Exercise 1 – Renormalization in scalar ϕ^3 theory in $\mathbb{R}^{1,3}$

Consider the Lagrangian

$$L = -\frac{1}{2}\,\phi\Box\phi + \frac{g}{3!}\,\phi^3 \ .$$

Compute the one-loop correction

$$\mathcal{M}_{1-loop} = (ig)^2 \frac{i}{p^2} \, \tilde{\mathcal{M}} \, \frac{i}{p^2}$$

to the tree-level ϕ -propagator $i\mathcal{M}_{tree} = (ig)^2 i/p^2$, where

$$i\tilde{\mathcal{M}} \equiv \frac{1}{2}(ig)^2 \int \frac{d^4k}{(2\pi)^4} \frac{i}{(k-p)^2 + i\epsilon} \frac{i}{k^2 + i\epsilon} , \quad \epsilon > 0.$$

Proceed as follows.

a) Let $A, B \in \mathbb{C} \setminus \{0\}$. Using

$$\frac{1}{AB} = \int_0^1 dx \, \frac{1}{[A + (B - A)x]^2} \; ,$$

show that

$$i\tilde{\mathcal{M}} = \frac{1}{2}g^2 \int \frac{d^4k}{(2\pi)^4} \int_0^1 dx \, \frac{1}{(k^2 - \Delta + i\varepsilon)^2} \,,$$

where $\Delta = -p^2x(1-x)$.

b) Take $p^2 < 0$, so that $\Delta > 0$ for 0 < x < 1. On the next assignment you will be asked to prove the following relation,

$$\lim_{\varepsilon \to 0} \left(\int \frac{d^4k}{(2\pi)^4} \frac{2}{(k^2 - \Delta + i\varepsilon)^3} \right) = -\frac{i}{16\pi^2 \Delta} \ .$$

Integrating this with respect to Δ gives

$$-\frac{i}{16\pi^2} \ln \frac{\Delta}{\Lambda^2} \equiv I(\Delta) ,$$

where Λ is an integration constant that plays the role of an UV-cutoff. Using this result, we regularize the integral

$$\int \frac{d^4k}{(2\pi)^4} \frac{1}{(k^2 - \Delta + i\varepsilon)^2}$$

by introducing the cutoff Λ , to obtain

$$\int_{regularized} \frac{d^4k}{(2\pi)^4} \frac{1}{(k^2 - \Delta + i\varepsilon)^2} = I(\Delta) .$$

c) Now consider the regularized one-loop amplitude $\tilde{\mathcal{M}}$ with $p^2 < 0$. Show that

$$\tilde{\mathcal{M}}^{regularized} = \frac{g^2}{32\pi^2} \left(2 - \ln \frac{-p^2}{\Lambda^2} \right) \; .$$

Bring this into the final form

$$\tilde{\mathcal{M}}^{regularized} = -\frac{g^2}{32\pi^2} \ln \frac{-p^2}{\Lambda^2}$$

by performing an appropriate rescaling of Λ .

d) Setting $Q^2 = -p^2 > 0$, we thus obtain for the 1-loop corrected propagator,

$$\mathcal{M}(Q) = \mathcal{M}_{tree} + \mathcal{M}_{1-loop} = \frac{g^2}{Q^2} \left(1 - \frac{1}{32\pi^2} \frac{g^2}{Q^2} \ln \frac{Q^2}{\Lambda^2} \right) .$$

Now recall that in scalar ϕ^3 theory, g has dimension of mass. Therefore, we introduce the dimensionless coupling $\tilde{g}^2 = g^2/Q^2$, and obtain

$$\mathcal{M}(Q) = \tilde{g}^2 \left(1 - \frac{1}{32\pi^2} \, \tilde{g}^2 \ln \frac{Q^2}{\Lambda^2} \right) .$$

Next, pick a scale $Q_0 < \Lambda$ and define the renormalized coupling \tilde{g}_R at this scale to be $\tilde{g}_R^2 = \mathcal{M}(Q_0)$. Show that, when expressed in terms of \tilde{g}_R , $\mathcal{M}(Q)$ takes the form

$$\mathcal{M}(Q) = \tilde{g}_R^2 \left(1 + \frac{1}{32\pi^2} \, \tilde{g}_R^2 \ln \frac{Q_0^2}{Q^2} \right) + \mathcal{O}(\tilde{g}_R^6) \; .$$

Viewing $\mathcal{M}(Q)$ as an effective dimensionless coupling $\tilde{g}_{eff}^2(Q)$, we establish that \tilde{g}_{eff} runs with momentum. Compute the associated beta function

$$Q_0 \frac{d\tilde{g}_{eff}(Q_0)}{dQ_0} = \beta(\tilde{g}_{eff}(Q_0)) .$$