EXERCISES: Examples and non examples of
 immersions in the plane

For each of the following functions $f: \mathbf{R} \rightarrow \mathbf{R}^{2}$ determine whether it is a \mathcal{C}^{1}-immersion. Draw the corrseponding curve in the plane.

- $f(\mathrm{t})=\left(\mathrm{t}, \mathrm{t}^{2}\right)$
- $f(t)=(\cos (2 \pi t), \sin (2 \pi t))$
- $f(t)=\left(t^{3, t^{2}}\right)$
- $\mathrm{f}(\mathrm{t})=\left(\mathrm{t}, \sqrt[3]{\left\{t^{2}\right\}}\right)$
- $f(t)=(\sin (2 \pi t), \sin (4 \pi t))$
- $f(t)=\cos (6 \pi t) \cdot(\cos (2 \pi t), \sin (2 \pi t))$

Prove that there exists no immersion of a closed curve in the real line.

EXERCISES: on the degree of a self map of the
 circle

- Prove that if a self map of the circle, $\mathrm{g}: \mathrm{S}^{1} \rightarrow \mathrm{~S}^{1}$ is not surjective then it is homotopic to a constant map.
- Find and prove a formula that de degree of the composition of two self-maps of the circle in terms of the degrees of each of the map.
- Prove that the degree of a map is well defined and does not depend on the choice of the lifting.
- Complete the details of the proof of the existence of a lifting along p of path in the circle. After that do the same for the general homotopy lifting theorem for $\mathrm{p}: \mathrm{R} \rightarrow \mathrm{S}^{1}$.
- Prove that if two self maps of the circle have the same degree then they are homotopic. Hint Assume first that the two maps have the same value at $(0,1)$ and show that they liftings can be taken with same origins and same endpoint. Show that there is ac Pascal Lambrechts Lisbon school July 2017: eversion of the <2017-07-13 Thu> 22/24

Challenges

- Spot a mistake in Whitney's paper.

Hint: with his definition of deformation on p. 278 (not same as ours), the proof of the first half of his theorem 1 is wrong. Find an explicit counterexample to his theorem 1 (with his definition). Fix his definition to make theorem 1 correct.

- Consider closed regular curves $f:[0,1] \rightarrow S^{2}$ in the 2 -sphere $S^{2}=\left\{(x, y, z) \in \mathbf{R}^{2}: x^{2}+y^{2}+z^{2}=1\right\}$ instead of the plane.
(1) Show that the immersion $f_{1}: t \mapsto(\cos (2 \pi t), \sin (2 \pi t), 0)$
traveling the equator in one direction is regularly homotopic to the one traveling the equator in the other direction, $f_{-1}: t \mapsto(\cos (2 \pi t),-\sin (2 \pi t), 0)$
(2) Show that f_{1} is regularly homotopic to the immersion $f_{3}: t \mapsto(\cos (6 \pi t), \sin (6 \pi t), 0)$ traveling the equator 3 times
(3) Is f_{1} regularly homotopic to the immersion
$f_{2}: t \mapsto(\cos (4 \pi t), \sin (4 \pi t), 0)$ traveling the equator 2 times ?

Further challenges

- Prove the magic formula of Whitney in the special case when they are no self-intersections. This is the "Umlaufsatz of Hopf". Hint define $\psi\left(t_{1}, t_{2}\right)=\left(f\left(t_{2}\right)-f\left(t_{1}\right)\right) / \operatorname{dist}\left(t_{1}, t_{2}\right)$ on the half-open solid triangle $0 \leq t_{1}<t_{2} \leq 1$ and extend continuously on the boundary $t_{1}=t_{2}$ by the derivative $f^{\prime}\left(t_{1}\right)$. Look at http://www.mathematik.com/Hopf/ for a pictorial proof.

