Exercises for Day \#3 (Dugger)

1. For every compact 2-manifold $\left(T_{g}\right.$ or $\left.N_{r}\right)$ find geometric representatives for the homology classes and compute all products of basis elements. For T_{g} do this with real (or integer) coefficients, and for N_{r} do it for \mathbb{F}_{2}-coefficients.
2. Let X be the 3 -manifold obtained from the cube $[-1,1]^{3}$ by doing the following gluing:

- $(1, y, z) \sim(-1,-y, z)$
- $(x, 1, z) \sim(x,-1, z)$
- $(x, y, 1) \sim(x, y,-1)$.

Compute $H_{*}(X ; F)$ for all fields F that you know.
3. (a) Let $\rho: S^{2} \rightarrow S^{2}$ be reflection in the equator. Define a 3-manifold X by taking $S^{2} \times I$ and gluing $(x, 0)$ to $(\rho(x), 1)$ for all $x \in S^{2}$. Compute the homology groups of X.
(b) Now let $f: T \rightarrow T$ be an automorphism of the torus that you choose. Define a similar 3-manifold Y be taking $T \times I$ and gluing $(x, 0)$ to $(f(x), 1)$ for all $x \in T$. Compute the homology groups of Y.
4. Here is another interesting 3-manifold. Fix a prime p and let $\zeta=e^{\frac{2 \pi i}{p}}$. Consider the 3-ball

$$
D^{3}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2} \leq 1\right\}=\left\{(z, t) \in \mathbb{C} \times\left.\mathbb{R}| | z\right|^{2}+t^{2} \leq 1\right\}
$$

For (z, t) such that $|z|^{2}+t^{2}=1$ and $t \leq 0$, identify (z, t) with $(\zeta z,-t)$. This gives a space called $L(p, 1)$.
(a) Convince yourself that $L(p, 1)$ is a 3 -manifold.
(b) Identify the equator of D^{3} with the unit complex numbers and mark off the p th roots of unity $a_{0}, a_{1}, \ldots, a_{p-1}$. Then mark the north and south poles, and draw in the geodesic circles from N to S that pass through each a_{i}. Convince yourself that this picture gives a cell decomposition for $L(p, 1)$ that consists of two 0 -cells, $p+11$-cells, $p 2$-cells, and one 3 -cell. Compute the homology groups (or Betti numbers) of $L(p, 1)$. For this calculation I suggest doing it both with \mathbb{R}-coefficients and with \mathbb{F}_{p}-coefficients.
5. (Challenge) Compute the intersection product on the homology groups of the space Q defined in lecture.
6. (Challenge) Compute the homology groups of the Poincaré homology sphere (defined in lecture).

