Exercises for Day \#2 (Dugger)

1. Go back and do all the exercises for day \#1 (you should be able to do them now!)
2. Compute the Betti numbers for every space you can think of, using both the fields $\mathbb{R}, \mathbb{Z} / 2$, and $\mathbb{Z} / 3$ for coefficients. At least do all the spaces X and $X \times S^{1}$ where X is a compact 2-manifold. Also do the space Y obtained from a torus T by collapsing a circle, to give a "bent banana".

The following exercises provide one approach to the classification of all compact 2-manifolds. The idea is to replace the topological problem with a combinatorial one, by encoding the cut-and-paste rules into algebraic formulas.

Suppose one has a polygon with labelled edges, representing a quotient space. Assume every edge is labelled, and every label occurs exactly twice. Such a quotient space is a 2-dimensional manifold.
If we have a diagram such as

we will represent this by the string " $a b a c^{-1} b^{-1} c$ ". Notice that we could also represent it by the string " b^{-1} cabac ${ }^{-1}$ ", as well as others. When talking about these strings I will use letters x, y, z to stand for one symbol (like a or a^{-1}) and letters A, B, C to stand for a block of symbols (like $a b a$, or $c^{-1} b^{-1}$).
If B is a block $x_{1} x_{2} \cdots x_{k}$, let B^{-1} denote the block $x_{k}^{-1} x_{k-1}^{-1} \cdots x_{1}^{-1}$. Our convention is that $\left(x^{-1}\right)^{-1}=x$, so that for instance if B is the block $a b c^{-1}$ then B^{-1} is $c b^{-1} a^{-1}$.

We'll say that two strings are 'equivalent' if the corresponding quotient spaces are homeomorphic. Here are some basic cases of equivalent strings:
(i) The strings $x_{1} x_{2} \ldots x_{n}$ and $x_{n} x_{1} x_{2} \ldots x_{n-1}$ are equivalent.
(ii) If you insert " $x x^{-1}$ " or " $x^{-1} x$ " into any string which doesn't have an x, you get an equivalent string. [Taking this and working backwards, if you remove either " $x x^{-1}$ " or " $x^{-1} x$ " from a given string then you get an equivalent one].
Here is a picture explaining where (ii) comes from:

(iii) The string $A B C B D$ is equivalent to $A x C x D$, assuming the letter x doesn't appear in A, C, or D. (That is, if a block occurs twice then we can rename the whole block to just one letter). Likewise, the string $A B C B^{-1} D$ is equivalent to $A y C y^{-1} D$.

Based on all this, do the following exercises:
3. Using (i)-(iii), explain why a string $A C$ is equivalent to both $A B B^{-1} C$ and $A B^{-1} B C$, assuming that none of the letters in B appears in $A C$.
4. Use a topological cut-and-paste argument to prove that the string $A B x C x D$ is equivalent to $A y C B^{-1} y D$. Start with the diagram below:

$$
\cong \quad ? ? ? ? ?
$$

5. Again using topological cut-and-paste arguments, prove that $A x B C x D$ is equivalent to $A y C y B^{-1} D$. Also prove that $A x B C x^{-1} D$ is equivalent to $A y C B y^{-1} D$, and $A B x C x^{-1} D$ is equivalent to $A y C y^{-1} B D$.

We can summarize the rules you've established in questions $3-5$ as follows:
(1) $A x B C x D \sim A x C x B^{-1} D$
(2) $A B x C x D \sim A x C B^{-1} x D$
(3) $A x B C x^{-1} D \sim A x C B x^{-1} D$
(4) $A B x C x^{-1} D \sim A x C x^{-1} B D$.
[Note that I am changing y 's to x 's in the strings on the right-hand-side. This is okay by (iii) -I can always rename a letter as something else].
The rules can be paraphrased as follows:

- If x occurs twice in a string (without any inverses on it), then a block next to the first x can be moved to a block on the same side of the second x, but the new block has to be inverted. [This is Rules (1) and (2).]
- If x and x^{-1} occur in a string, then a block next to the first one can be moved to a block on the other side of the second one, and the block doesn't get inverted. [Rules (iii) and (iv)].

As an example of using these rules, we can write

$$
a b a c b^{-1} d d c \sim a b a c d b d c \sim c d b d a^{-1} b^{-1} a^{-1} c \sim c d a b d a^{-1} b^{-1} c
$$

For the first one we have used Rule (2) with $A=a b a c, B=b^{-1}, C=[]$ (the empty block), $D=c$, and $x=d$. For the second equivalence we have used Rule (2) again, this time with $A=[], B=a b a, C=d b d, D=[]$, and $x=c$. Finally, in the third equivalence we have used Rule (4) (in reverse) with $A=c d, B=a^{-1}, x=b$, $C=d a^{-1}, D=c$.
6. Using the rules (i)-(iii) and (1)-(4) established above, prove the following equivalences:
(a) $a b a b \sim x x$.
(b) $a b a b^{-1} \sim x x y y$ (this shows $K \cong \mathbb{R} P^{2} \# \mathbb{R} P^{2}$).
(c) aabcb ${ }^{-1} c^{-1} \sim x x y y z z$ (this shows $\mathbb{R} P^{2} \# T \cong \mathbb{R} P^{2} \# \mathbb{R} P^{2} \# \mathbb{R} P^{2}$).
[Part (c) can be tricky. Here is one possible approach. First, start with $x x y y$ and write down some other four element strings which are equivalent to this one. A list of four or five of these will be useful to you. Second, go back to $a a b c b^{-1} c^{-1}$ and start by changing the $a a b c$ block to $a c^{-1} b^{-1} a$. Now try to move the two c^{-1} 's together.]
7. In this problem you will develop the techniques to prove that every 2-dimensional manifold is homeomorphic to one in the following list:

$$
\begin{equation*}
S^{2}, \quad T, \quad T \# T, \quad T \# T \# T, \quad \ldots, \quad \mathbb{R} P^{2}, \quad \mathbb{R} P^{2} \# \mathbb{R} P^{2}, \quad \mathbb{R} P^{2} \# \mathbb{R} P^{2} \# \mathbb{R} P^{2}, \quad \cdots \tag{*}
\end{equation*}
$$

Note that S^{2} is represented by the string $x x^{-1}$ (think about why), which is equivalent to the empty string.
Let S be a string of letters and their 'inverses', in which each letter appears twice (meaning either twice as itself or once as x and once as x^{-1}). Use (i)-(iii) and (1)-(4) to do the following.
(a) Prove that if a letter x appears twice as itself, then S is equivalent to a string in which $x x$ appears as the beginning. [That is, prove that $A x B x C \sim x x D$, for some block D.]
(b) Prove that a string of the form $A s C t D s^{-1} E t^{-1}$ is equivalent to one which starts out as $s t s^{-1} t^{-1}$. [Hint: First move the s out front. Then move the s^{-1} and t^{-1} together, then move so that you have $t s^{-1} t^{-1}$, then move so that you have $s t s^{-1} t^{-1}$.]
(c) Let M be the 2-dimensional manifold corresponding to the string

$$
a b c a^{-1} b e f e^{-1} c^{-1} f
$$

Determine which of the manifolds in $\left(^{*}\right)$ is homeomorphic to M. [Start by doing what you did in (a), and one by one move all the double letters to the beginning.]
(d) Repeat part (c) for the manifold corresponding to the string

$$
d b c e d^{-1} c^{-1} e^{-1} b^{-1}
$$

(e) Explain why any string of the form

$$
a_{1} a_{1} a_{2} a_{2} \ldots a_{k} a_{k} s_{1} t_{1} s_{1}^{-1} t_{1}^{-1} \ldots s_{r} t_{r} s_{r}^{-1} t_{r}^{-1}
$$

in which $k \geq 1$ is equivalent to one of the form

$$
b_{1} b_{1} b_{2} b_{2} \ldots b_{n} b_{n}
$$

(f) Think about how you would prove that any string is equivalent to either one of the form $a_{1} a_{1} a_{2} a_{2} \ldots a_{k} a_{k}$ or $s_{1} t_{1} s_{1}^{-1} t_{1}^{-1} \ldots s_{r} t_{r} s_{r}^{-1} t_{r}^{-1}$.

