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1 Lectures

1.1 exercise
1. Examples and non examples of immersions in the plane For each of the

following functions f : R → R2 determine whether it is a C1 -immersion.
Draw the corrseponding curve in the plane.

• f(t)=(t,t2)

• f(t)=(cos(2π t),sin(2π t))

• f(t)=(t3,t2)

• f(t)=(t, 3
√
{t2})

• f(t)=(sin(2π t),sin(4π t))

• f(t)=cos(6π t)· ( cos(2π t),sin(2π t) )

1.2 lecture 3 lecture3
1. The path lifting property We say that a map p : E→ B has the path

lifting property (or HPL0) if given

• a path ω : [0, 1]→ B starting at some point b0 = ω(0), and

• a point e0 ∈ E such that p(e0) = b0,

Then there exists a path ω̃ : [0, 1]→ E such that

(a) pω̃ = ω, and

(b) ω̃(0) = e0.

E

p

��

3 e0_

��
[0, 1]

ω
//

∃ω̃
==

B 3 ω(0).

or {0}� _

��

e0 // E

p

��
[0, 1]

ω
//

∃ω̃
==

B.
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2. Proof of the path lifting property of p: step 1. Step 1: Prove the existence
of a lifting under the extra assumption that the path g : [0, 1] → S1 is
missing the rightmost point (1,0) of the circle.
Hint: Set A := S1 \ {1} the circle minus that rightmost point. Thus
g([0,1])⊂ A. We have a homeomorphism p1 :]0, 1[

∼=→ A.
Then p−1(A) = R \ Z. Contemplate 10 minutes the following:

e0∈R

p

��

p−1(A) = ∪n∈Z]n, n+ 1[? _incloo

��

]0, 1[×Z 3 (t0, n0)
∼=
ψ
oo

proj1

��
[0, 1]

∃?g̃
==

g
//

g

HHS1 A?
_inclusionoo ]0, 1[

∼=
p1

oo

σ

DD

where ψ(t,n):=t+n, (t0 ,n0 ):=ψ-1 (e0) and σ(t):=(t,n0).
Show that g̃(t) := ψ(σ(p−1

1 (g(t)))) is a lift of g along p: pg̃ = g.

3. Proof of the path lifting property: remaining steps Step 1bis: Prove the ex-
istence of a lifting under the extra assumption that the path g : [0, 1]→ S1

is missing the leftmost point (-1,0) of the circle. (Completely analoguous
to step (1))

Step 2: show that we can decompose the interval [0, 1] in small subintervals
[ti, ti+1 ] with 0=t0 <t1 < . . .< tN-1< tN =1 such that each restricted
paths g| [ti, ti+1 ] misses either (-1,0) or (1,0)

Step 3: Use the previous steps to construct inductively the lifting g̃ and
finish the proof

Exercise: complete the details of the proof.

4. The homotopy of paths lifting property We say that a map p : E→ B has
the homotopy of path lifting property (or HPL1) if given

• a homotopy Ω: [0, 1]× [0, 1]→ B, (t, u) 7→ Ω(t, u), and
• a path ε0 ∈ E such that p(ε0(u)) = Ω(0, u),

then there exists a homotopy Ω̃ : [0, 1]× [0, 1]→ E such that

(a) pΩ̃ = Ω, and
(b) ω̃(0, u) = ε0(u) for all u ∈ [0, 1].

[0, 1]× {0}� _

��

ε0 // E

p

��
[0, 1]× [0, 1]

Ω
//

∃Ω̃

99

B.
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Exercise: prove the above homotopy lifting theorem. Hint Very similar the proof
of the path lifting property. Look at Hacher "Algebraic topology", proof of property (c) on page 29 (freely
available on the web). Dont be scared by the apparent complexity of Hatcher: have faith and struggle.

2 exercises

2.1 The bundle S3→ SO(3) whose fibre is a pair of points.
The goal of this exercise is to prove that there exists a bundle

p : S3 −→ SO(3)

whose fibre is Z/2Z (i.e. a space with two points) and where S3 is the 3-
dimensional sphere 1

S3 =
{

(a, b, c, d) ∈ R4 : a2 + b2 + c2 + d2 = 1
}
.

The proof is mostly algebra related to the quaternionic numbers.
We first review quickly the notion of quaternion numbers H. They are defined

as the 4-dimensional real vectorspace 2

H := {a+ bi+ cj + dk : a, b, c, d ∈}

and with a multiplication µH : H×H→ H charaterized as the unique map such
that

• µH is R-linear in each variable

• 1 is a unit for the multiplication (on the left and on the right)

• $µH(i,i)=-1,µH(j,j)=-1,µH(k,k)=-1\

• µH(i,j)=k\„\,µH(j,k)=i\„\,µH(k,i)=j\„\,$

It turns out that this unique map is an associative (but not commutative) mul-
tiplication. For w,w′ ∈ H we just write w · w′ := µH(w,w′).

We define the conjugate of a quaternionic number w=a+bi+cj+dk by w :=
a − bi − cj − dk and its modulus by |w| =

√
w · w =

√
a2 + b2 + c2 + d2. The

inverse, for w 6= 0, is defined by w−1 = w/|w|2.
The 3-sphere can be seen as the space of quaternionic numbers of modulus

1
S3 = {w ∈ H : |w| = 1}

Define the pure quaternionic numbers as the subset

Hpure = {bi+ cj + dk : b, c, d ∈ R}
1Actually S3 is itself a group, like SO(3), which is sometimes called SU(2) and p is a contin-

uous homomorphism of topological groups with many important applications, in particular in
quantum mecanics: the fact that p is a 2 sheet cover is related to the fact that some particles
have spin ±1/2 !!!

2in analgous way as the complex numer can be seen as a 2-dimensional real vector space
with a multiplication
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which is a 3-dimensional vector space that we will identify to R3.
Fix z∈ S3 a quaternionic number of modulus 1 and define

Rz : H→ H , w 7→ z−1 · w · z.

Prove the following facts:

• Rz preserves Hpure i.e. Rz(Hpure) ⊂ Hpure (hint: check the action on i, j
and k independently)

• Rz preserves the modulus: |Rz(w)|=|w|

• if we identify in the obvious way Hpure with R3 then Rz acts on R3 as an
element of SO(3)

• this defines a continuous map p : S3 → SO(3), z 7→ Rz

• p(z)=p(-z)

• if p(z)=p(z’) then z=± z’ (to prove this consider the action of Rz on i,j
and k.)

• p is surjective (to prove this show that for z=(cos(θ)+sin(θ)i) then Rz is
a rotation of angle 2θ about the i-axis in Hpure, and similarly replacing i
by j or k. Note then that any rotation in R3 is a composition of rotations
along each of the three axes.)

• for each rotation A ∈ SO(3), p−1(A) is a pair {z,−z}

• p is a bundle with fibre Z/2Z

2.2 A criterion to prove the simple connectivity of a space.
We say that a space X is simply-connected if it is path-connected (that is, any
two points in X can be connected by a path) and if moreover its fundamental
group is trivial, π1(X,x0) is a singleton (for some x0∈ X), in other words if every
based loop ω : [0, 1]→ X is based homotopic to the constant loop [cx0

: [0, 1]→
X, t 7→ x0].
We will give a criterion to check the simple-connectivity from "pieces" of the
space.

1. On the connectivity of a space covered by connected supspaces. Let X
be a space and let A,B⊂ X be open subsets such that A∪ B=X and such
that A and B are path connected and the intersection A∩ B is non empty.
Prove that X is path connected.
Deduce from this that any sphere Sn := {x ∈ Rn+1 : ‖x‖ = 1} is path
connected for n≥1.
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2. Baby van Kampen Let X be a space and let A,B⊂ X be open subsets such
that A∪ B=X. Assume that A and B are simply-connected and that A∩
B is non empty and path connected. Prove that X is simply-connected.
( Hint: given a loop ω based at x0, prove that it can be decompose in
finitely many pieces each belonging to either A or B. Extend this pieces
by a path connecting there extremities in both ways to x0 in A∩ B. Show
that each of this extended pieces are contractible loops and conclude).
Look at Hatcher Lemma 1.15 for a picture and help.
Deduce from this that any sphere Sn := {x ∈ Rn+1 : ‖x‖ = 1} is simply-
connected3 for n≥2.
Where hy does this argument fails to prove that S1 is simply-connected ?

2.3 Euler characteristic of bundles with finite fibres
Let E→ B be a bundle whose fibre is a space with exactly k points, for some
integer k≥1.

• Prove that the euler characterstics of E and B are related by the formulas
χ(E)=k·χ(B) (hint: consider a triangulation of the base B with small
enough simplices and lift it to a triangulation of E).

• Check that this formula is correct for the bundle S2→ P where P is the
projective space

• Compute by hand the Euler characteristic of S3 and deduce that of SO(3).
Is the result compatible with the Betti numbers of SO(3) computed by
Bjorn ?

• Use this to give restrictions to the possible bundles E→ B where both E
and B are compact surfaces.

• Challenge: for each case where there is no restriction in the previous item
try to build such a bundle between surfaces. For example build a bundle
E→ B where E is the torus with 3 holes and B is the torus with 2 holes.

2.4 The unit tangent bundle of the sphere is not trivial
1. Fundamental group of a product. Prove that if (X,x0) and (Y,y0) are two

based spaces then

π1(X × Y, (x0, y0)) ∼= π1(X,x0)× π1(Y, y0)

2. Deduce that TS2∼= SO(2) is not homeorphic to S2 S1

3the special case n=3 claims that S3 is 3-connected. The famous Poincaré conjecture proved
by Perlman in 2002 was the fact that S3 is the only compact 3-manifold without boundary
which is simply-connected.
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2.5 Conjugacy classes in the fundamental group
Consider the set [S1,X] of unbased homotopy classes of unbased loops in X.
Comsider the obvious map

Φ: π1(X,x0)→ [S1, X]

sendic a based homotopy class to its unbased homotopy class. Prove that if X is
path connected then Φ is surjective and two elements [α], [β]∈ π1(X,x0) are sent
to the same unbased homotopy class if and only if [α] and [β] are conjugate in
π1(X,x0) in other words if and only if there exits [ω] such that [α]=[ω]-1[β][ω].
Hint exrecise 6 of Hatcher p.38

Deduce from this that [S1,SO(3)]=Z/2.
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