Lecture 4 suggested problems

Evita Nestoridi

August 30, 2019

Exercise on Total Variation distance: Let μ and ν be two probability measures on a finite space X. Prove that

$$
\|\mu-\nu\|_{\mathrm{T} . \mathrm{V} .}=\max _{\{A \subset X\}}|\mu(A)-\nu(A)| .
$$

Exercise on C_{n} : Use Wilson's lemma, to prove that the lazy, simple random walk on C_{n} needs at least order n^{2} steps to reach stationarity.

Random-to-top: Imitate the lower bound argument for the lazy random walk on the hypercube, to prove that for random to top card shuffle on S_{n}, we have that

$$
s(n \log n-c n) \geq 1-e^{-c},
$$

where $s(t)$ is the separation distance at time t.
Eigenvalue/eigenvectors exercise: Let (P, π) be a Markov chain on a finite space X. Let $\lambda \neq 1$ be an eigenvalue for P. Prove that

$$
|\lambda|^{t} \leq 2 d(t)
$$

where $d(t)$ is the total variation distance at time t.
Random to random: Consider a deck of n cards. The random to random card shuffle suggests to pick a card uniformly at random, remove it from the deck and insert it to a uniformly random position. Let N_{t} be the number of cards that were never removed during the first t shuffles.
(a) Prove that $\mathbb{E}\left(N_{t}\right)=n\left(1-\frac{1}{n}\right)^{t}$ and

$$
\operatorname{Var}\left(N_{t}\right)=n(n-1)\left(1-\frac{2}{n}\right)^{t}+n\left(1-\frac{1}{n}\right)^{t}+n^{2}\left(1-\frac{1}{n}\right)^{2 t}
$$

(b) Let $L: S_{n} \rightarrow \mathbb{N}$, where $L(\sigma)$ is the length of the longest increasing subsequence of σ. Take as a given that there are constants c_{0} and c_{1} such that under the uniform measure

$$
\mathbb{E}(L)=2 \sqrt{n}+c_{1} n^{1 / 6}+o\left(n^{1 / 6}\right) \text { and } \operatorname{Var}(L)=c_{0} n^{1 / 3}+o\left(n^{1 / 3}\right)
$$

Consider the set $A=\left\{\sigma \in S_{n}: L(\sigma) \geq \mathbb{E}(L)+t \sqrt{\operatorname{Var}(L}\right\}$ to prove that if we take $\lim _{c \rightarrow \infty} \lim _{n \rightarrow \infty} d\left(\left(\frac{1}{2}-\varepsilon\right) n(\log n-c)=1\right.$.

