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Central problem in algebraic topology: compute πi(S
n)
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π<k(S
k) πk(S

k) π>k(S
k)
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Values stabilize along diagonals:

���� �� � �����	 ���	 for 
 ≫ 0
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Stable homotopy groups:  

��

 ≔ lim

�→�
������

�� (finite abelian groups for � � 0)

Primary decomposition:

��

 � ⨁ ���


�����	����� e.g.: ��

 �  �! �  "⊕ �
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• Each dot represents a factor of 2, vertical lines indicate additive extensions

e.g.: ���

���� �  ", ��"


���� �  �⨁ �
• Vertical arrangement of dots is arbitrary, but meant to suggest patterns
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(πn
s)(5)

n

11



Chromatic theory

• (πk
s)(p) is built out of chromatic layers

• The elements of the nth layer fit into periodic families (vn – periodicity)

• Important such families are the “Greek letter families” (α, β, γ...)

• The generic period in the nth chromatic layer is 2(pn-1)

• It is likely no human will know all of the stable homotopy groups of 
spheres, but it is possible to completely compute a chromatic layer

v1-periodic: completely understood (α – family)
v2-periodic: subject of recent work (β – family)
v3 and higher: virtually unknown (γ – family and higher)
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(πn
s)(5)

v1 - periodic layer

consists solely of α-family

period = 2(p-1) = 8
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(πn
s)(5)

v2 - periodic layer

= β−family

period = 2(p2 - 1) = 48
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(πn
s)(5)

period = 2(p3 - 1) = 248

v3 - periodic layer

= γ−family

15



Cohomology theories

• Use homology/cohomology to study homotopy

• A cohomology theory is a contravariant functor

$: {Topological spaces} {graded ab groups}

% 			$∗�%�

• Homotopy invariant:' ≃ ) ⇒ $ ' � $�)�

• Excision: + � % ∪ - (CW complexes)

⋯ → $∗ + → $∗ % ⊕ $∗ - → $∗ % ∩ - →
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Cohomology theories

• Cohomology theories are representable by spectra:

– A sequence of pointed spaces {$�}so that $� % = [%, $�].
– Consequence of excision:   $� ≃ Ω$��	

• Homotopy groups:

�� $ ≔ ���� $� = $6�(78)

(Note, in the above, n may be negative)
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Cohomology theories

• Example: singular cohomology
– $� % = :�(%)
– :� = ;(ℤ, �)
– �� : = <ℤ, � = 0,

0, 				else.

• Example: K-theory
– ;@ % = ; % = Grothendieck group of ℂ-vector bundles over %.
– ;�� = BC × ℤ,          ;���	 = C.
– ��; =	 <ℤ, 	�	even0, 			�	odd
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Hurewicz Homomorphism

• A spectrum E is a (commutative) ring spectrum if its 

associated cohomology theory has “cup products”

$∗(%) is a graded commutative ring

• Such spectra have a Hurewicz homomorphism:

ℎJ: �∗
 → �∗$

Example: : detects �@
 = ℤ.
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Example: KO (real K-theory)
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Chern classes and formal groups

• A ring spectrum E is said to be complex orientable if complex vector 

bundles are orientable in E-cohomology (have a Thom class)

• If E is complex orientable, it has Chern classes

• The formal group is the formal power series

defined by the relation on line bundles:
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Chern classes and formal groups

• Example:  $ = :
LJ M, N = M + N (additive)

• Example: $ = ;
LJ M, N = M + N + MN (multiplicative)

(power series expansion of multiplication near 1 in the 
multiplicative group P�)
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Topological modular forms and elliptic 

cohomology: the rough idea

Multiplicative group

Formal nbhd

of 1

Formal nbhd

of identity

Elliptic Curve

K-theory:

Elliptic cohomology:
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Topological modular forms and elliptic 

cohomology: the rough idea

• A modular form f associates to each elliptic curve a number

• The cohomology theory of Topological Modular Forms (TMF) consists of 

the following association:  a cohomology class

associates to every elliptic curve C a cohomology class in its associated 

elliptic cohomology theory:
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Elliptic Curves and modular forms: 

a brief review

• An elliptic curve over a ring Q is a genus 1 curve over Q (with a 
marked point)

• An elliptic curve over ℂ is always of the form

ℂ/Λ
for some lattice Λ ⊂ ℂ.

• Elliptic curves are groups 

(with identity the marked point)

• An elliptic curve  has an associated formal group

LU M, N ∈ Q M, N
(obtained by taking power series expansion of multiplication law at the 
identity)
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Elliptic Curves and modular forms: 

a brief review

A modular form (of weight k) over R is a rule ' which assigns to 
each tuple (W, �, QX) with

– QX = an Q-algebra
– W = an elliptic curve over Q′
– � = a non-zero tangent vector at the identity of W

an element:  

' W, � ∈ Q′
such that:

' W, _� = _�' W, � ,   _ ∈ (QX)× 

Let `� a denote the space of modular forms of weight 
 over Q
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Elliptic Curves and modular forms: 

a brief review

“High-brow perspective”: sections of a line bundle

`� ℤ = :@ ℳ�cc; e⊗�
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Elliptic Curves and modular forms: 

a brief review

“Low-brow perspective”: functions on the upper half-plane

Over the complex numbers, every elliptic curve is isomorphic to

Wg = ℂ
ℤ�gℤ h ∈ ℋ
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Elliptic Curves and modular forms: 

a brief review

If Q ⊆ ℂ, a modular form ' ∈ `� a gives a holomorphic function on ℋ

' h = '(Wg, 1)

We therefore have: 
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Elliptic Curves and modular forms: 

a brief review

Taking the matrix:

we have 

Thus f admits a Fourier expansion (q expansion)

We also require an = 0 for n < 0. (f defined over R => an ∈ R)
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Elliptic Curves and modular forms: 

a brief review

Example: Eisenstein series:  E2k ∈ [M2k]Q

Example:
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Elliptic Cohomology theories

Def: An Elliptic spectrum is a tuple

($l , W, m)

Where:

• $l is a commutative ring spectrum

• �∗$ = Q[n, n6	], n = 2, Q = �@$.
• W is an elliptic curve over Q.
• m: Ll → LJ is an isomorphism of formal groups
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Topological Modular Forms

Unfortunately, not every elliptic curve has an associated 

elliptic cohomology theory.  However…

Thm (Goerss-Hopkins-Miller)

There exists a sheaf of commutative ring spectra p�cc on the 

etale site of ℳ�cc .

This theorem functorially associates elliptic cohomology

theories to elliptic curves which are etale over ℳ�cc .
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Topological Modular Forms

• Should think of p�cc as a topological version of the sheaf

e⊗∗ = q e⊗�
�∈ℤ

• Define

r`L	 ≔ Γp�cc

• Analogous to ∗̀ ℤ = Γe⊗∗

TMF is the “mother of all elliptic cohomology theories”

35



Topological Modular Forms

• There is a descent spectral sequence:

:
 ℳ�cc; e⊗t ⇒ ��t6
r`L

• Edge homomorphism:

���r`L → `� ℤ
(rationally this is an iso)

• �∗r`L has a bunch of 2 and 3-torsion, and the descent 
spectral sequence is highly non-trivial at these primes.
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:
 ℳ�cc; e⊗t ⇒ ��t6
r`LThe decent spectral sequence for TMF

(p=2)
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Recall: the 2-torsion in real K-theory detects 

interesting classes in �∗
 via Hurewicz
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Hurewicz image of TMF (p = 2)
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Work in progress: (B-Hopkins-Mahowald)

The complete Hurewicz image:

The decent spectral sequence for TMF

(p=2) 41



Hurewicz image of TMF (p = 3)
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Fundamental periods: �	-periodicity
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(πn
s)(5)

period = 2(p-1) = 8

Fundamental periods: �	-periodicity

Similarly for p > 5: the fundamental �	-period is 2(p-1) 44



Fundamental periods: �	-periodicity
Anomaly at p=2: period = 8 v 2(7 w 1)
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Fundamental periods: �	-periodicity
Anomaly at p=2: period = 8 v 2(7 w 1)

This anomaly is “explained” by the 8-fold 

periodicity of KO at the prime 2:

�∗;x = ℤ		ℤ� ℤ� 0	ℤ 0 0 0 ℤ ℤ� ℤ� 0	ℤ 0 0 0 …  
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(πn
s)(5)

period = 2(p2 - 1) = 48

Fundamental periods: ��-periodicity

Similarly for 7 � 5: the fundamental ��-period is 2(7� w 1) 47



Fundamental periods: ��-periodicity

�∗r`L(�) is 144-periodic

Theorem: (B-Pemmaraju)

The fundamental period for ��-periodic homotopy at 

the prime 3 is 144.
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Fundamental periods: ��-periodicity
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Fundamental periods: ��-periodicity

�∗r`L(�) is 192-periodic

Theorem: (B-Hill-Hopkins-Mahowald)

The fundamental period for ��-periodic homotopy at 

the prime 2 is 192.
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Fundamental periods: ��-periodicity
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J-spectrum and m-family

Fix ℓ to be a prime which topologically generates (ℤ�∧)×	
((ℤ�∧)×/{±1} if p = 2)

Define } to be the homotopy fiber

The J-theory Hurewicz homomorphism detects much more.

�∗
 → �∗}
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= detected by KO Hurewicz

= detected by J Hurewicz

J detects all �	-periodic homotopy
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(πn
s)(5)

= detected by J Hurewicz
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Greek letter notation: the m-family
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Relationship to Bernoulli numbers

Key points

• ~ℓ w 1 acts by multiplication by ℓ�� w 1 on �!�;x = ℤ
• Thm(Lipshitz-Sylvester) 

(ℓ�w1) ��� is p-integral, and not p-divisible if 7 w 1 |
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An analog of J for TMF:

The �(ℓ)-theory Hurewicz homomorphism detects much more.

�∗
 → �∗�(ℓ)

NB: r`L@ ℓ is a version of r`L for the congruence subgroup Γ@ ℓ < ���(ℤ)
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= detected by r`L Hurewicz

= detected by �(ℓ) Hurewicz
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(πn
s)(5)

= detected by �(ℓ) Hurewicz
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(πn
s)(5)
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�	-torsion in the ��-family
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Greek Letter Names (Miller-Ravenel-Wilson)
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�-family notation
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�-elements and congruences of modular forms

Theorem (B)

Let 7 � 5.  There is a bijective correspondence:
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Geometry of TMF: survey

• Question: What is the geometric nature of TMF?

• E.g. K-theory cocycles are given by vector bundles, 
what gives a TMF-cocycle?

• Beginning with Witten and Segal, and elaborated on 
by Stolz-Teichner, et. al., the belief is that a TMF-
cocycle is given by a “conformal field theory”.  Much 
is conjectural.

• Lurie shows that TMF has an algebro-geometric 
significance, as the “derived” moduli space of elliptic 
curves.
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Genera

Let � be a suitable group over x, and	let

Ω�� =
�wmanifolds	with	�wstable	normal	structure

cobordism

An Q∗-valued genus is a graded ring homomorphism

Φ: Ω∗� → Q∗
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Examples of genera

• Cardinality of 0-manifolds (mod 2)

Ω∗� → ℤ�

• Signed cardinality of oriented 0-manifolds

Ω∗�� → ℤ

• The ��-genus

Ω∗
���� → �∗;x

The ��-genus of a spin manifold is the index of the Dirac operator 
acting on the sections of the associated spinor bundle

These all arise from maps of commutative ring spectra

`x → :ℤ�

`�x → :ℤ

`�7�� → ;x
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Witten Genus

Witten produced a genus

W: Ω∗
�t���� → ∗̀ ℤ

(�8���) = 7-connected cover of x)

The idea: a string structure is a vanishing of the  
obstruction to quantizing a supersymmetric conformal 
field theory on a manifold.  The partition function of 
the resulting QFT associates a number to every elliptic 
curve – a modular form!

Kevin Costello has a renormalization framework that actually makes 
some version of this statement mathematically precise 69



Witten Genus

Witten produced a genus

W: Ω∗
�t���� → ∗̀ ℤ

(�8���) = 7-connected cover of x)

Theorem(Ando-Hopkins-Rezk)

The Witten genus refines to a map of ring spectra

�: `�8���) → r`L
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“Hierarchy of genera”
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Derived Algebraic Geometry (Lurie’s approach)

A derived scheme consists of

• An ordinary scheme %, p�
• A sheaf p� of commutative ring spectra such that 

�@ p� = p�
with a certain additional local condition…

A derived elliptic curve is a derived abelian group 

scheme whose underlying scheme is an elliptic curve.
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Derived Algebraic Geometry (Lurie’s approach)

Let $ be a ring spectrum.  An orientation of a derived 

elliptic curve W/$	is an isomorphism

Spf($ℂ��) ≃→ W�

Theorem(Lurie)

The moduli problem of oriented derived elliptic curves 

is representable.  The representing Deligne-Mumford 

stack is 

(ℳ�cc , p�cc)
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Advantages to the DAG approach

• Gives a “pure thought” construction of TMF –

Goerss-Hopkins-Miller rely on obstruction theory

• Gives a homotopically unique construction of TMF –

the moduli space of solutions to the Goerss-Hopkins-

Miller obstruction problem is not contractible (but 

does have one component).

• Generalizes to give equivariant TMF for compact Lie 

groups, a “genuine” equivariant theory in the sense 

of Lewis-May-Steinberger
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