Exercises

September 2, 2019

1. Suppose that X is an irreducible Markov chain. Suppose that there exists i in the state space such that $\mathbb{P}_{i}\left(T_{i}<\infty\right)=1$. Show that for all j we also have $\mathbb{P}_{j}\left(T_{j}<\infty\right)=1$.
2. Show that simple random walk on \mathbb{Z}^{d} for all $d \geq 4$ is transient.
3. Show that a chain with matrix P and invariant distribution π is reversible if and only if for all x, y we have

$$
\pi(x) P(x, y)=\pi(y) P(y, x) .
$$

4. (i) Let X be a simple symmetric random walk on \mathbb{Z}_{n}. Find its invariant distribution. Is the chain reversible?
(ii) Let X be a biased random walk on \mathbb{Z}_{n} with transition probabilities $P(i,(i+1) \bmod n)=2 / 3$ and $P(i,(i-1) \bmod n)=1 / 3$. Find its invariant distribution. Is the chain reversible?
(iii) Consider next the biased random walk on $\{0, \ldots, n\}$, i.e. with transition probabilities $P(i, i+$ 1) $=2 / 3=1-P(i, i-1)$ for all $i \in\{2, \ldots, n-1\}$ and $P(1,2)=2 / 3=1-P(1,1)$ and $P(n, n-1)=$ $1 / 3=1-P(n, n)$. Is this chain reversible?
5. Show that if X is reversible, then for all a, b, c we have

$$
\mathbb{E}_{a}\left[\tau_{b}\right]+\mathbb{E}_{b}\left[\tau_{c}\right]+\mathbb{E}_{c}\left[\tau_{a}\right]=\mathbb{E}_{a}\left[\tau_{c}\right]+\mathbb{E}_{c}\left[\tau_{b}\right]+\mathbb{E}_{b}\left[\tau_{a}\right]
$$

