Lisbon school July 2017: eversion of the sphere

Pascal Lambrechts

<2017-07-13 Thu>

1 Lectures

1.1 exercise

- 1. Examples and non examples of immersions in the plane For each of the following functions $f: \mathbf{R} \to \mathbf{R}^2$ determine whether it is a \mathcal{C}^1 -immersion. Draw the corresponding curve in the plane.
 - $f(t) = (t, t^2)$
 - $f(t) = (\cos(2\pi t), \sin(2\pi t))$
 - $f(t) = (t^{3,t^2})$
 - $f(t) = (t, \sqrt[3]{t^2})$
 - $f(t) = (\sin(2\pi t), \sin(4\pi t))$
 - $f(t) = \cos(6\pi t) \cdot (\cos(2\pi t), \sin(2\pi t))$

1.2 lecture 3

LECTURE3

- 1. The path lifting property We say that a map $p: E \to B$ has the **path** lifting property (or HPL_0) if given
 - a path $\omega: [0,1] \to B$ starting at some point $b_0 = \omega(0)$, and
 - a point $e_0 \in E$ such that $p(e_0) = b_0$,

Then there exists a path $\tilde{\omega} \colon [0,1] \to E$ such that

- (a) $p\tilde{\omega} = \omega$, and
- (b) $\tilde{\omega}(0) = e_0$.

$$\begin{array}{cccc} E & \ni e_0 & or & \{0\} \xrightarrow{e_0} E \\ \exists \tilde{\omega} \swarrow & & & & & \\ \uparrow & & & & & & \\ \downarrow & & & & & \\ 0,1] \xrightarrow{\omega} B & \ni \omega(0). & & & & & \\ [0,1] \xrightarrow{\omega} B. \end{array}$$

2. Proof of the path lifting property of p: step 1. Step 1: Prove the existence of a lifting under the extra assumption that the path $g: [0,1] \to S^1$ is missing the rightmost point (1,0) of the circle.

<u>Hint</u>: Set $A := S^1 \setminus \{1\}$ the circle minus that rightmost point. Thus $g([0,1]) \subset A$. We have a homeomorphism $p_1 :]0, 1[\stackrel{\cong}{\to} A$.

Then $p^{-1}(A) = \mathbf{R} \setminus \mathbf{Z}$. Contemplate 10 minutes the following:

where $\psi(\mathbf{t},\mathbf{n}):=\mathbf{t}+\mathbf{n}$, $(\mathbf{t}_0,\mathbf{n}_0):=\psi^{-1}$ (e₀) and $\sigma(\mathbf{t}):=(\mathbf{t},\mathbf{n}_0)$. Show that $\tilde{g}(t):=\psi(\sigma(p_1^{-1}(g(t))))$ is a lift of g along p: $p\tilde{g}=g$.

3. Proof of the path lifting property: remaining steps Step 1bis: Prove the existence of a lifting under the extra assumption that the path $g: [0,1] \to S^1$ is missing the leftmost point (-1,0) of the circle. (Completely analoguous to step (1))

Step 2: show that we can decompose the interval [0, 1] in small subintervals $[t_i, t_{i+1}]$ with $0=t_0 < t_1 < \ldots < t_{N-1} < t_N = 1$ such that each restricted paths g| $[t_i, t_{i+1}]$ misses either (-1,0) or (1,0)

Step 3: Use the previous steps to construct inductively the lifting \tilde{g} and finish the proof

Exercise: complete the details of the proof.

- 4. The homotopy of paths lifting property We say that a map $p: E \rightarrow B$ has the homotopy of path lifting property (or HPL_1) if given
 - a homotopy $\Omega: [0,1] \times [0,1] \to B, (t,u) \mapsto \Omega(t,u)$, and
 - a path $\epsilon^0 \in E$ such that $p(\epsilon^0(u)) = \Omega(0, u)$,

then there exists a homotopy $\tilde{\Omega}: [0,1] \times [0,1] \to E$ such that

- (a) $p\tilde{\Omega} = \Omega$, and
- (b) $\tilde{\omega}(0, u) = \epsilon^0(u)$ for all $u \in [0, 1]$.

$$[0,1] \times \{0\} \xrightarrow{\epsilon^0} E$$

$$\int_{\alpha} \exists \tilde{\alpha} \land \checkmark \downarrow p$$

$$[0,1] \times [0,1] \xrightarrow{\alpha} B.$$

Exercise: prove the above homotopy lifting theorem. <u>Hint Very similar the proof</u> of the path lifting property. Look at Hacher "Algebraic topology", proof of property (c) on page 29 (freely available on the web). Dont be scared by the apparent complexity of Hatcher: have faith and struggle.

2 exercises

2.1 The bundle $S^{3\rightarrow}$ SO(3) whose fibre is a pair of points.

The goal of this exercise is to prove that there exists a bundle

$$p: S^3 \longrightarrow SO(3)$$

whose fibre is ${\bf Z}/2{\bf Z}$ (i.e. a space with two points) and where ${\rm S}^3$ is the 3-dimensional sphere 1

$$S^{3} = \left\{ (a, b, c, d) \in \mathbf{R}^{4} : a^{2} + b^{2} + c^{2} + d^{2} = 1 \right\}.$$

The proof is mostly algebra related to the quaternionic numbers.

We first review quickly the notion of quaternion numbers H. They are defined as the 4-dimensional real vectorspace 2

$$\mathbf{H} := \{a + bi + cj + dk : a, b, c, d \in \}$$

and with a multiplication $\mu_{\mathbf{H}}\colon \mathbf{H}\times\mathbf{H}\to\mathbf{H}$ charaterized as the unique map such that

- $\mu_{\mathbf{H}}$ is R-linear in each variable
- 1 is a unit for the multiplication (on the left and on the right)
- $\mu_{\mathbf{H}}(i,i) = -1, \mu_{\mathbf{H}}(j,j) = -1, \mu_{\mathbf{H}}(k,k) = -1$
- $\mu_{\mathbf{H}}(i,j) = k \, \mu_{\mathbf{H}}(j,k) = i \, \mu_{\mathbf{H}}(k,i) = j \, \lambda,$

It turns out that this unique map is an associative (but not commutative) multiplication. For $w, w' \in \mathbf{H}$ we just write $w \cdot w' := \mu_{\mathbf{H}}(w, w')$.

We define the conjugate of a quaternionic number w=a+bi+cj+dk by $\overline{w} := a - bi - cj - dk$ and its modulus by $|w| = \sqrt{w \cdot \overline{w}} = \sqrt{a^2 + b^2 + c^2 + d^2}$. The inverse, for $w \neq 0$, is defined by $w^{-1} = \overline{w}/|w|^2$.

The 3-sphere can be seen as the space of quaternionic numbers of modulus 1

$$S^3 = \{ w \in \mathbf{H} : |w| = 1 \}$$

Define the pure quaternionic numbers as the subset

$$\mathbf{H}_{\text{pure}} = \{bi + cj + dk : b, c, d \in \mathbf{R}\}$$

¹Actually S³ is itself a group, like SO(3), which is sometimes called SU(2) and p is a continuous homomorphism of topological groups with many important applications, in particular in quantum mecanics: the fact that p is a 2 sheet cover is related to the fact that some particles have spin $\pm 1/2$!!!

 $^{^2\}mathrm{in}$ analgous way as the complex numer can be seen as a 2-dimensional real vector space with a multiplication

which is a 3-dimensional vector space that we will identify to \mathbb{R}^3 .

Fix $z \in S^3$ a quaternionic number of modulus 1 and define

$$R_z \colon \mathbf{H} \to \mathbf{H}, \, w \mapsto z^{-1} \cdot w \cdot z$$

Prove the following facts:

- R_z preserves H_{pure} i.e. $R_z(H_{pure}) \subset H_{pure}$ (hint: check the action on i, j and k independently)
- R_z preserves the modulus: $|R_z(w)| = |w|$
- if we identify in the obvious way \mathbf{H}_{pure} with R^3 then R_z acts on R^3 as an element of SO(3)
- this defines a continuous map $p: S^3 \to SO(3), z \mapsto R_z$
- p(z)=p(-z)
- if p(z)=p(z') then $z=\pm z'$ (to prove this consider the action of R_z on i,j and k.)
- p is surjective (to prove this show that for $z=(\cos(\theta)+\sin(\theta)i)$ then R_z is a rotation of angle 2θ about the i-axis in \mathbf{H}_{pure} , and similarly replacing i by j or k. Note then that any rotation in \mathbb{R}^3 is a composition of rotations along each of the three axes.)
- for each rotation $A \in SO(3)$, $p^{-1}(A)$ is a pair $\{z, -z\}$
- p is a bundle with fibre Z/2Z

2.2 A criterion to prove the simple connectivity of a space.

We say that a space X is <u>simply-connected</u> if it is path-connected (that is, any two points in X can be connected by a path) and if moreover its fundamental group is trivial, $\pi_1(X, x_0)$ is a singleton (for some $x_{0 \in} X$), in other words if every based loop $\omega : [0, 1] \to X$ is based homotopic to the constant loop $[c_{x_0} : [0, 1] \to X, t \mapsto x_0]$.

We will give a criterion to check the simple-connectivity from "pieces" of the space.

1. On the connectivity of a space covered by connected supspaces. Let X be a space and let $A, B \subset X$ be open subsets such that $A \cup B = X$ and such that A and B are path connected and the intersection $A \cap B$ is non empty. Prove that X is path connected.

Deduce from this that any sphere $S^n := \{x \in \mathbf{R}^{n+1} : ||x|| = 1\}$ is path connected for $n \ge 1$.

2. Baby van Kampen Let X be a space and let A,B⊂ X be open subsets such that A∪ B=X. Assume that A and B are simply-connected and that A∩ B is non empty and path connected. Prove that X is simply-connected. (<u>Hint</u>: given a loop ω based at x₀, prove that it can be decompose in finitely many pieces each belonging to either A or B. Extend this pieces by a path connecting there extremities in both ways to x₀ in A∩ B. Show that each of this extended pieces are contractible loops and conclude). Look at Hatcher Lemma 1.15 for a picture and help.

Deduce from this that any sphere $S^n := \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$ is simplyconnected³ for $n \ge 2$.

Where hy does this argument fails to prove that S^1 is simply-connected ?

2.3 Euler characteristic of bundles with finite fibres

Let $E \rightarrow B$ be a bundle whose fibre is a space with exactly k points, for some integer $k \ge 1$.

- Prove that the euler characteristics of E and B are related by the formulas $\chi(E) = k \cdot \chi(B)$ (hint: consider a triangulation of the base B with small enough simplices and lift it to a triangulation of E).
- Check that this formula is correct for the bundle $S^{2\rightarrow} P$ where P is the projective space
- Compute by hand the Euler characteristic of S³ and deduce that of SO(3). Is the result compatible with the Betti numbers of SO(3) computed by Bjorn ?
- Use this to give restrictions to the possible bundles E→ B where both E and B are compact surfaces.
- Challenge: for each case where there is no restriction in the previous item try to build such a bundle between surfaces. For example build a bundle E→ B where E is the torus with 3 holes and B is the torus with 2 holes.

2.4 The unit tangent bundle of the sphere is not trivial

1. Fundamental group of a product. Prove that if $({\rm X},\!{\rm x}_0)$ and $({\rm Y},\!{\rm y}_0)$ are two based spaces then

$$\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0)$$

2. Deduce that $TS^{2\cong} SO(2)$ is not homeorphic to $S^2 S^1$

 $^{^3 \}rm the special case n=3 \ claims that <math display="inline">\rm S^3$ is 3-connected. The famous Poincaré conjecture proved by Perlman in 2002 was the fact that $\rm S^3$ is the only compact 3-manifold without boundary which is simply-connected.

2.5 Conjugacy classes in the fundamental group

Consider the set $[S^{1,X}]$ of **unbased** homotopy classes of unbased loops in X. Comsider the obvious map

$$\Phi \colon \pi_1(X, x_0) \to [S^1, X]$$

sendic a based homotopy class to its unbased homotopy class. Prove that if X is path connected then Φ is surjective and two elements $[\alpha], [\beta] \in \pi_1(X, x_0)$ are sent to the same unbased homotopy class if and only if $[\alpha]$ and $[\beta]$ are conjugate in $\pi_1(X, x_0)$ in other words if and only if there exits $[\omega]$ such that $[\alpha] = [\omega]^{-1} [\beta] [\omega]$. <u>Hint</u> exercise 6 of Hatcher p.38

Deduce from this that $[S^{1,SO}(3)] = Z/2$.