finite **exhaustions** of the ∞ graph.

Take $G_n = [-n, n]^d \cap \mathbb{Z}^d$ and sample a **UST** on G_n .

By the monotonicity arguments from electrical networks, we can take the limit of these trees as $n \to \infty$.

Question

Is the resulting object a tree?

What happens in \mathbb{Z}^3 ? What is the canonical way to define a UST?

Consider a **UST** on finite **exhaustions** of the ∞ graph.

Take $G_n = [-n, n]^d \cap \mathbb{Z}^d$ and sample a **UST** on G_n .

By the monotonicity arguments from electrical networks, we can take the limit of these trees as $n \to \infty$.

Question

Is the resulting object a tree?

By construction, it has **no cycles**! So it is definitely a **forest**.

What happens in \mathbb{Z}^3 ? What is the canonical way to define a UST?

Consider a **UST** on finite **exhaustions** of the ∞ graph.

Take $G_n = [-n, n]^d \cap \mathbb{Z}^d$ and sample a **UST** on G_n .

By the monotonicity arguments from electrical networks, we can take the limit of these trees as $n \to \infty$.

Question

Is the resulting object a tree?

By construction, it has **no cycles**! So it is definitely a **forest**. We call it the uniform spanning forest **USF**.

What happens in \mathbb{Z}^3 ? What is the canonical way to define a UST?

Consider a **UST** on finite **exhaustions** of the ∞ graph.

Take $G_n = [-n, n]^d \cap \mathbb{Z}^d$ and sample a **UST** on G_n .

By the monotonicity arguments from electrical networks, we can take the limit of these trees as $n \to \infty$.

Question

Is the resulting object a tree?

By construction, it has **no cycles**! So it is definitely a **forest**. We call it the uniform spanning forest **USF**.

Question

Is the USF connected?

Theorem (Pemantle (1991))

The USF on \mathbb{Z}^d has one tree with probability 1 for $d \leq 4$ and infinitely many trees for $d \geq 5$.

Theorem (Pemantle (1991))

The USF on \mathbb{Z}^d has one tree with probability 1 for $d \leq 4$ and infinitely many trees for $d \geq 5$.

 $Proof\ idea$

Theorem (Pemantle (1991))

The USF on \mathbb{Z}^d has one tree with probability 1 for $d \leq 4$ and infinitely many trees for $d \geq 5$.

Proof idea

By Wilson's algorithm, it reduces to the question of intersections of two independent SRW's on \mathbb{Z}^d .

More refined connectivity properties of the USF change with dimension.

Theorem (Benjamini, Kesten, Peres and Schramm (2004))

For $5 \le d \le 8$ every tree in the USF is adjacent to every other tree in the USF. For $d \ge 9$ there are trees that are adjacent to none.

Lots of other properties of USF's change with dimension.

Question

Is this RW transient or recurrent? (Does it visit every vertex ∞ often?)

Question

Is this RW transient or recurrent? (Does it visit every vertex ∞ often?)

Theorem (Morris, 2003)

RW on any tree of the USF is recurrent with probability 1.

Question

Is this RW transient or recurrent? (Does it visit every vertex ∞ often?)

Theorem (Morris, 2003)

RW on any tree of the USF is recurrent with probability 1.

Proof uses electrical network theory.

Conjecture

Consider the tree containing 0 in the USF in \mathbb{Z}^d for $d \ge 5$. Take the induced subgraph of \mathbb{Z}^d that this defines (connect all vertices of the tree that are adjacent in \mathbb{Z}^d). Is this graph recurrent?

Conjecture

Consider the tree containing 0 in the USF in \mathbb{Z}^d for $d \ge 5$. Take the induced subgraph of \mathbb{Z}^d that this defines (connect all vertices of the tree that are adjacent in \mathbb{Z}^d). Is this graph recurrent?

Theorem (Lyons, Peres and Sun, 2017)

Yes, when $d \geq 8$.

Conjecture

Consider the tree containing 0 in the USF in \mathbb{Z}^d for $d \ge 5$. Take the induced subgraph of \mathbb{Z}^d that this defines (connect all vertices of the tree that are adjacent in \mathbb{Z}^d). Is this graph recurrent?

Theorem (Lyons, Peres and Sun, 2017)

Yes, when $d \geq 8$.

Open what happens for d = 5, 6, 7.

M

· · ·

Start with a simple random walk on \mathbb{Z} . Rescale space and accelerate time. Then what you will get is a **Brownian motion**.

Brownian motion is a fractal curve – central object in modern probability.

Take a loop erased random walk on \mathbb{Z}^2 and rescale space. In the limit it is an ${\rm SLE}({\bf 2})$ curve.

Take a loop erased random walk on \mathbb{Z}^2 and rescale space. In the limit it is an ${\rm SLE}({\bf 2})$ curve.

Take a loop erased random walk on \mathbb{Z}^2 and rescale space. In the limit it is an SLE(2) curve.

 ${\rm SLE}(\kappa)$ for different values of κ are the proven or conjectured scaling limits of macroscopic interfaces in several models from statistical physics.

When $d \ge 4$, the scaling limit is Brownian motion.

When $d \ge 4$, the scaling limit is Brownian motion.

Theorem (Kozma)

The scaling limit of loop erased random walk exists for d = 3.

When d > 4, the scaling limit is Brownian motion.

Theorem (Kozma)

The scaling limit of loop erased random walk exists for d = 3.

Question

d = 3 | What is the scaling factor? What is the expected displacement?

Thanks!