## Exercises

September 6, 2019

1. Show that if, in a network with source $a$ and $\operatorname{sink} z$, vertices with different voltages are glued together, then the effective resistance from $a$ to $z$ will strictly decrease.
2. Suppose that $Z$ is a set of states in a Markov chain and that $x_{0}$ is a state not in $Z$. Assume that when the Markov chain is started in $x_{0}$, then it visits $Z$ with probability 1 . Define the random path $Y_{0}, Y_{1}, \ldots$ by $Y_{0}:=x_{0}$ and then recursively by letting $Y_{n+1}$ have the distribution of one step of the Markov chain starting from $Y_{n}$ given that the chain will visit $Z$ before visiting any of $Y_{0}, Y_{1}, \ldots, Y_{n}$ again. However, if $Y_{n} \in Z$, then the path is stopped and $Y_{n+1}$ is not defined. Show that $\left(Y_{n}\right)$ has the same distribution as loop-erasing a sample of the Markov chain started from $x_{0}$ and stopped when it reaches $Z$. In the case of a random walk, the conditioned path $\left(Y_{n}\right)$ is called the Laplacian random walk from $x_{0}$ to $Z$.
3. Suppose that the graph $G$ has a Hamiltonian path, i.e. there exists a path $\left(x_{k}: 1 \leq k \leq n\right)$ that is a spanning tree. Let $X$ be a simple random walk on $G$ and let $T(A)=\min \left\{t \geq 0: X_{t} \in A\right\}$ and $T^{+}(A)=\min \left\{t \geq 1: X_{t} \in A\right\}$ be the first hitting time and the first return time respectively to the set $A$. Define

$$
q_{k}=\mathbb{P}_{x_{k}}\left(T^{+}\left(\left\{x_{k}\right\}\right)>T\left(\left\{x_{k+1}, \ldots, x_{n}\right\}\right)\right)
$$

and show that the number of spanning trees of $G$ equals $\prod_{k<n} q_{k} \operatorname{deg}\left(x_{k}\right)$.
4. How efficient is Wilson's method? What takes time is to generate a random successor state of a given state. Call this a step of the algorithm. Show that the expected number of steps to generate a random spanning tree rooted at $r$ is

$$
\sum_{x} \frac{\operatorname{deg}(x)}{2|E|}\left(\mathbb{E}_{x}\left[\tau_{r}\right]+\mathbb{E}_{r}\left[\tau_{x}\right]\right)
$$

where $|E|$ is the set of edges and $\operatorname{deg}(x)$ is the degree of the vertex $x$.

