Exercises

September 5, 2019

1. 2. Let $R(r)$ be the effective resistance between two given vertices of a finite network with edge-resistances $r=(r(e): e \in E)$. Show that R is concave in that

$$
\frac{1}{2} \cdot\left(R\left(r_{1}\right)+R\left(r_{2}\right)\right) \leq R\left(\frac{1}{2}\left(r_{1}+r_{2}\right)\right) .
$$

2. Show that if, in a network with source a and $\operatorname{sink} z$, vertices with different voltages are glued together, then the effective resistance from a to z will strictly decrease.
3. (i) Using the Nash Williams inequality give another proof that simple symmetric random walk on \mathbb{Z}^{2} is recurrent.
(ii) Let $\rho \in(0,2)$ and consider a binary tree with resistance between edges from level $n-1$ to level n equal to ρ^{n}. Calculate the effective resistance between 0 and ∞ and show that it is finite.
Show that for suitable values of ρ we can embed this tree into \mathbb{Z}^{3}.
Deduce that simple symmetric random walk on \mathbb{Z}^{3} is transient.
4. (i) Let G be a finite connected graph on n vertices with conductances $(c(e))$ on the edges. Prove that

$$
\sum_{e \in E} c(e) R_{\mathrm{eff}}(e)=n-1
$$

(ii) Let $G=\left(\mathbb{Z}_{n}^{d}, E\left(\mathbb{Z}_{n}^{d}\right)\right)$ be the d-dimensional torus of side length n, i.e. $\mathbb{Z}_{n}^{d}=\{0, \ldots, n-1\}^{d}$ and $E\left(\mathbb{Z}_{n}^{d}\right)=\left\{(x, y) \in \mathbb{Z}_{n}^{d} \times \mathbb{Z}_{n}^{d}:\|x-y\|=1\right\}$. Let $e \in E\left(\mathbb{Z}_{n}^{d}\right)$. Show that

$$
R_{\mathrm{eff}}\left(e ; \mathbb{Z}_{n}^{d}\right) \rightarrow \frac{1}{d} \quad \text { as } n \rightarrow \infty
$$

5. Let $G=(V, E)$ be a connected subgraph of the finite connected graph G^{\prime}. Let T and T^{\prime} be uniform spanning trees of G and G^{\prime} respectively. Show that for any edge e of G,

$$
\mathbb{P}(e \in T) \geq \mathbb{P}\left(e \in T^{\prime}\right)
$$

More generally, let B be a subset of E, and show that $\mathbb{P}(B \subseteq T) \geq \mathbb{P}\left(B \subseteq T^{\prime}\right)$.

