Exercises

September 3, 2019

1. Prove that every reversible Markov chain is a weighted random walk on some graph.
2. Let e_{1} and e_{2} be two edges sharing the same endvertices. Show that if we replace them by a single edge of conductance the sum of the conductances, then all currents and potentials in $G \backslash\left\{e_{1}, e_{2}\right\}$ remain unchanged and the current $I(\vec{e})=I\left(\overrightarrow{e_{1}}\right)+I\left(\overrightarrow{e_{2}}\right)$.
Let $v \in V \backslash\{a, z\}$ be a node of degree 2 with neighbours v_{1} and v_{2}. Show that if we replace the edges $\left(v, v_{1}\right)$ and $\left(v, v_{2}\right)$ by a single edge of resistance the sum of the resistances, then all currents and potentials in $G \backslash\{v\}$ remain unchanged and the current that flows from v_{1} to v_{2} equals $I\left(\overrightarrow{v_{1}} \boldsymbol{v}\right)=I\left(\overrightarrow{v v_{2}}\right)$.
3. Let a and b be two vertices on a finite connected tree T. Prove that the effective resistance $R_{\text {eff }}(a, b)$ is equal to the distance on the tree between a and b.
4. (i) Let X be a reversible Markov chain on a finite state space Ω. Let $\tau_{z}=\min \left\{t \geq 0: X_{t}=z\right\}$. Prove that

$$
\mathbb{E}_{a}\left[\sum_{t=0}^{\tau_{z}} \mathbf{l}\left(X_{t}=a\right)\right]=c(a) R_{\mathrm{eff}}(a, z) .
$$

(ii) Suppose that X is a simple symmetric random walk on \mathbb{Z}^{2} started from $x \in(-100,100)^{2}$. Let τ be the first exit time from the square $(-100,100)^{2}$, i.e. $\tau=\min \left\{t \geq 0: X_{t} \notin(-100,100)^{2}\right\}$. Show that for all $y \in[-100,100]^{2} \backslash(-100,100)^{2}$

$$
\mathbb{E}_{x}\left[\sum_{t=0}^{\tau} \mathbf{l}\left(X_{t}=x\right)\right]=\mathbb{E}_{x}\left[\sum_{t=0}^{\tau} \mathbf{l}\left(X_{t}=x\right) \mid X_{\tau}=y\right] .
$$

5. Let X be a simple symmetric random walk on $\{0, \ldots, n\}$ with $P(0,0)=1 / 2=P(n, n)$. Using the network reduction rules show that for all $x \in\{0, \ldots, n\}$

$$
\mathbb{P}_{x}\left(\tau_{n}<\tau_{0}\right)=\frac{x}{n}
$$

6. Show that effective resistances form a metric on any network with conductances $(c(e))$.
