Deformed special geometry: the Hesse potential and the holomorphic anomaly equation

Gabriel Lopes Cardoso

The String Theory Universe 2013

with Bernard de Wit and Swapna Mahapatra, to appear

Introduction

This talk is about:

deformations of special geometry

and the relation with topological string theory.

Central role: the Hesse potential of real special geometry

Introduction

• N = 2 Wilsonian action: in the presence of Weyl² terms, encoded in

$$F(Y,\Upsilon) = \sum_{g=0}^{\infty} \Upsilon^g F^{(g)}(Y)$$

 Y^I complex scalar fields , $\Upsilon \sim \text{Weyl}^2$.

Duality (symplectic) transformations act on full vector

$$(Y^I, F_I(Y, \Upsilon))$$
 , $F_I = \frac{\partial F(Y, \Upsilon)}{\partial Y^I}$

Topological string theory: perturbative free energy

$$F(\mathcal{Y},\lambda) = \sum_{g=0}^{\infty} \lambda^{g-1} F^{(g)}(\mathcal{Y})$$

Duality (symplectic) transformations act on $(\mathcal{Y}^{I}, F_{I}^{(0)}(\mathcal{Y}))$. $F^{(g)}(\mathcal{Y}) \quad (g \geq 1)$ transform as functions.

Introduction

- Both expansions defined in terms of different variables.
- In addition: both LEEA and topological string receive non-holomorphic corrections.

Proposal:

LEEA and TST related through the Hesse potential of real special geometry, $H(\phi, \chi)$.

- (ϕ, χ) : same type of variables as those of TST.
- TST coincides with part of $H(\phi, \chi)$.
- $H(\phi, \chi)$ is Legendre transform of $Im F(Y, \Upsilon)$ (LEEA).
- Includes non-holomorphic corrections: consistent deformation of special geometry.

Deformed special geometry

EA-side: consistent non-holomorphic extension

$$F(Y,\Upsilon) \longrightarrow F = F(Y,\Upsilon) + 2i \Omega(Y, \overline{Y}, \Upsilon, \overline{\Upsilon})$$

where Ω is real.

Duality (symplectic) transformations act on full vector

$$(Y^I, F_I)$$
 , $F_I = \frac{\partial F}{\partial Y^I}$

- scalar manifold: intrinsic torsion
 (with Alvaro Osorio, arXiv: arXiv:1212.4364)
- Specific deformation yields holomorphic anomaly equation of TST.

Deformation of special geometry

Classical mechanics system: $n \text{ dof } i = 1, \dots n$

coordinates ϕ^i , velocities $\dot{\phi}^i$, Lagrangian $L(\phi, \dot{\phi})$

Hamiltonian $H(\phi, \pi) = \dot{\phi}^i \pi_i - L(\phi, \dot{\phi})$. Patch of phase space (ϕ^i, π_i) .

Complex coordinates $z^i = \frac{1}{2} \left(\phi^i + i \dot{\phi}^i \right)$.

Theorem: ∃ function

$$F(z,\bar{z}) = F^{(0)}(z) + 2i \frac{\Omega(z,\bar{z})}{\Omega(z,\bar{z})}$$
, Ω real

$$\begin{pmatrix} \phi^i \\ \pi_i \end{pmatrix} = 2 \operatorname{Re} \, \begin{pmatrix} z^i \\ F_i(z,\bar{z}) \end{pmatrix} \quad , \quad F_i = \frac{\partial F(z,\bar{z})}{\partial z^i}$$

Equivalence relation: $F(z,\bar{z}) \rightarrow F(z,\bar{z}) + \bar{g}(\bar{z})$

$$F^{(0)}(z)
ightarrow F^{(0)}(z) + g(z) \quad , \quad \Omega
ightarrow \Omega - \operatorname{Im}_{\mathcal{O}} g(z)$$

Deformation of special geometry

 (z^i, F_i) complexification of phase space coordinates (ϕ^i, π_i) : canonical transformations = $Sp(2n, \mathbb{R})$ transformations

$$\begin{pmatrix} z^i \\ F_i(z,\bar{z}) \end{pmatrix} \rightarrow \begin{pmatrix} \tilde{z}^i \\ \tilde{F}_i(\tilde{z},\bar{\tilde{z}}) \end{pmatrix} = \begin{pmatrix} U^i_j & Z^{ij} \\ W_{ij} & V^j_i \end{pmatrix} \begin{pmatrix} z^j \\ F_j(z,\bar{z}) \end{pmatrix}$$

Transformation is integrable: $F(z,\bar{z}) \rightarrow \tilde{F}(\tilde{z},\bar{\tilde{z}})$.

$$L = 4 [\operatorname{Im} F - \Omega]$$

$$H = -i \left(z^{i} \overline{F}_{\overline{\imath}} - \overline{z}^{\overline{\imath}} F_{i} \right) - 2 \left(2\Omega - z^{i} \Omega_{i} - \overline{z}^{\overline{\imath}} \Omega_{\overline{\imath}} \right)$$

$$-4 \operatorname{Im} \left[F^{(0)} - \frac{1}{2} z^{i} F_{i}^{(0)} \right]$$

H is a symplectic function: $\tilde{H}(\tilde{\phi}, \tilde{\pi}) = H(\phi, \pi)$.

When $\Omega(z,\bar{z}) = w(z) + \bar{w}(\bar{z})$: $F(z) = F^{(0)}(z) + 2i w(z)$

Evaluating the Hesse potential

In N = 2 supergravity, H is the Hesse potential.

Hesse potential $H(\phi, \pi)$ is the Legendre transform of Im $F - \Omega$, where

$$F(Y, \bar{Y}, \Upsilon, \bar{\Upsilon}) = F^{(0)}(Y) + 2i\Omega(Y, \bar{Y}, \Upsilon, \bar{\Upsilon})$$

New variables:

$$\begin{pmatrix} \phi^{l} \\ \pi_{l} \end{pmatrix} = 2 \operatorname{Re} \begin{pmatrix} Y^{l} \\ F_{l}(Y, \bar{Y}, \Upsilon, \bar{\Upsilon}) \end{pmatrix} = 2 \operatorname{Re} \begin{pmatrix} \mathcal{Y}^{l} \\ F_{l}^{(0)}(\mathcal{Y}) \end{pmatrix}$$

where

$$\mathcal{Y}^{I} = Y^{I} + \Delta Y^{I}(\Omega)$$
, $\Omega \neq 0$
 $\mathcal{Y}^{I} = Y^{I}$, $\Omega = 0$.

Evaluate H in terms of $\mathcal{Y}^I \Rightarrow$ power series expansion in $\Omega(\mathcal{Y}, \bar{\mathcal{Y}}, \Upsilon, \bar{\Upsilon})$.

Evaluating the Hesse potential

The Hesse potential transforms as a function under symplectic transformations: $\tilde{H}(\tilde{\phi}, \tilde{\pi}) = H(\phi, \pi)$.

- H as series of symplectic functions, $H = \sum_{k=0}^{\infty} H^{(k)}(\mathcal{Y}, \bar{\mathcal{Y}}, \Upsilon, \bar{\Upsilon})$
- $H^{(0)} = -i \left[\bar{\mathcal{Y}}^I F_I^{(0)}(\mathcal{Y}) \text{c.c.} \right]$
- $H^{(1)}$ is the only one that contains $\Omega(\mathcal{Y}, \bar{\mathcal{Y}}, \Upsilon, \bar{\Upsilon})$ (the other $H^{(k)}$ contain derivatives thereof)

$$egin{aligned} H^{(1)} &= 4\Omega - 4N^{IJ}\left(\Omega_I\Omega_J + \Omega_{ar{I}}\Omega_{ar{J}}
ight) + \mathcal{O}(\Omega^3) \ N_{IJ} &= -i\left(F_{IJ}^{(0)} - ar{F}_{ar{I}J}^{(0)}
ight) \end{aligned}$$

Diagrammatic expansion in terms of tree graphs. Propagator N_{IJ} .

ullet $N^{IJ}
ightarrow \dots (N-i\mathcal{Z})^{IJ}$

$$\tilde{\Omega}(\tilde{\mathcal{Y}}, \bar{\tilde{\mathcal{Y}}}) = \Omega - \mathrm{i} \left(\mathcal{Z}^{IJ} \Omega_I \Omega_J - \bar{\mathcal{Z}}^{\bar{I}\bar{J}} \Omega_{\bar{I}} \Omega_{\bar{J}} \right) + \mathcal{O}(\Omega^3)$$

The holomorphic anomaly equation

So far, general. Now pick

- $\bullet \ \Upsilon \in \mathbb{R},$
- Ω(𝒴, ȳ, Υ) = Υ (w(𝒴) + w̄(ȳ) + α ln det[N_M]) + 𝒪(Υ²)

 — function at 𝒪(Υ). At higher order:
 diagrammatic expansion in terms of connected loop graphs.
- Expanding in powers of Υ:

$$H^{(1)} = \sum_{g=1}^{\infty} \Upsilon^g \left[F^{(g)}(\mathcal{Y}, \bar{\mathcal{Y}}) + \text{h.c.} \right]$$

 $F^{(g)}$ are symplectic functions that satisfy the holomorphic anomaly equation of topological string theory $(g \ge 2)$

$$\partial_{\bar{I}}F^{(g)} = i\,\bar{F}^{(0)}_{\bar{I}\bar{P}\bar{Q}}N^{PJ}N^{QK}\left(2\alpha\,D_{J}\partial_{K}F^{(g-1)} + \sum_{\substack{r=1\\ p \neq 1}}^{g-1}\partial_{J}F^{(r)}\partial_{K}F^{(g-r)}\right)$$

Conclusions and Outlook

- Consistent deformation of special geometry ←→ perturbative TST (holomorphic anomaly equation)
- perturbative TST captured by H⁽⁰⁾ and H⁽¹⁾ (part of Hesse potential)
 (higher H^(k) are derived functions)
- Power series in Υ . Not convergent. Need to incorporate $e^{-1/\Upsilon}$ effects \longleftrightarrow non-perturbative completion of TST.
- BH partition function

$$Z(\phi,\chi) = \sum_{q,p} d(q,p) e^{\pi[q\phi - p\chi]} \sim e^{H(\phi,\chi)} = e^{H^{0)} + H^{(1)} + \dots}$$

