Lecture 1 suggested problems

Evita Nestoridi

August 28, 2019

Exercise on S_{n} : Choose a permutation $\sigma \in S_{n}$ uniformly at random.
(a) Prove that $\mathbb{P}(1$ and 2 are in the same cycle of $\sigma)=1 / 2$.
(b) Prove that $\mathbb{P}(1,2, \ldots, n$ are in the same cycle of $\sigma)=1 / n$.
(c) Let $2 \leq j \leq n$. Make a conjecture on what the value of $\mathbb{P}(1,2, \ldots, j$ are in the same cycle of $\sigma)$ should be and try to prove it.

Random to top: Let X_{t} be the configuration of a deck of n cards after having performed the random to top shuffle performed t times. Let T be the first time that $n-1$ different cards have been selected. For the random to top card shuffle of a deck of n cards,
(a) if $n=3$ prove that

$$
\mathbb{P}\left(X_{2}=\sigma \mid T=2\right)=1 / 6
$$

for any $\sigma \in S_{3}$.
(b) if $n=4$ prove that

$$
\mathbb{P}\left(X_{3}=\sigma \mid T=2\right)=1 / 24
$$

for any $\sigma \in S_{4}$.
(c) For general n, prove that T is a strong stationary time for X_{t}.

Random to random: The random to random card shuffle suggests to pick a card uniformly at random, remove it from the deck and insert it to a uniformly random position. Let T be the first time that all cards have been picked. Prove that T is NOT a strong stationary time for the random to random card shuffle.
 following process on Ω : at time t we pick a uniformly random coordinate of X_{t-1}. We flip a fair coin. If tails, then we update the chosen coordinate to be equal to one. If tails we update it to be zero. Prove that
(a) X_{t} has the uniform measure as stationary measure.
(b) for the separation distance we have that if $t_{n, c}=n \log n+c n$ then

$$
s\left(t_{n, c}\right) \leq e^{-c}
$$

Chernoff Bound: Let Ω be the path with n nodes. Let X_{t} be the random walk on Ω that either moves to the right with probability $2 / 3$ or to the left with probability $1 / 3$. If $X_{t}=n$ then either we stay fixed with probability $2 / 3$ or we move to the left with probability $1 / 3$. Similarly if $X_{t}=1$ then either we stay fixed with probability $1 / 3$ or we move to the right with probability $2 / 3$. If $X_{0}=n$, let $T=\min \left\{t \geq 1 \mid X_{t}=n\right\}$. Prove that

$$
\mathbb{P}(T>x) \leq\left(\frac{2 \sqrt{2}}{3}\right)^{x}
$$

