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Teaser: the eversion of the sphere

In 1958 Stephen Smale (Fields medal 1966) proved that the sphere can be
turned inside-out in the 3-dimensional space. =======> VIDEO

The sphere (or 2-sphere) is

S2 :=
{

(x , y , z) ∈ R3 : x2 + y2 + z2 = 1
}

We have the standard embedding

f0 : S2 −→ R3, (x , y , z) 7−→ (x , y , z)

and the reversed standard embedding

f1 : S2 −→ R3, (x , y , z) 7−→ (x , y ,−z)

The Smale eversion is a continuous deformation

ft : S2 −→ R3 0 ≤ t ≤ 1

such that each ft and the deformation are "nice".
(Technically: it is a regular homotopy of immersions)
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Five-days and one-day plans

Goal of my series of five lectures: give (the ingredients) of Smale’s proof of
the existence of the eversion. The proof is not by explicitely describing the
deformtation ft.

Goal of today lecture: study the analog problem for immersions of curves in
the plane.
In other words we replace the 2-sphere by the circle
S1 =

{
(x , y) ∈ R2 : x2 + y2 = 1

}
and the 3-dimensional space by the

plane R2.

Reference for today: paper of Whitney "Closed regular curves in the plane"
1936 (cf. web site of the school)
If my lecture goes too slowly: read carefully Whitney’s paper instead
(Challenge: spot the mistake in theorem 1 of that paper.)
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Regular parametrized curve in the plane

A parametrized regular curve or immersion of the segment in the plane is
determined by a function

f : [0, 1]→ R2 , t 7→ f (t)

with the following properties:
1 f is differentiable and f ′ = df

dt is continuous (i.e. f is of class C1);
2 f ′(t) 6= 0, ∀t ∈ R.

Condition (1) means that there is a tangent vector at any point of the
curve and that these tangent vectors vary continuously along the curve.
Condition (2) means that this tangent vector never vanishes.

A regular curve may have many self-intersections.
=======> MATHEMATICA WhitneyGrausteinV4
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Regular parametrized closed curve in the plane

A parametrized regular closed curve or immersion of the circle in the plane
is a parametrized regular curve f : [0,1]→R2 such that moreover

f(0)=f(1) and f’(0)=f’(1)
Its image in a closed curve in the plane with a continuous never vanishing
tangent vector field. =======> MATHEMATICA WhitneyGrausteinV
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Regular homotopies of regular closed curves

Question: Can one "continuously deform" any regular closed curve into any
other one through regular closed curves ?

Definition
A regular homotopy between regular parametrized closed curves is a map

f : [0, 1]× [0, 1] −→ R2 , (u, t) 7−→ fu(t)

such that
1 for each u ∈ [0, 1] fu is a regular parametrized closed curve
2 f is continuous
3 ∂f

∂t : [0, 1]× [0, 1]→ R2 is continuous (continuity of the tangent
vectors)

When such a map f exists we say that the immersions f0 and f1 are
regularly homotopic
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Pool:Are those closed curves regularly homotopic?

Is the "standard embedding of the circle" immersion regularly homotopic to
the "reversed embedding of the circle" immersion ?

1 f0(t)=(cos(2π t),sin(2π t))
2 f1(t)=(cos(2π t),-sin(2π t))

In other words can we turn the circle inside out in the plane through
immersions ? =======> MATHEMATICA fkeversion

Is the "standard embedding of the circle" immersion regularly homotopic to
the "figure eight" immersion ?

1 f0(t)=(cos(2π t),sin(2π t))
2 f1(t)=(sin(-2π t),sin(-4π t))

=======> belttrick

To answer those questions look at the tangent vector along the immersion.
=======> MATHEMATICA
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The normalized tangent vector

Let f:[0,1] be a closed immersion.
Because of the regularity the derivative f ′ = df /dt never vanishes so we
can consider the map

f̂ : [0, 1] −→ [0, 1] , t 7→ f ′(t)

‖f ′(t)||
.

For any t we have ‖f̂ (t)‖ = 1 and f̂ (0) = f̂ (1). Also f̂ is continuous
because f is C1.
f̂ is the normalized tangent vector field of the curve.

Therefore we can look at f̂ as a continuous self-map of the circle S1:

f̂ : S1 → S1.
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The degree of a self map of the circle

Consider the circle

S1 :=
{

(x , y) ∈ R2 : x2 + y2 = 1
}
.

A continuous self-map of the circle g : S1 → S1 will "wraps" the source
circle onto the target circle a number of times.
This (signed) integer is called the degree of the self map.

Notation: Denote by [θ] the point (cos(θ),sin(θ))∈ S1.
Example: Fix n∈ Z. The map

gn : S1 → S1, [θ] 7→ [nθ]

wraps the circle around itself n times and so deg(gn)=n. When n is
negative the circle is wrapped in the reversed direction.

When f : [0,1]→ R2 is a regular closed curve then f̂ = f ′/‖f ′‖ is a selfmap
of the circle which has a degree deg(f̂ ) ∈ Z
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Whitney-Graustein theorem (thm 1 of W. article)

Let f : [0,1]→R2 be a regular closed curve (equivalently f can be seen as an
immersion S1 # R2.)
The rotation number of the immersion f is

γ(f ) := deg

(
f ′

‖f ′‖

)
= deg(f̂ ) ∈ Z.

γ("standard embedding of the circle")=1
γ("reversed embedding of the circle")=-1
γ("figure eight")=0
γ("circle traveled twice")=2

Theorem
Two regular closed curves f0, f1 : [0, 1]→ R2 are regularly homotopic if and
only if γ(f0) = γ(f1)
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Precise definition of the degree

Let g : S1 → S1. How to define deg(g)∈Z?
Consider the "universal covering" of the circle S1 by the line R:

p : R −→ S1 , t 7−→ (cos(2πt), sin(2πt)).

The restriction p1:=p|[0,1] : [0,1]→ S1 identifies the circle S1 to the
interval [0,1] with their two endpoints 0 and 1 glued together.
Claim there exist a continuous map g̃ : [0, 1]→ R such that the following
diagram commutes

R

p
��

[0, 1] p1
//

∃g̃
66

S1
g
// S1

in other words pg̃ = gp1.
We say that g̃ is a lift of the path gp1 along p.
The degree of g is defined by deg(g) := g̃(1)− g̃(0).

Pascal Lambrechts Lisbon school July 2017: eversion of the sphereLecture 1: July 24, 2017 11 / 23



Exemple of lifting and formula for the degree

Consider g:S1 → S1 defined by g([θ])=[-3θ].
In other words

g(cos(θ), sin(θ)) = (cos(−3θ), sin(−3θ)).

Then a lift g̃ of gp1 along p is given by the map

g̃ : [0, 1]→ R , t 7→ −3t.

Indeed g̃ is continuous and for all t∈[0,1] we have{
p(g̃(t)) = p(−3t) = (cos(2π(−3t)), sin(2π(−3t)))

g(p1(t)) = g((cos(2πt), sin(2πt)) = (cos(−3(2πt), sin(−3(2πt)),

thus pg̃ = gp1.

Therefore deg(g) = g̃(1)− g̃(0) = −3 · 1−−3 · 0 = −3.
Note that ğ(t) := 5− 3t is a different lift of gp1 along p but we also have
ğ(1)− ğ(0) = (5− 3 · 1)− (5− 3 · 0) = −3
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Homotopic maps have the same degree

Let f,g : S1 → S1 be continuous self-maps of the circle.
Let H : S1 ×[0,1]→ S1 ,([θ],u)7→ Hu([θ]) be a continuous map such that
H0=f and H1=g.
We say that f and g are homotopic and write f' g.
Claim f ' g =⇒ deg(f ) = deg(g)

R

p
��

[0, 1] p1
//

∃f̃
∃g̃

2:

S1
g
f +3 S1

R

p
��

[0, 1]× [0, 1]
p1×id

//

∃H̃

33

S1 × [0, 1]
H
// S1

deg(f ) = f̃ (1)− f̃ (0)=deg(H0) deg(g) = g̃(1)− g̃(0)=deg(H1)
deg(Hu) = H̃u(1)− H̃u(1) ∈ Z 0≤ u≤1
deg(Hu) continuous in u∈[0,1] but ∈Z =⇒ deg(Hu) is constant!
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Proof of one direction of Whitney-Graustein

Let f0 and f1 be regular closed curves in the plane.
Let {fu}u∈[0,1] be a regular homotopy between them.
By condition(3) of the definition of a regular homotopy, ∂fu/∂t is
continuous in both variables and so

f̂u(t) :=
f ′u(t)

‖f ′u(t)‖

is also continuous where f ′u(t) = ∂fu
∂t (t) is the derivative in the t-direction.

Therefore
{
f̂u
}
u∈[0,1]

is a homotopy between f̂0 and f̂1 and

γ(f0) = deg(f̂0) = deg(f̂1) = γ(f1).

QED
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The path lifting property of p : R −→ S1

Theorem
Let

g : [0, 1]→ S1 be a continuous map, and
e0 ∈ such that p(e0) = g(0),

Then there exists a continuous map g̃ : [0, 1]→ R such that
1 pg̃ = g , and
2 g̃(0) = e0.

We say that g̃ is a lifting of the path g along p starting at e0

R

p
��

3 e0_

��
[0, 1] g

//

∃g̃
==

S1 3 g(0).
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Proof of the path lifting property of p: step 1.

Step 1: Prove the existence of a lifting under the extra assumption that the
path g : [0, 1]→ S1 is missing the rightmost point (1,0) of the circle.
Hint: Set A := S1 \ {1} the circle minus that rightmost point. Thus
g([0,1])⊂ A. We have a homeomorphism p1 :]0, 1[

∼=→ A.
Then p−1(A) = R \ Z. Contemplate 10 minutes the following:

e0∈R

p

��

p−1(A) = ∪n∈Z]n, n + 1[? _incloo

��

]0, 1[×Z 3 (t0, n0)
∼=
ψ
oo

proj1
��

[0, 1]

∃?g̃
==

g
//

g

HHS1 A? _
inclusionoo ]0, 1[

∼=
p1

oo

σ

DD

where ψ(t,n):=t+n, (t0 ,n0 ):=ψ-1 (e0) and σ(t):=(t,n0).
Show that g̃(t) := ψ(σ(p−1

1 (g(t)))) is a lift of g along p: pg̃ = g .
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Proof of the path lifting property: remaining steps

Step 1bis: Prove the existence of a lifting under the extra assumption that
the path g : [0, 1]→ S1 is missing the leftmost point (-1,0) of the circle.
(Completely analoguous to step (1))

Step 2: show that we can decompose the interval [0, 1] in small
subintervals [ti, ti+1 ] with 0=t0 <t1 < . . .< tN-1< tN =1 such that each
restricted paths g| [ti, ti+1 ] misses either (-1,0) or (1,0)

Step 3: Use the previous steps to construct inductively the lifting g̃ and
finish the proof

Exercise: complete the details of the proof.
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The homotopy lifting property

Theorem
Let Y be a space.

g : [0, 1]× Y → S1 be a continuous map, and
e0 : {0} × Y → be a map such that pe0 = g |{0} × Y ,

Then there exists a continuous map g̃ : [0, 1]→ R such that
1 pg̃ = g , and
2 g̃(0) = e0.

We say that g̃ is a lifting of the homotopy g along p starting at e0

When Y is the one-point space, this is the path lifting property.
When Y=[0,1] is the unit interval, this is the lifting of homotopy of paths
that we needed before.
Exercise: prove the above homotopy lifting theorem. Hint Very similar the proof of the
path lifting property. Look at Hacher "Algebraic topology", proof of property (c) on page 29 (freely available on the
web). Dont be scared by the apparent complexity of Hatcher: have faith and struggle.
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Whitney’s magic formula for the turning number

Let Γ be a regular closed curve parametrized by f : [0, 1]→ R2.
Assume that Γ has only finitely many self-intersections and that they are
crossing points with exactly 2 branches with linearly independent tangent
vectors at that point (i.e. Γ is "transverse" to itself.)
Assume also that Γ has been translated and reparametrized so that its
lowest point is f (0) and is on the x-axis.
For each crossing point P = f (t1) = f (t2) of the curve with
0 ≤ t1 < t2 ≤ 1 note that by assumption f ′(t1) and f ′(t2) are linearly
independent thus the 2×2 matrix (f ′(t1) f ′(t2) has a non-zero determinant
whose sign is the orientation of the basis (f ′(t1), f ′(t2)).
Moreover the tangent vector at t = 0 is parallel to the x-axis and thus
f ′(0) has a non zero x-component denoted by x ′(0) ∈ R.
Then (see Whitney’paper, theorem 2):

γ(f ) = sign(x ′(0)) +
∑

0≤t1<t2≤1 , f (t1)=f (t2)

sign
(
det
(
f ′(t1) f ′(t2)

))
.

ite
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EXERCISES: Examples and non examples of immersions in
the plane

For each of the following functions f : R→ R2 determine whether it is a C1

-immersion. Draw the corrseponding curve in the plane.

f(t)=(t,t2)
f(t)=(cos(2π t),sin(2π t))
f(t)=(t3, t2)
f (t) = (t,

3
√
t2)

f(t)=(sin(2π t),sin(4π t))
f(t)=cos(6π t)· ( cos(2π t),sin(2π t) )
f(t)=(t3 ,t3)

Prove that there exists no immersion of a closed curve in the real line.
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EXERCISES: on the degree

Prove that if a self map of the circle, g:S1 → S1, is not surjective then
it is homotopic to a constant map.
Prove that the degree of a self map of S1 is always an integer.
Find and prove a formula for the degree of the composition of two
self-maps of the circle in terms of the degrees of each of the maps.
Prove that the degree of a map is well defined and does not depend
on the choice of the lifting.
Complete the details of the proof of the existence of a lifting along p
of path in the circle. After that do the same for the general homotopy
lifting theorem for p : R→ S1.
Prove that if two self maps of the circle have the same degree then
they are homotopic. Hint: Assume first that the two maps have the same value at (0,1). Show

that their liftings can be taken with same origins and same endpoint. Show that there is a homotopy

between the liftings fixing these extremities and project this homotopy on the circle.
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Challenges

Spot a mistake in Whitney’s paper.
Hint: with his definition of deformation on p. 278 (not same as ours),
the proof of the first half of his theorem 1 is wrong.
Find an explicit counterexample to his theorem 1 (with his definition).
Fix his definition to make theorem 1 correct.
Consider closed regular curves f : [0,1]→ S2 in the 2-sphere
S2 =

{
(x , y , z) ∈ R2 : x2 + y2 + z2 = 1

}
instead of the plane.

1 Show that the immersion f1 : t 7→ (cos(2πt), sin(2πt), 0) traveling the
equator in one direction is regularly homotopic to the one traveling the
equator in the other direction, f−1 : t 7→ (cos(2πt),− sin(2πt), 0)

2 Show that f1 is regularly homotopic to the immersion
f3 : t 7→ (cos(6πt), sin(6πt), 0) traveling the equator 3 times

3 Is f1 regularly homotopic to the immersion
f2 : t 7→ (cos(4πt), sin(4πt), 0) traveling the equator 2 times ?
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Further challenges

Prove the magic formula of Whitney in the special case when they are
no self-intersections. This is the "Umlaufsatz of Hopf".
Hint define ψ(t1, t2) = (f (t2)− f (t1))/dist(t1, t2) on the half-open
solid triangle 0 ≤ t1 < t2 ≤ 1 and extend continuously on the
boundary t1 = t2 by the derivative f ′(t1). Look at
http://www.mathematik.com/Hopf/ for a pictorial proof.
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