Lecture 1 suggested problems

Evita Nestoridi

August 28, 2019

Exercise on S_n : Choose a permutation $\sigma \in S_n$ uniformly at random.

- (a) Prove that $\mathbb{P}(1 \text{ and } 2 \text{ are in the same cycle of } \sigma) = 1/2.$
- (b) Prove that $\mathbb{P}(1, 2, ..., n \text{ are in the same cycle of } \sigma) = 1/n$.
- (c) Let $2 \le j \le n$. Make a conjecture on what the value of

 $\mathbb{P}(1, 2, \dots, j \text{ are in the same cycle of } \sigma)$ should be and try to prove it.

Random to top: Let X_t be the configuration of a deck of n cards after having performed the random to top shuffle performed t times. Let T be the first time that n-1 different cards have been selected. For the random to top card shuffle of a deck of n cards,

(a) if n = 3 prove that

$$\mathbb{P}\left(X_2 = \sigma | T = 2\right) = 1/6,$$

for any $\sigma \in S_3$.

(b) if n = 4 prove that

$$\mathbb{P}\left(X_3 = \sigma | T = 2\right) = 1/24,$$

for any $\sigma \in S_4$.

(c) For general n, prove that T is a strong stationary time for X_t .

<u>Random to random</u>: The random to random card shuffle suggests to pick a card uniformly at random, remove it from the deck and insert it to a uniformly random position. Let T be the first time that all cards have been picked. Prove that T is NOT a strong stationary time for the random to random card shuffle.

Lazy random walk on the hypercube : Let $\Omega = \{0, 1\}^n$. Let (X_t) be the following process on Ω : at time t we pick a uniformly random coordinate of X_{t-1} . We flip a fair coin. If tails, then we update the chosen coordinate to be equal to one. If tails we update it to be zero. Prove that

- (a) X_t has the uniform measure as stationary measure.
- (b) for the separation distance we have that if $t_{n,c} = n \log n + cn$ then

$$s(t_{n,c}) \le e^{-c}$$

<u>Chernoff Bound</u>: Let Ω be the path with n nodes. Let X_t be the random walk on Ω that either moves to the right with probability 2/3 or to the left with probability 1/3. If $X_t = n$ then either we stay fixed with probability 2/3 or we move to the left with probability 1/3. Similarly if $X_t = 1$ then either we stay fixed with probability 1/3 or we move to the right with probability 2/3. If $X_0 = n$, let $T = \min\{t \ge 1 | X_t = n\}$. Prove that

$$\mathbb{P}\left(T > x\right) \le \left(\frac{2\sqrt{2}}{3}\right)^x$$