
TURNING A SURFACE INSIDE OUT 

N orn1ally a sphere can be turned inside out only if it has been torn. 

In differential topology one assumes that the surface can be pushed 

through itself, but then the problem is to avoid forming a "crease" 

T
he great mathematician David 
Hilbert once said that a mathe
matical theory should not be con

sidered perfect until it could be ex
plained clearly to the first man one met 
in the street. Hilbert's successors have 
generally despaired of living up to this 
standard. As mathematics becomes more 
specialized it is difficult for a mathe
matician to describe, even to his col
leagues, the nature of the problems he 
studies. From time to time, however, 
research on an advanced and inacces
sible mathematical topic leads to a dis
covery that is intuitively attractive and 
can be explained without oversimplifica
tion. A striking example is Stephen 
Smale's theorem concerning regular 
maps of the sphere, published in 1959. 

The field in which Smale was then 
working-differential topology, which 
combines concepts from topology and 
calculus-is one of the more abstract 
domains of modern mathematics. Never
theless, a visualization devised by the 
late Arnold Shapiro of Brandeis Uni
versity enables us to depict a startling 
consequence of Smale's theorem: It is 
possible, from the topologist's point of 
view, to turn a surface such as a sphere 
inside out. 

How is this accomplished? It is intui
tively clear that unless a sphere is some
how torn it must remain right-side out, 
no matter how one is allowed to deform 
and displace it. If we are mentally 
allowed to move the surface through 
itself, however, so that two points on it 
can occupy the same point in space (this 
is permissible in differential topology), 
then a solution suggests itself. It is the 
deformation in which two regions of the 
sphere are pushed toward the center 
from opposite sides until they pass 
through each other. The original inner 
surface begins to protrude in two places, 
which are then pulled apart until the 
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knurl-the remaining portion of the out
side-vanishes. In the process, unfortu
nately, the knurl forms a tight loop that 
must be pulled through itself [see up
per illustration on opposite page]. This 
results in a "crease" that is displeasing 
to differential topologists, whose dis
cipline is limited to smooth surfaces. 

The problem for the differential top
ologist is how to turn the sphere inside 
out without introducing a crease in get
ting rid of the knurl. Here too intuition 
indicates that the problem cannot be 
solved, and when Smale first announced 
he could prove that a solution existed, 
even his thesis adviser at the Univer
sity of Michigan warned him that there 
was an "obvious counterexample" to 
his claim. Intuition was wrong; no fault 
could be found with the logic of Smale's 
proof. In fact, it was theoretIcally pos
sible to follow the proof step by step 
and to discover an explicit description 
of the deformation that turns the sphere 
inside out. The argument was so com
plicated, however, that the actual task 
seemed hopeless. For some time after 
Smale's discovery it was known that the 
sphere could be turned inside out with
out a crease, but no one had the slight
est idea how to do it. 

This problem, concerning such a sim
ple object as the sphere, was extremely 
mystelOious and challenged the minds of 
many mathematicians. As far as I know 
the only ones who eventually worked it 
out were Nicolaas Kuiper, who is now 
at the University of Amsterdam, and 
Shapiro. Shapiro's idea of the deforma
tion provides the basis for the illustra
tion that begins at the bottom of the 
opposite page and ends on page 117. 
The deformation of the gray sphere be
gins with the pushing of two regions on 
opposite sides of the sphere toward the 
center and through each other so that 
the colored interior protrudes. The sur-

face is then stretched, pinched and 
twisted through several intermediate 
stages too complicated to depict in their 
entirety. We can follow the changes 
between successive stages by watching 
what happens to ribbon-like cross sec
tions of the surface as it is turned inside 
out. It is possible to understand the 
entire deformation by interpolating the 
missing parts of the surface at each 
stage and checking that the changes in 
the ribbons depicting various sections 
fit together coherently. 

Turning a sphere inside out is only 
one example of the deformations 

shown to be possible by Smale's theo
rem. To explain the full implications of 
the theorem we must introduce mathe
matical definitions of the objects and 
deformations with which we are con
cerned. Let us begin with some precise 
descriptions of curves. The circle is 
defined to be the set of points in a two
dimensional plane (located by an x axis 
and a y axis) at distance 1 from the 
origin (the intersection of the two axes). 
Having established the radius as 1, we 
can describe any point P on the circle 
by the angle e between the x axis and a 
line from the origin to P [see upper il
lustration on page 114]. In other words, 
any point on the circle can be described 
by a number from 0 to 360 giving the 
number of degrees in the corresponding 
angle e. 

A curve in the plane will be defined 
as a map from the circle into the plane. 
We shall consider several examples of 
such maps; each of them is a rule as
signing to each point of the circle (or, 
equivalently, to each number e be
tween 0 and 360) a point in the plane. 
If c is such a map, then the point it 
assigns to e is denoted c (e) and is 
called "the image of e under c." Natu
rally we require that c (0) equal c (360), 
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INADMISSIBLE PROCEDURE for turning a sphere inside out en· 
tails pushing regions on opposite sides toward the center (2) and 
through each other. The original interior (color) hegins to pro· 
trude on two sides (3); these two sides are pulled out to form a 
sphere (4 and 5). When the looped portion of the original sudace 

is pulled through itself, a "crease" is introduced in the surface; this 
violates a law of differential topology, a discipline of mathematics 
that is concerned only with smooth surfaces. In this discipline 
moving a surface through itself is permissihle. The ribbons at bot· 
tom depict a section of the surface during stages of deformation. 

since 0 and 360 describe the same point 
on the circle. 

Why should one give such abstract 
and complicated meanings to such 
simple terms as "curve"? There are two 
important reasons. First, precise defini
tions are essential for a sound mathe
matical theory. Second, a good defi
nition will suggest by analogy how a 
theory can be extended to encompass 
new material. For example, to get a 
picture of a curve in the plane it is 
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helpful to think of the path of a mov
ing particle. This could be made into 
a definition more easily grasped by the 
intuition than "a map from the circle 
into the plane," but the more abstract 
definition will enable us to generalize 
our study of curves to that of two
dimensional surfaces, our main interest. 
A simple example of a curve is pro
vided by the map c that assigns to each 
() the point in the plane with an x co
ordinate of 2 cos () and a y coordinate of 

E 

sin (). (If () is taken as an acute angle 
of a right triangle, then sin (), the sine 
of (), is the ratio of the length of the 
opposite leg to the length of the 
hypotenuse; cos (), the cosine of (), is 
the ratio of the length of the adjacent 
leg to the length of the hypotenuse.) 
This description can then be abbrevi
ated to c (()) = (2 cos (), sin ()). 

The curve defined by g (()) = (cos (), 
sin ()) is even simpler. If the point P 
on the circle corresponds to the angle (), 

F 

HOW TO TURN A SPHERE INSIDE OUT by steps that conform 
to the laws of differential topology is depicted in this illustration 
and those at bottom of the next four pages. The deformation begins 
with the pushing of opposite sides toward the center and through 
each other so that the interior (color) protrudes in two regions (B). 

One part of the original interior is then distended (C) to give 
the surface resembling a saddle on two legs (D). The two legs 
are then twisted counterclockwise to give surface E. This surface 
is shown again (F) with ribbons depicting it in cross section on 
different levels. Thin black line indicates missing parts of surface. 

113 

© 1966 SCIENTIFIC AMERICAN, INC



y y y 

-t--------------------+-------------------�- x -t--------�f_--------+_-x 

[OJ 
g(8) = (cos 8, sin 8) C(8) = (2 cos 8, sin 8) h(8) = (sin 8, sin 28) 

CURVES IN THE PLANE are defined and exemplified. The circle 
is defined as the set of points in a two·dimensional plane at dis· 
tance I from the origin (the intersection of the x axis and the y 
axis). A point P on the circle is described by the angle e between 

the x axis and the line from the origin to P. A closed curve in the 
plane can be given by a map that assigns to each number e a point 
in the plane. The map c that assigns to each e the point whose x 
coordinate is given by two times the cosine of e and whose y co-

then the coordinates of P itself are cos e 
and sin e. In other words, the map g 
assigns to each point P the point Ponce 
again. The map g is called the standard 
embedding of the circle in the plane. 

The curves given by the maps c and 
g are both examples of regular curves 
in the plane. A curve in the plane will 
be called regular if, as a point runs 
around the circle at constant speed, its 
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image moves smoothly and with a 
velocity other than zero in the plane. 
If one represents a curve by tracing it, 
the motion of the pencil on the page is 
equivalent to the motion of the image 
of e as e runs from ° to 360, Thus the 
map 1, the image of which appears in 
the upper illustration on these two 
pages, is seen to be a regular curve but 
the map i is not, since the pencil can-

not move smoothly past a pointed end 
(a "cusp") without stopping. 

Two regular curves are said to be 
regularly homotopic if one can be de
formed into the other through a series 
of regular curves. This implies that be
tween the two original curves there is a 

family of regular curves, each repre
senting the shape of the curve at a given 
stage of the deformation. It can be 

DEFORMATION OF SPHERE IS CONTINUED here and at bot
tom of opposite page. Depicting the entire surface at each stage 
would not clarify the process; the reader must interpolate the 
missing parts of the surface at each stage by considering the 10 

cross sections and checking that the changes at all levels fit to
gether coherently. One stage (H2) is depicted schematically so that 
the overall view of the surface can be borne in mind. Surface G was 
formed by pinching and rotating the saddle of surface F 90 degrees. 
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k(e) = (cose, - sin e) j(e) = (cos e, sin3 e) I(e) 

. a Sine = c 

b cose = C 

ordinate is given by the sine of (J is written c «n = (2 cos (J, 
sin (J). (Key at far right defines the trigonometric functions sine 
and cosine.) A closed curve in the plane is called regnlar if, as a 
pencil is traced around it, there is no "cusp," or spot at which the 

pencil must come to a momentary stop. (All curves in this illustra
tion except j are regular.) The "winding number" listed in brackets 
beneath each curve gives the total number of counterclockwise 
turns made by the curve. Clockwise turning is counted as negative. 

demonstrated that the curves given by 
the maps c and g are regularly homo
topic [see upper illustration on next two 
pages J. Here the family of curves H t. or 
the deformation this family represents, 
is called a regular homotopy between c 

and g. 
One can show that two curves are 

regularly homotopic without finding the 
specific homotopy between them, by 

using the concept of "winding number." 
The winding number of a regular curve 
is the total number of counterclockwise 
turns the curve makes, (Clockwise turn
ing is counted as negative, so the wind
ing number of a curve can be negative,) 
The upper illustration on these two 
pages shows that the winding numbers 
of curves g, hand k are respectively 1, 
o and -l. It is plausible and not very 

J 

difficult to prove that the winding num
ber of a regular curve must remain fixed 
during a regular homotopy, so two 
regularly homotopic curves must have 
the same winding number. (It follows 
that no two of g, hand k can be regu
larly homotopic.) In 1937 Hassler 
Whitney, then at Harvard University, 
proved the more difficult converse state
ment: Any two regular curves with the 

K 

REVERSAL OF COLORS, indicating a reversal of the original 

interior and exterior, is achieved in subsequent steps. Between 
stages H and I the parts of the surface marked x and y (middle 

level) move to the rear. Between I and] the two similarly shaped 

legs move through each other. At each level of the surface at stage 
] the cross-sectional ribbon has t\VO gray sides facing each other. 
Between stages] and K the inner layer expands and the outer layer 
contracts, giving surface K, which is ] with the colors reversed. 
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REGULARLY HOMOTOPIC CURVES IN PLANE can be de· 
formed, one to the other, through a family of regular curves be. 
tween them (gray) . Thus the curves g and c are regularly homo· 

topic, and the gray curves (Ht) represent successive stages of the 
deformation of g to c. It has been proved that only curves with the 
same winding number are regularly homotopic (because. the wind· 

same winding number are regularly 
homotopic. The reader may find it 
interesting to devise a regular homot
opy between two curves with the same 
winding number, such as curves g and I 
in the upper illustration on the preced
ing two pages. This can be made easier 
with a length of chain or string. The 
problem is to loop the chain or string to 
form one of the curves, then shift it 
(without lifting it from the table) to 
form the other without introducing a 
cusp at any point. 

The definitions of a curve on the 
sphere and of a regular curve on 

the sphere are analogous to those of 
curves in the plane, the sphere being 
the set of points in three-dimensional 
space at distance 1 from the origin. 
Some regular curves on a sphere are 
shown in the top illustration on page 

M 

118. It turns out that two such curves 
are regularly homotopic if the parity of 
the number of their self-intersections is 
the same, that is, if they both have an 
odd number of self-intersections or both 
have an even number of them. Unlike 
curves on a plane, regular curves on 
the sphere can be regularly homotopic 
even if they do not have the same 
"winding number." 

We began by defining a curve as a 
map from the circle into the plane. 
Since the circle and the sphere have 
analogous definitions, one is led to ask: 
What happens when everything is 
moved up one dimension? The analogue 
to a curve is a map from the sphere into 
three-dimensional space. Such a map 
would assign to each point of the sphere 
some point (its image) in three-space. 
An example of such a map is the 
standard embedding, which assigns to 

a point P of the sphere the point P 
considered as a point in three-space. 
This is entirely analogous to the stan
dard embedding of the circle in the 
plane. Another example is the antipodal 
map A [see bottom illustration on page 
118] that assigns to each point P of the 
sphere its diametrically opposite point 
A (P), considered as a point in three
space. The analogous curve is given by 
a (0) = (- cos 0, - sin 0). 

Suppose c is a curve on the sphere; 
thus c assigns to each point of the circle 
a point on the sphere. Since a map 
from the sphere into three-space as
signs to each point on the sphere a 
point in three-space, such a map will 
transform c into a curve in three-space. 
This remark is the basis for the defini
tion of the two-dimensional analogue 
of a regular curve: a regular map from 
the sphere into three-space is a map 

"BACKWARD" DEFORMATION of the surface shown in stage K 
results in a sphere having the colored original interior as its ex· 
terior. Intermediate surface L corresponds to surface I with the 

colors reversed; surface M corresponds to surface H, N to G, 0 to F, 
OJ to E and so on. The colored sphere (sul'face S) corresponds of 
course to the gray sphere shown as surface A on page 113. The en· 
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ing number of a curve remains fixed during a regular homotopy) . 
Thus curves g and k are not regularly homotopic. The deformation 
of one into the other (which is the equivalent in the plane of turn. 

ing a sphere inside out) creates a change in winding number. If this 
deformation is duplicated with some string ("a" through "e") on 
a table, one will find it cannot be done without introducing a cusp. 

that transforms each regular curve on 
the sphere into a regular curve in three
space. 

The standard embedding is obviously 
regular, and the bottom illustration on 
the next page shows that the antipodal 
map A transforms a regular curve into a 

regular curve, and that A is thus also 
a regular map. On the other hand, a 

sphere with a crease cannot be the 
image of a regular map; any curve per
pendicular to the crease has a cusp. 

Pursuing the analogy, we define two 
regular maps from the sphere into three
space as regularly homotopic if there is 
a family of regular maps (a regular 
homotopy) joining them; in other words, 
if one regular map can be deformed into 
the other through a series of regular 
maps. Now, we already know that the 
standard embedding is regularly homo
topic to the antipodal map. In fact, 

p 

Shapiro's visualization is of just such a 
regular homotopy. Since we had not yet 
defined regular maps when we first dis
cussed turning the sphere inside out, we 
described the homotopy by showing 
how the images of the maps could be 
deformed one into the other. In retro
spect it is clear that each of the surfaces 
in the illustrations at the bottom of 
pages 113 through 117 is the image of 
a regular map from the sphere into 
three-space, and that these maps can 
be chosen to vary smoothly and in such 
a way as to provide a regular homotopy 
between the standard embedding and 
the antipodal map. In particular evelY 
point on the surface designated] in the 
bottom illustration on page 115 lies op
posite its antipodal point, and the de
formation of ] to K exchanges these 
points. 

One big advantage of considering a 

Q 

R 

tire deformation is accomplished without introducing a crease in the surface. The feat was 
first proved possible by Stephen Smale, then at the University of Michigan. The intermediate 
steps of the deformation were first imagined by Arnold Shapiro of Brandeis University. 

homotopy of maps rather than a defor
mation of surfaces is that the status 
of self-intersections becomes logically 
clear. It is no longer necessary to speak 
of two points on the surface "occupy
ing" the same point in space. A map 
from the sphere into three-space has a 
self-intersection when it sends two 
points of the sphere to the same point 
in space. 

The regular homotopy between the 
standard embedding of the sphere 

and the antipodal map can be used to 
provide a regular homotopy that turns 
other simple surfaces, such as the torus, 
inside out. The torus is the doughnut
like surface shown in the illustration on 
page 119. The homotopy depicted can 
be described as follows. Extrude a small 
sphere from the surface of the torus and 
turn the sphere inside out. Expand the 
reversed sphere until it swallows the 
torus. A tube now leads from the out
side of the reversed sphere to the in
side of the torus. Enlarging this hole if 
necessary, pull the torus out by the in
side. Shrink what remains of the sphere. 

There are regular maps from the 
torus into three-space that are not 
regularly homotopic. The illustration on 
page 120 shows the images of four such 
maps, no two of which are regularly 
homotopic. How many such maps can 
there be? 

We have seen that there is an infinite 
collection of regular curves in the plane 
(one for each winding number), no two 
of which are regularly homotopic. We 
have also remarked that two regular 
curves on the sphere are regularly 
homotopic if and only if the number of 
their self-intersections is odd in each 
case or even in each case. It is there
fore possible to divide all the regular 
curves on the sphere into two sets 
(those with an even number of self
intersections and those with an odd 
number of self-intersections) such that 

117 

© 1966 SCIENTIFIC AMERICAN, INC



REGULAR CURVES ON THE SPHERE can be shifted "around the back" and are not 
governed by rules for curves in a plane. Two regular curves on the sphere are regularly 
homotopic if they both have an odd or both have an even number of self·intersections. 
Curves on sphere A belong to same "regular homotopy class." Curves on sphere B belong 
to a different regular homotopy class. No curve on A is regularly homotopic to one on B. 

REGULAR HOMOTOPY ON THE SPHERE is illustrated for two curves on sphere A of 
illustration at top. Broken segment of the curve has been shifted around the back of sphere. 
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ANTIPODAL MAP assigns to each point on sphere its diametrically opposite point. Discov· 
ery of a regular homotopy between sphere and antipodal map proved it could be everted. 
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any two curves in the same set are 
regularly homotopic, but no curve in 
one set is homotopic to a curve in the 
other set. If we agree to call sets with 
these two properties "regular homotopy 
classes," we can state that there are 
infinitely many regular homotopy classes 
of regular curves in the plane, but only 
two regular homotopy classes of regular 
curves on the sphere. 

It has been ascertained that the 
number of regular homotopy classes of 
regular maps from the torus into three
space is four. The general problem of 
determining the number of regular 
homotopy classes of regular maps from 
an arbitrary surface into three-space 
was explicitly solved only recently. The 
solution came as part of the extensive 
study of regular maps that was stimu
lated by Smale's research. Morris 
Hirsch, while a graduate student at the 
University of Chicago, showed in his 
doctoral thesis how Smale's work could 
be extended to regular maps of an 
arbitrary surface. Hirsch's work was 
used in turn by loan James of the Uni
versity of Oxford and Emery Thomas of 
the University of California at Berkeley, 
who showed that the number of regular 
homotopy classes of regular maps from 
a surface into three-space depends only 
on a number known as the Euler charac
teristic of the surface, named for the 
great Swiss mathematician Leonhard 
Euler. To calculate the Euler charac
teristic X of a surface, divide the sur
face into polygons. Then X is given by 
the equation X = P - E + V, where P 
is the total number of polygons, E is the 
total number of distinct edges (each 
edge will belong to two polygons but 
should be counted only once) and V is 
the total number of distinct vertices. 
It is a significant topological fact that 
the number thus obtained depends only 
on the surface and not on how the sur
face was divided into polygons. 

James and Thomas showed that if the 
Euler characteristic of a surface is X, 
then the number of regular homotopy 
classes of regular maps from that surface 
into three-space is 2(2 - Xl. Thus the 
torus (with an Euler characteristic of 
X = 0) has four distinct regular ho
motopy classes of maps. The sphere 
(X = 2) has only one. This is the com
plete statement of Smale's theorem: 
Any two regular maps from the sphere 
into three-space are regularly homotopic. 
The existence of a regular homotopy be
tween the standard embedding and the 
antipodal map was only a special case. 

Of course Smale's proof does not con
sist of drawing pictures of regular maps. 
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TURNING A TORUS INSIDE OUT involves the regular homotopy 
for everting the sphere. The torus is depicted with a circle desig· 
nating its meridian (a). A small sphere is extruded from the torus 
(b) and everted (e). Then the inside·out sphere is enlarged until 

it engulfs the torus (d). Next the tube leading from the outside of 
the everted sphere to the inside of the torus is enlarged and the to· 
rus is pulled through it ("e," "/" and "g"). Finally sphere is shrunk 
("h" lind "i"). In the process the meridian has become a latitude. 
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With artificial satellites already launched and 
space travel almost a reality, astronomy has 
become today's fastest growing hobby. 
Exploring the skies with a telescope is a 
relaxing diversion for father and son alike. 
UNITRON's handbook contains full.page 
illustrated articles on astronomy, observing, 
telescopes and accessories. It is of interest 
to both beginners and advanced amateurs. 

CONTENTS INCLUDE: 
Observing the sun, moon,. planets and wonders of the sky' 
Constellation map • Hints for observers. Glossary of telescope 
terms • How to choose a telescope • Astrophotography 
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In fact, Smale's paper contains no pic
tures at all. The intricacy of the pic
tures, which were in a sense implicit in 
Smale's abstract and analytical mathe
matics, is amazing. Perhaps even more 
amazing is the ability of mathematicians 
to convey these ideas to one another 
without relying on pictures. This ability 

is strikingly brought out by the history 
of Shapiro's description of how to turn 
a sphere inside out. I learned of its con
struction from the French topologist 
Rene Thorn, who learned of it from his 
colleague Bernard Morin, who learned 
of it from Arnold Shapiro himself. Ber
nard Morin is blind. 

NONREGULARL Y HOMOTOPIC REGULAR MAPS from the torus into three·dimen· 
sional space fall into four distinct classes. This illustration shows the image of one map from 
each class. No two of these maps could be deformed one to the other through regular maps. 
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