
INTRODUÇÃO À PROGRAMAÇÃO

EM FORTRAN 90

Resumo do livro

FORTRAN 90 PROGRAMMING
T. M. R. Ellis, Ivor R. Philips, Thomas M. Lahey

Addison-Wesley: 1994

F. J. Romeiras / 3.NOV.2003

CONTENTS

Chapter 1. Introduction 1

Chapter 2. First steps in Fortran 90 programming 3

Chapter 3. Essential data handling 9

Chapter 4. Basic building blocks 19

Chapter 5. Controlling the flow of your program 31

Chapter 6. Repeating parts of your program 39

Chapter 7. An introduction to arrays 47

Chapter 8. More control over input and output 55

Chapter 9. Using files to preserve data 63

Chapter 10. An introduction to numerical methods
in Fortran 90 programs 70

Chapter 13. Array processing and matrix manipulation 77

1

CHAPTER 1. INTRODUCTION

OVERVIEW

Computers are today used to solve an almost unimaginable range of problems, and yet
their basic structure has hardly changed in 40 years. They have become faster and more
powerful, as well as smaller and cheaper, but the key to this change in the role that
they play is due almost entirely to the developments in the programming languages which
control their every action.

Fortran 90 is the latest version of the world’s oldest high-level programming lan-
guage, and is designed to provide better facilities for the solution of scientific and techno-
logical problems and to provide a firm base for further developments to meet the needs
of the last years of the 20th century and of the early 21st.

This chapter explains the background to both Fortran 90 and its predecessor, FOR-
TRAN 77, and emphasizes the importance of the new language for the future develop-
ment of scientific, technological and numerical computation. It also establishes certain
fundamental concepts, common to all computers, which will provide the basis for further
discussion in later chapters.

SUMMARY

• Programming languages are used to define a problem and to specify the method
of its solution in terms that can be understood by a computer system.

• A high-level language enables a programmer to write a program without needing
to know much about the details of the computer itself.

• Hundreds of programming languages have been developed over the last fifty years.
Many of these are little used, but there are a small number which are very widely
used throughout the world and have been standardized (either through formal in-
ternational processes or as a result of de facto widespread acceptance) to encourage
their continuing use. Most of these major languages are particulary suited to a
particular class of problems, although this class is often very wide.

• Two languages stand head and shoulders above the others in terms of their to-
tal usage. These languages are COBOL (first released in 1960) and Fortran (first
released in 1957). COBOL is used for business data processing and it has been
estimated that over 70% of all programming carried out in 1990 used COBOL! For-
tran programs probably constitute around 60% of the remainder, with all the other
languages trailing far behind.

• Fortran was originally designed with scientific and engineering users in mind, and
during its first 30 years it has completely dominated this area of programming.

• Fortran has also been the dominant computer language for engineering and scientific
applications in academic circles and has been widely used in other, less obvious
areas, such as musicology, for example. One of the most widely used programs in
both British and American Universities is SPSS (Statistical Package for the Social
Sciences) which enables social scientists to analyse survey or other research data.
Indeed, because of the extremely widespread use of Fortran in higher education and
industry, many standard libraries have been written in Fortran in order to enable

2

programmers to utilize the experience and expertise of others when writing their
own Fortran programs. Two notable examples are the IMSL and NAG libraries,
both of which are large and extremely comprehensive collections of subprograms
for numerical analysis applications. Thus, because of the widespread use of Fortran
over a period of more than 30 years, a vast body of experience is available in the
form of existing Fortran programs.

• Fortran 90 is the latest version1 of the Fortran language and provides a great many
more features than its predecessors to assist the programmer in writing programs to
solve problems of a scientific, technological or computational nature. Some of these
new features were based on the experience gained with similar concepts in other,
newer, languages; others were Fortran’s own contribution to the development of
new programming concepts. Fortran 90 contains all the modern features necessary
to enable programs to be properly designed and written – which its predecessor,
FORTRAN 77, did not.

• Fortran 90 retains all of FORTRAN 77, that is, any standard FORTRAN 77 program
or procedure is a valid Fortran 90 program or procedure, and should behave in an
identical manner. Thus all the wealth of existing Fortran code, written in accord
with the FORTRAN 77 standard, can continue to be utilized for as long as necessary
without the need for modification. Indeed, it is precisely this care for the protection
of existing investment that explains why Fortran, which is the oldest of all current
programming languages, is still by far the most widely used language for scientific
programming.

• Fortran 90 has, therefore, given a new lease of life to the oldest of all programming
languages, and is already being used as the base from which still more versions of
the language are being developed. The ability to write programs in Fortran 90 will
undoubtedly, therefore, be a major requirement for a high proportion of scientific
and technological computing in the future, just as the ability to use FORTRAN 77,
and before that FORTRAN IV, was in the past.

• Definitive stages in the development of Fortran:

FORTRAN, 1957 IBM Mathematical FORmula TRANslation System,
was developed at IBM to provide a more efficient and
economical method of programming its 704 computer
than the machine code used at that time.

FORTRAN II, 1958 An improved version of the language, with a consider-
ably enhanced diagnostic capability and a number of
significant extensions.

FORTRAN IV, 1962 A further improved version almost totally independent
of the computer on which the programs were to be run.

FORTRAN 66, 1966 American Fortran standard (American National Stan-
dards Institute, ANSI, 1966)

FORTRAN 77, 1978 American Fortran standard (ANSI, 1978)
Fortran 90, 1991 The emergence of Fortran as a modern computer lan-

guage (ISO/IEC, 1991)

1Fortran 95, adopted in 1997 (ISO/IEC, 1997), is a minor revision of Fortran 90 and backward
compatible with it, apart from a change in the definition of an intrinsic function and the deletion of some
Fortran 77 features declared obsolete in Fortran 90.

3

CHAPTER 2. FIRST STEPS IN FORTRAN 90
PROGRAMMING

OVERVIEW

The most important aspect of programming is undoubtedly its design, while the next
most important is the thorough testing of the program. The actual coding of the program,
important though it is, is relatively straightforward by comparison.

This chapter discusses some of the most important principles of program design and
introduces a technique, known as a structure plan, for helping to create well-designed
programs. This technique is illustrated by reference to a simple problem, a Fortran 90
solution for which is used to introduce some of the fundamental concepts of Fortran 90
programs.

Some of the key aspects of program testing are also briefly discussed, although space
does not permit a full coverage of this important aspect of programming. We will return
to this topic in the intermission between Parts I and II of this book.

Finally, the difference between the old fixed form way of writing Fortran programs,
which owed its origin to punched cards, and the alternative free form approach introduced
in Fortran 90 is presented. Only the new form will be used in this book, but the older
form is also perfectly acceptable, although not very desirable in new programs.

SUMMARY

• Programming is nowadays recognized to be an engineering discipline. As with
any other branch of engineering it involves both the learning of the theory and
the incorporation of that theory into practical work. In particular, it is impossible
to learn to write programs without plenty of practical experience, and it is also
impossible to learn to write good programs without the opportunity to see and
examine other people’s programs.

• The reason for writing a program, any program, is to cause a computer to solve a
specified problem. The nature of that problem may vary immensely. It should never
be forgotten that programming is not an end in itself.

• The task of writing a program to solve a particular problem can be broken down
into four basic steps:

(1) Specification: Specify the problem clearly.

(2) Anaysis and design: Analyse the problem and break it down into its funda-
mental elements.

(3) Coding: Code the program according to the plan developed at step 2.

(4) Testing: Test the program exhaustively, and repeat steps 2 and 3 as necessary
until the program works correctly in all situations that you can envisage.

• A well-designed program is easier to test, to maintain and to port to other computer
systems.

• A structure plan is a method for assisting in the design of a program. It involves
creating a structure plan of successive levels of refinement until a point is reached

4

where the programmer can readily code the individual steps without the need for
further analysis. This top-down approach is universally recognized as being the ideal
model for developing programs although there are situations when it is necessary to
also look at the problem from the other direction (bottom-up). The programming
of sub-problems identified during top-down design can be deferred by specifying a
subprogram for the purpose.

• The program written is Example 2.1 is a very simple one, but it does contain many
of the basic building blocks and concepts which apply to all Fortran 90 programs.
We shall therefore examine it carefully to establish these concepts before we move
on to look at the language itself in any detail.

• A program is composed of the main program unit and program units of other
types, in particular subroutines.

• The structure of a main program unit is:

PROGRAM name
Specification statements
...
Executable statements
...

END PROGRAM name

• Every main program unit must start with a PROGRAM statement, and end with an
END PROGRAM statement.

• Specification statements provide information about the program to the compiler.

• An IMPLICIT NONE statement is a special specification statement which should al-
ways immediately follow a PROGRAM statement. It is used to inhibit a particularly
undesirable feature of Fortran which is carried over from earlier versions of Fortran.

• A variable declaration is a particular specification statement which specifies the
data type and name of the variables which will be used to hold (numeric or other)
information.

• Executable statements are obeyed by the computer during the execution of the
program.

• A list-directed input statement is a particular executable statement which is
used to obtain information from the user of a program during execution through
the default input device (often the keyboard).

• A list-directed output statement is a particular executable statement which is
used to give information to the user of a program during execution through the
default output device (often the screen).

• A CALL statement is used to transfer processing to a subroutine, using information
passed to the subroutine by means of arguments, enclosed in parentheses.

• A Fortran 90 name must obey the following rules:

◦ it must consist of a maximum of 31 characters;

◦ it may only contain the 26 upper case letters A–Z, the 26 lower case letters
a–z, the ten digits 0–9, and the underscore character ; upper and lower case
letters are considered to be identical in this context;

5

◦ it must begin with a letter.

• Keywords are Fortran names which have a special meaning in the Fortran language;
other names are called identifiers. To assist readibility of the example programs
we shall use upper case letters for keywords and lower case letters for identifiers.

• Blank characters are significant and must be used to separate names, constants or
statement labels from other names, constants or statement labels, and from Fortran
keywords. The number of blanks used in this context is irrelevant for the compiler.

• A comment line is a line whose first non-blank character is an exclamation mark,
!. A trailing comment is a comment whose initial ! follows the last statement on
a line. Comments are ignored by the compiler. Comments should be used liberally
to explain anything which is not obvious from the code itself.

• A line may contain a maximum of 132 characters.

• A line may contain more than one statement, in which case a semicolon, ;, separates
each pair of successive statements.

• The presence of an ampersand, &, as the last non-blank character of a line is an
indication of a continuation line, that is, that the statement is continued on the
next line. If it occurs in a character context, then the first non-blank character of
the next line must also be an ampersand, and the character string continues from
immediately after that ampersand.

• A statement may have a maximum of 39 continuation lines.

• Errors in programs are of different types. A syntactic error is an error in the
syntax, or grammar, of the statement. A semantic error is an error in the logic
of the program; that is, it does not do what it was intended to do. Compilation
errors are errors detected during the compilation process. Execution errors are
errors that occur during the execution of the compiled program. Compilation errors
are usually the result of syntactic errors, although some semantic errors may also be
detected. Execution errors are always the result of semantic errors in the program.

• Testing programs is a vitally important part of the programming process. Even
with apparently simple programs one should always thoroughly test them to ensure
that they produce the correct answers from valid data, and react in a predictable
and useful manner when presented with invalid data.

• One shoud never forget that computers have no intelligence; they will only do what
you tell them to do – no matter how silly that may be – rather than what you
intended them to do.

• The action required to run a Fortran program on a particular computer and to iden-
tify any specific requirements will be specific to the particular system and compiler
being used.

6

Fortran 90 syntax introduced in Chapter 2

Initial statement PROGRAM name

End statement END PROGRAM name
END PROGRAM
END

Implicit type IMPLICIT NONE
specification statement

Variable declaration REAL :: list of names
statement

List-directed input and READ *, list of names
output statements PRINT *, list of names and/or values

Subroutine call CALL subroutine name (argument 1, argument 2, . . .)

7

Example 2.1

Problem (2.1)

Write a program which will ask the user for the x and y coordinates of three points and
which will calculate the equation of the circle passing through those three points, namely

(x− a)2 + (y − b)2 = r2

and then display the coordinates (a, b) of the centre of the circle and its radius, r.

Analysis (2.1)

Structure plan:

1 Read three sets of coordinates (x1, y1), (x2, y2) and (x3, y3)
2 Calculate the equation of the circle using the procedure calculate circle
3 Display the values a, b and r

8

Solution (2.1)

PROGRAM circle

IMPLICIT NONE

!

! This program calculates the equation of a circle passing

! through three points

!

! Variable declarations

!

REAL :: x1, y1, x2, y2, x3, y3, a, b, r

!

! Step 1

!

PRINT *, "Please type the coordinates of three points"

PRINT *, "in the order x1, y1, x2, y2, x3, y3"

READ *, x1, y1, x2, y2, x3, y3 ! Read the three points

!

! Step 2

!

CALL calculate_circle(x1, y1, x2, y2, x3, y3, a, b, r)

!

! Step 3

!

PRINT *, "The centre of the circle through these points is &

&(", a, ",", b, ")"

PRINT *, "Its radius is ", r

!

END PROGRAM circle

Result of running the Solution (2.1)

Please type the coordinates of three points

in the order x1, y1, x2, y2, x3, y3

4.71 4.71

6.39 0.63

0.63 0.63

The centre of the circle through these points is (3.510, 1.830)

Its radius is 3.120

9

CHAPTER 3. ESSENTIAL DATA HANDLING

OVERVIEW

There are two fundamental types of numbers in both mathematics and programming –
namely those which are whole numbers, and those which are not. In Fortran these are
known as integers and real numbers, respectively, and the difference between them is of
vital importance in all programming languages. A third fundamental data type allows
character information to be stored and manipulated.

This chapter discusses these three basic data types, the ways in which they may
be used in calculations or other types of expressions, and the facilities contained within
Fortran for the input and output of numeric and textual information.

Finally, an important feature of Fortran 90 is its ability to allow programmers to
create their own data types, so that they may more readily express problems in their
own terms, rather than in an arbitrary set of more basic functions. This is an important
new development in Fortran 90, and one which will be developed further in subsequent
chapters.

SUMMARY

• An integer is always held exactly in the computer’s memory, and has a (relatively)
limited reange (between about −2×109 and +2×109 on a typical 32-bit computer)

• A real number is stored as a floating-point number, is held as an approximation to a
fixed number of significant digits and has a very large range (typically between about
−1038 and +1038 to seven or eight significant digits on the same 32-bit computer).

• Variables are locations in the computer’s memory in which variable information
may be stored.

• All variables should be declared in a type declaration statement before their
first use. At its simplest this statement takes the form

TYPE :: name

or

TYPE :: name 1, name 2, . . .

where TYPE specifies the data type for which memory space is to be reserved, and
name, name 1, name 2, . . . are the names chosen by the programmer with which
to refer to the variables that have been declared.

• Example:

REAL :: real_1, real_2, real_3

INTEGER :: integer_1, integer_2

• An IMPLICIT NONE statement should always be placed immediately after the initial
statement of the main program unit to force the compiler to require that all variables
appear in a type declaration statement.

• There are only two ways in which a variable can be given a value during the execution
of a program – by assignement or by a READ statement.

10

• An assignement statement takes the form

name = expression

where name is the name of the variable, and expression is an arithmetic expression
which will be evaluated by the computer to calculate the value to be assigned to
the variable name.

• If an integer value is assigned to a real variable it is converted to its real equivalent
before assignment; if a real value is assigned to an integer variable it is truncated
before conversion to integer, and any fractional part is lost.

• Example:

a = b + c*d/e - f**g/h + i*j + k

a = b + (c*d)/e - (f**g)/h + (i*j) + k

• Arithmetic operators in Fortran:

Operator Meaning Priority
+ Addition Low
- Subtraction Low
* Multiplication Medium
/ Division Medium
** Exponentiation High

• The priority of arithmetic operators in an arithmetic expression is the same as in
mathematics, namely exponentiation is carried out first, followed by multiplication
and division, followed by addition and subtraction. Within the same level of priority
evaluation of the expression will proceed from left to right, except in the case of
exponentiation where evaluation proceeds from right to left. The priority may be
altered by the use of parentheses.

• If one of the operands of an arithmetic operator is real, then the evaluation of
that operation is carried out using real arithmetic, with any integer operand being
converted to real.

• The evaluation of a mixed-mode expression, where not all the operands are of
the same type, proceeds as already defined until a sub-expression is to be evaluated
which has two operands of different types. At this point, and not before, the integer
value is converted to real.

• The result of the division of two integers (integer division) is the integer which is
the truncated value of the mathematical value of the division.

• Example:

REAL :: temp_C, temp_F, temp_F_1, temp_F_2, temp_F_3, temp_F_4

...

temp_F = 9.0 * temp_C/5.0 + 32.0

temp_F_1 = 9.0/5.0 * temp_C + 32.0 ! temp_F_1 = temp_F

temp_F_2 = 1.8 * temp_C + 32.0 ! temp_F_2 = temp_F

temp_F_3 = 9 * temp_C/5 + 32 ! temp_F_3 = temp_F

temp_F_4 = 9/5 * temp_C + 32 !!! temp_F_4 /= temp_F

11

• All five arithmetic operators are binary operators, that is, they have two operands.
Addition and subtraction can also be used as unary operators, having only one
operand.

• Example:
p = -q ! p = 0.0 - q

x = + y ! x = 0.0 + y

• Constants are locations in which information is stored which cannot be altered
during the execution of the program.

• Constants may have names like variables or they may simply appear in a Fortran
statement by writing their value. In this latter case they are called literal con-
stants because every digit of the numbers is specified literally.

• Numerical literal constants are written in the normal way, and the presence or
absence of a decimal point defines the type of constant.

• There is one exception to the rule that real constants must have a decimal point,
namely the exponential form. This takes the form

m E e

where m is called the mantissa and e is the exponent. The mantissa may be
written either with or without a decimal point, whereas the exponent must take the
form of an integer.

• Example: 0.000001 can be written

0.1E-5 or 1.0E-6 or 1E-6 or 100E-8, etc.

• List-directed input/output statements have an almost identical syntax:

READ *, var 1, var 2, . . .
PRINT *, item 1, item 2, . . .

• The main difference between them is that the list of items in a READ statement may
only contain variable names, whereas the list in a PRINT statement may also contain
constants or expressions. These lists of names and/or other items are referred to as
an input list and an output list, respectively. The asterisk following the READ
or PRINT indicates that list-directed formatting is to take place. We shall see
in Chapter 8 how other forms of input and output formatting may be defined.

• The list-directed READ statement will take its input from a processor-defined input
unit known as the default input unit, while the list-directed PRINT statement will
send its output to a processor-defined unit known as the default output unit. In
most systems, such as workstations or personal computers, these default units will
be the keyboard and display, respectively; we shall see in Chapter 8 how to specify
other input or output units where necessary.

• The term ’list-directed’ is thus used because the interpretation of the data input,
or the representation of the data output, is determined by the list of items in the
input or output statement.

• A value that is input to a real variable may contain a decimal point, or the decimal
point may be omitted, in which case it is treated as though the integer value read
were followed by a decimal point. A value that is to be input to an integer variable
must not contain a decimal point, and the occurrence of one will cause an error.

12

• One important point that must be considered with list-directed input concerns the
termination of each data value being input. The rule is that each number, or other
item, must be followed by a value separator consisting of

a comma, a space, a slash (/) or the end of the line;

any of these value separators may be preceded or followed by any number of con-
secutive blanks (or spaces).

• If there are two consecutive commas, then the effect is to read a null value, which
results in the value of the corresponding variable in the input list being left un-
changed. Note that a common cause of error is to believe that the value will be set
to zero.

• If the terminating character is a slash then no more data items are read, and pro-
cessing of the input statement is ended. If there are any remaining items in the
input list then the result is as though null values have been input to them; in other
words, their values remain unchanged.

• On output, list-directed formatting causes the processor to use an appropriate
format for the values being printed. Exactly what form this takes is processor-
dependent, but it is usually perfectly adequate for simple programs and for initial
testing.

• Character literal constants can be used in output statements to provide textual
information. They consist of a string of characters chosen from those available to
the user on the computer system being used, enclosed between quotation marks
or apostrophes. As long as the same character is used at the beginning and the
end it does not matter which is used.

• A single real or integer number is stored in a numeric storage unit, which consists
of a contiguous area of memory capable of storing 12, 32, 48 or 64 bits, or binary
digits. Each character is stored in a character storage unit, typically occupying
8 or 16 bits.

• A character variable consists of a sequence of one or more consecutive character
storage units.

• Programs in the Fortran language are written using characters from the Fortran
Character Set, constituted by the following 58 characters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
(a b c d e f g h i j k l m n o p q r s t u v w x y z)
0 1 2 3 4 5 6 7 8 9

= + - * / () , . ’ : ! ” % & ; < > ? $

(where # represents the space, or blank, character)

• Most processors also support a number of other characters as part of their default
character set.

• A character variable is declared in a very similar manner to that used for integer
and real numbers, with the important difference that it is necessary to specify how
many characters the variable is to be capable of storing:

CHARACTER(LEN =length) :: name 1, name 2, . . .

13

This declares one or more CHARACTER variables, each of which has a length of
length.

• The length specification may be either a positive integer constant or an integer
constant expression.

• If no length specification is provided, then the length is taken to be one.

• There are two additional, shorter, ways of writing this statement (but the full form
is recommended for greater clarity):

CHARACTER(length) :: name 1, name 2, . . .
CHARACTER*length :: name 1, name 2, . . .

• When assigning a character string to a character variable whose length is not the
same as that of the string, the string stored in the variable is extended to the right
with blanks, or truncated from the right, so as to exactly fill the character variable
to which it is being assigned.

• The form of any character data to be read by a list-directed READ statement is
normally the same as that of a character constant. In other words it must be
delimited by either quotation marks or by apostrophes. These delimiting characters
are not required if all of the following conditions are met:

◦ the character data is all contained within a single record or line;

◦ the character data does not contain any blanks, any commas or any slashes;

◦ the first non-blank character is not a quotation mark or an apostrophe;

◦ the leading characters are not numeric followed by an asterisk.

In this case the character constant is terminated by any of the value separators
which will terminate a numeric data item (blank, comma, slash or end of record).

• If the character data which is read by a list-directed READ statement is too long or
too short for the variable concerned then it is truncated or extended on the right in
exactly the same way as for assignement.

• The output situation is rather simpler, and a list-directed PRINT statement will
output exactly what is stored in a character variable or constant, including any
trailing blanks, without any delimiting apostrophes or quotation marks.

• Two character strings can be combined to form a third, composite string. This
process is called concatenation and is carried out by means of the concatenation
operator, consisting of two consecutive slashes.

• Character substrings can be identified by following the character variable name
or character constant by two integer expressions separated by a colon and enclosed
in parentheses. The two integer values represent the positions in the character
variable or constant of the first and last characters of the substring. Either may be
omitted, but not both, in which case the first or last character position is assumed,
as appropriate.

substring = string(first position : last position)
substring = string(first position :)
substring = string(: last position)

14

• Character substrings may be used wherever the character variables or character
constants of which they are substrings may be used.

• A variable declaration may include the specification of an initial value.

type :: name = initial value

Any initial value specified must either be a literal constant or a constant expression,
that is an expression whose components are all constants.

• Example:

REAL :: a = 0.0, b, c = 1.0E-6

INTEGER :: max = 100

CHARACTER(LEN=10) :: name="Undefined"

• A named constant declaration takes the same form as a variable declaration spec-
ifying an initial value, except that the name has the PARAMETER attribute.

type, PARAMETER :: name = initial value

• Example:

REAL, PARAMETER :: pi = 3.1415926; pi_by_2 = pi/2.0

INTEGER, PARAMETER :: max_iter = 100

• There are six intrinsic data types that can be processed by Fortran programs, of
which we have met the three major ones: REAL, INTEGER and CHARACTER.

• A derived type is a user-defined data type, each of whose components is either an
intrinsic type or a previously defined derived type. A derived type is defined by a
special sequence of statements, which in their simplest form are as follows:

TYPE new type
component definition
...

END TYPE new type

There may be as many component definitions as required, and each takes the same
form as a variable declaration.

• Example:

TYPE person

CHARACTER :: first_name*12, middle_initial*1, last_name*12

INTEGER :: age

CHARACTER :: sex ! M or F

CHARACTER(LEN=11) :: social_security

END TYPE person

• Variables of a derived type are declared in a similar way to that used for intrinsic
types, except that the type name is enclosed in parentheses and preceded by the
keyword TYPE:

• Example:

TYPE(person) :: jack, jill

15

• Derived type literal constants are specified by means of structure constructors: a
sequence of constants corresponding to the components of the derived type, enclosed
in parentheses and preceded by the type name.

• Example:

jack = person("Jack", "R", "Hagenbach", 47, "M", "123-45-6789")

jill = person("Jill", "M", "Smith", 39, "F", "987-65-4321")

• We may refer directly to a component of a derived type variable by following the
variable by a percentage sign, %, and the name of the component.

• Example:

jill%last_name = jack%last_name

Fortran syntax introduced in Chapter 3

Derived type definition TYPE type name
1st component declaration
2nd component declaration
...

END TYPE type name

Variable declaration REAL :: list of variable names
INTEGER :: list of variable names
CHARACTER (LEN=length) :: list of variable names
TYPE(derived type name) :: list of variable names

Initial value specification type :: name = initial value, . . .

Named constant type, PARAMETER :: name = initial value, . . .
declaration

Assignment statement variable name = expression

Character substring name(first position : last position)
specification name(first position :)

name(: last position)

Arithmetic operators **, *, /, +, -

Character operator //

16

Example 3.2

Problem (3.2)

Write a program which asks the user for his(her) title, first name and last name, and
prints a welcome message using both the full name and first name.

Analysis (3.2)

Structure plan:

1 Read title, first name and last name
2 Concatenate the resulting strings together, using the intrinsic function TRIM

to remove trailing blanks from the title and first name
3 Print a welcome message using the formal address,

and another using just the first name

Solution (3.2)

PROGRAM welcome

IMPLICIT NONE

!

! This program manipulates character strings to produce a

! properly formatted welcome message

!

! Variable declarations

CHARACTER(LEN=10) :: title

CHARACTER(LEN=20) :: first_name, last_name

CHARACTER(LEN=50) :: full_name

!

! Ask for name, etc

PRINT *, "Please give your full name in the form requested"

PRINT *, "Title (Mr./Mrs./Ms./etc.): "

READ *, title

PRINT *, "First name: "

READ *, first_name

PRINT *, "Last name: "

READ *, last_name

!

! Create full name

full_name=TRIM(title)//" "//TRIM(first_name)//" "//last_name

!

! Print messages

PRINT *, "Welcome ", full_name

PRINT *, "May I call you ",TRIM(first_name),"?"

!

END PROGRAM welcome

17

Example 3.4

Problem (3.4)

Define a data type which can be used to represent complex numbers, and then use it in a
program which reads two complex numbers and calculates and prints their sum and their
product.

Analysis (3.4)

Given two complex numbers

z1 = x1 + iy1, z2 = x2 + iy2,

the rules for addition and multiplication are the following:

z1 + z2 = x1 + x2 + i (y1 + y2)

z1 × z2 = x1 × x2 − y1 × y2 + i (x1 × y2 + x2 × y1)

Structure plan:

1 Define a data type for complex numbers
2 Read two complex numbers
3 Calculate their sum and their product
4 Print results

18

Solution (3.4)

PROGRAM complex_arithmetic

IMPLICIT NONE

!

! A program to illustrate the use of a derived type to perform

! complex arithmetic

!

! Type definition

TYPE complex_number

REAL :: real_part, imag_part

END TYPE complex_number

!

! Variable definitions

TYPE(complex_number) :: z1, z2, sum, prod

!

! Read data

PRINT *, "Please supply two complex numbers"

PRINT *, "Each complex number should be typed as two numbers,"

PRINT *, "representing the real and imaginary parts of the number"

READ *, z1, z2

!

! Calculate sum and product

sum%real_part = z1%real_part + z2%real_part

sum%imag_part = z1%imag_part + z2%imag_part

!

prod%real_part = z1%real_part * z2%real_part - &

z1%imag_part * z2%imag_part

prod%imag_part = z1%real_part * z2%imag_part + &

z1%imag_part * z2%real_part

!

! Print results

PRINT *, "The sum of the two numbers is (", &

sum%real_part, ", ", sum%imag_part, ")"

PRINT *, "The product of the two numbers is (", &

prod%real_part, ", ", prod%imag_part, ")"

!

END PROGRAM complex_arithmetic

19

CHAPTER 4. BASIC BUILDING BLOCKS

In all walks of life, the easiest way to solve most problems is to break them down into
smaller sub-problems and deal with each of these in turn, further subdividing these sub-
problems as necessary.

This chapter introduces the concept of a procedure to assist in the solution of such
sub-problems, and shows how Fortran’s two types of procedures, functions and subrou-
tines, are used as the primary building blocks in well-designed programs.

A further encapsulation facility, known as a module, is also introduced in this chap-
ter as a means of providing controlled access to global data, and is also shown to be an
essential tool in the use of derived (or user-defined) datatypes. Modules are also recom-
mended as a means of packaging groups of related procedures, for ease of manipulation,
as a means if providing additional security and to simplify the use of some of the powerful
features of Fortran 90 that will be met in subsequent chapters.

SUMMARY

• A procedure is a special section of a program which is, in some way, referred to
whenever required.

• Procedures fall into two broad categories: intrinsic procedures, which are part of
the Fortran language; external procedures, which are written by the programmer
(or by some other person who then allows the programmer to use them).

• Procedures are further categorized according to their mode of use into subroutines
and functions.

• There are 108 intrinsic functions and 5 intrinsic subroutines available in Fortran 90.

• The purpose of a function is to take one or more values (or arguments) and create
a single result (the function value).

• A function reference takes the general form:

name (argument)
name (arg 1, arg 2, . . .)

• Examples:

SQRT(x), intrinsic function which calculates the square root
of a positive number x

cube root(x), external function which calculates the cubic root
of a real number x

• A function is used simply by referring to it in an expression in place of a variable
or constant.

• Example:

- b + SQRT(b*b - 4.0*a*c)

• Many intrinsic functions exist in several versions, each of which operates on argu-
ments of different types; such functions are called generic functions.

20

• A Fortran 90 program consists of one main program unit, and any number of
four other types of program units:

– external function subprogram units,
– external subroutine subprogram units,
– module program units,
– block data program units.

• All the program units have the same broad structure, consisting of an initial state-
ment, any specification statements, any executable statements, and an END
statement.

• One of the most important concepts of Fortran is that one program unit need never
be aware of the internal details of any other program unit. The only link between
one program unit and a subsidiary program unit is through the interface of the
subsidiary program unit, which consists of the name of the program unit and cer-
tain other public entities of the program unit. This very important principle means
that it is possible to write subprograms totally independently of the main program,
and of each other. This feature opens up the way for libraries of subprograms:
collections of subprograms that can be used by more than one program. It also
permits large projects to use more than one programmer; all the programmers need
to communicate to each other is the information about the interfaces of their pro-
cedures.

• The structure of an external function subprogram is:

type FUNCTION name(dum 1, dum 2, . . .)
IMPLICIT NONE
...
Specification statements, etc.
...
Executable statements
...

END FUNCTION name

or

FUNCTION name(dum 1, dum 2, . . .)
IMPLICIT NONE
type :: name
...
Specification statements, etc.
...
Executable statements
...

END FUNCTION name

where dum 1, dum 2, . . . are dummy arguments which represent the actual
arguments which will be used when the function is used (or referenced) and type
is the type of the result of the function.

• The result variable is the means by which a function returns its value. Every
function must contain a variable having the same name as the function, and this
variable must be assigned, or otherwise given, a value to return as the value of the

21

function before an exit is made from the function. The type of this result variable
may be specified either in the initial FUNCTION statement or in a conventional
declaration statement.

• The function name must be declared in the calling program unit in a conventional
declaration statement in order that the Fortran processor is aware of its type.

• Although it is not necessary, it is possible to add an EXTERNAL attribute specifica-
tion to such a declaration; this addition informs the compiler that the name is that
of a function and not of a variable.

REAL, EXTERNAL :: function name

• The difference between a function and a subroutine lies in how they are referenced
and how the results, if any, are returned.

• A subroutine’s arguments are used both to receive information to operate on and
to return results.

• A subroutine is accessed by means of a CALL statement, which gives the name of
the subroutine and a list of arguments which will be used to transmit information
between the calling program unit and the subroutine:

CALL name (arg 1, arg 2, . . .)

• A subroutine may have no arguments, in which case the CALL statement takes the
form:

CALL name

or

CALL name()

• A subroutine need not return anything.

• The structure of an external subroutine subprogram is:

SUBROUTINE name(dum 1, dum 2, . . .)
IMPLICIT NONE ...
Specification statements, etc.
...
Executable statements
...

END SUBROUTINE name

• Execution of a program will start at the beginning of the main program unit.

• A function reference and the CALL of a subroutine causes a transfer of control so
that instead of continuing to process the current statement, the computer executes
the statements contained within the function or the subroutine. When the function
or the subroutine has completed its task it returns to the calling program unit and
execution continues with the next statement.

• Only the arguments of a procedure are accessible outside the procedure.

• A local variable or internal variable of a procedure in which it is declared has
no existence outside the procedure, that is, it is not accessible from outside the
procedure.

22

• Procedures may be referenced in the main program or in another procedure. How-
ever a procedure may not refer to itself, either directly or indirectly (for example,
through referencing another procedure which, in turn, references the original proce-
dure). This is known as recursion and is not allowed unless we take special action
to permit it.

• When a function or subroutine is referenced, information is passed to it through
its arguments; in the case of a subroutine, information may also be returned to the
calling program unit through its arguments. The relationship between the actual
arguments in the calling program unit and the dummy arguments in the subroutine
or function is of vital importance in this process. It is important to realize that the
dummy arguments do not exist as independent entities – they are simply a means
by which the procedure can identify the actual arguments in the calling program
unit. One very important point to stress is that the order and types of the actual
arguments must correspond exactly with the order and types of the corresponding
dummy arguments.

• The INTENT attribute is one of a number of attributes that may follow the type
in a declaration statement. It may only be used in the declaration of a dummy
argument. It is used to control the direction in which the arguments are used to
pass information. It can take one of the following three forms:

INTENT(IN) which informs the processor that this dummy argument is used only
to provide information to the procedure, and the procedure will not be allowed
to alter its value in any way.

INTENT(OUT) which informs the processor that this dummy argument will only
be used to return information from the procedure to the calling program. Its
value will be undefined on entry to the procedure and it must be given a value
by some means before being used in an expression, or being otherwise referred
to in a context which will require its value to be evaluated.

INTENT(INOUT) which informs the processor that this dummy argument may be
used for transmission of information in both directions.

• A subroutine’s arguments may have all three forms of INTENT attribute. The
arguments of a function should always be declared with INTENT(IN).

• Arguments of procedures may also be of character data type. In this case it is con-
venient to use an assumed-length character declaration in the procedure, that
is, the character string assumes its length from the corresponding actual argument
when the procedure is executed.

CHARACTER(LEN = *) :: character_dummy_argument

• One of the great advantages of subprograms is that they enable us to break the
design of a program into several smaller, more manageable sections, and then to
write and test each of these sections independently of the rest of the program. This
paves the way for an approach known as modular program development, which
is a key concept of software engineering. This approach breaks the problem down
into its major sub-problems, or components, each of which can then be dealt with
independently of the others.

23

• As a rule of thumb, we would suggest that no procedure should be longer than
about 50 lines, excluding any comments, so that it can be printed on a single sheet
of paper or viewed easily on a screen.

• A MODULE is another form of program unit which is used for rather different
purposes than a procedure. One very important use of modules relates to global
accessibility of variables, constants and derived type definitions: by using a module
one can make some or all the entities declared within it accessible to more than one
program unit. Access is by means of an appropriate USE statement:

USE name

where name is the name of the module in which the variables, constants, and/or
derived data type definitions are declared. Entities which are made available in this
way are said to be made available by USE association.

The USE statement comes after the initial statement (PROGRAM, SUBROUTINE or
FUNCTION) but before any other statements.

• The broad structure of a module is:

MODULE name
IMPLICIT NONE
SAVE
...
Other specification statements, etc.
...
Executable statements
...

END MODULE name

• The statement consisting of the single word SAVE should always be included in any
module which declares any variables.

• One module can USE another module in order to gain access to items declared
within it, and those items then also become available along with the modules own
entities.

• A module may not USE itself, either directly or indirectly (via a recursive chain of
other modules).

• Objects of derived types can only be used as arguments to procedures if their type
is defined in a MODULE which is used by the relevant program units.

• It is desirable for some security aspects, and essential for some of the language
features that will be met in future chapters, that procedures have an explicit in-
terface. One way that we can always make the interface of a procedure explicit is
by placing the procedure in a module. The rules relating to modules specify that

◦ the interfaces of all the procedures defined within a single module are explicit
to each other;

◦ the interfaces of any procedures made available by USE association are explicit
in the program unit that is using the module.

24

• The statement consisting of the single word

CONTAINS

should be placed before the first procedure in a module that contains procedures.

• Modules are of great assistance in the design and control of data as they enable a
programmer to group the data in such a way that all those procedures that require
access to a particular group can do so by simply using the appropriate module.

Fortran 90 syntax introduced in Chapter 4

Initial statements SUBROUTINE name(dummy argument list)
SUBROUTINE name
type FUNCTION name(dummy argument list)
type FUNCTION name()
FUNCTION name(dummy argument list)
FUNCTION name()
MODULE name

Function reference function name(actual argument list)
function name()

Subroutine call CALL subroutine name(actual argument list)
CALL subroutine name()

Module use USE module name

Assumed length CHARACTER(LEN = *) :: character dummy arg
character declaration CHARACTER * (*) :: character dummy arg

Argument intent INTENT((intent)
attribute where intent is IN, OUT or INOUT

External procedure EXTERNAL
attribute

SAVE statement SAVE

CONTAINS statement CONTAINS

25

Example 4.1x

Problem (4.1x)

Write a program which will demonstrate the use of the function cube root to calculate the
cube root of a positive real number.

Analysis (4.1x)

Structure plan:

1 Read positive real number pos num.
2 Obtain root 3 by reference to the function cube root.
3 Print pos num and root 3.

Example 4.2x

Problem (4.2x)

Write a program which will demonstrate the use of the subroutine roots to calculate the
square root, the cube root and the fourth root of a positive real number.

Analysis (4.2x)

Structure plan:

1 Read positive real number pos num.
2 Obtain root 2, root 3 and root 4 by calling the subroutine roots.
3 Print pos num, root 2, root 3 and root 4.

26

Example 4.1x

PROGRAM function_demo

IMPLICIT NONE

!

! A program to demonstrate the use of the function cube_root

!

! Variable declarations

REAL, EXTERNAL :: cube_root

REAL :: pos_num, root_3

!

! Get positive number from user

PRINT *, "Please type a positive real number: "

READ *, pos_num

!

! Obtain root

root_3=cube_root(pos_num)

!

! Display number and its root

PRINT *, "The cube root of ", pos_num, " is ", root_3

!

END PROGRAM function_demo

REAL FUNCTION cube_root(x) !!! FUNCTION cube_root(x)

IMPLICIT NONE

!

! Function to calculate the cube root of a positive real number

!

! !!! REAL :: cube_root

!

! Dummy argument declaration

REAL, INTENT(IN) :: x

!

! Local variable declaration

REAL :: log_x

!

! Calculate cube root by using logs

log_x = LOG(x)

cube_root = EXP(log_x/3.0)

!

END FUNCTION cube_root

27

Example 4.2x

PROGRAM subroutine_demo

IMPLICIT NONE

!

! A program to demonstrate the use of the subroutine roots

!

! Variable declarations

REAL :: pos_num, root_2, root_3, root_4

!

! Get positive number from user

PRINT *, "Please type a positive real number: "

READ *, pos_num

!

! Obtain roots

CALL roots(pos_num, root_2, root_3, root_4)

!

! Display number and its roots

PRINT *, "The square root of ", pos_num, " is ", root_2

PRINT *, "The cube root of ", pos_num, " is ", root_3

PRINT *, "The fourth root of ", pos_num, " is ", root_4

!

END PROGRAM subroutine_demo

SUBROUTINE roots(x, square_root, cube_root, fourth_root)

IMPLICIT NONE

!

! Subroutine to calculate various roots of a positive real number,

! supplied as the first argument, and return them in the

! second to fourth arguments

!

! Dummy argument declarations

REAL, INTENT(IN) :: x

REAL, INTENT(OUT) :: square_root, cube_root, fourth_root

!

! Local variable declarations

REAL :: log_x

!

! Calculate square root using intrinsic SQRT

square_root = SQRT(x)

!

! Calculate other roots by using logs

log_x = LOG(x)

cube_root = EXP(log_x/3.0)

fourth_root = EXP(log_x/4.0)

!

END SUBROUTINE roots

28

Example 4.4

Problem (4.4)

Write two functions for use in a complex arithmetic package using the complex number
derived type which was created in Example 3.4. The functions should each take two
complex arguments and return as their result the result of adding and multiplying the
two numbers.

Analysis (4.4)

This was already done in Example 3.4.

Structure plan:

1 Place the derived type complex number in a MODULE complex data
for USE association by the program and the functions

2 Read two complex numbers
3 Calculate their sum using FUNCTION c add
4 Calculate their product using FUNCTION c mult
5 Print the results

29

Solution (4.4)

MODULE complex_data

IMPLICIT NONE

SAVE

!

TYPE complex_number

REAL :: real_part, imag_part

END TYPE complex_number

!

END MODULE complex_data

PROGRAM complex_example

USE complex_data

IMPLICIT NONE

!

TYPE(complex_number), EXTERNAL :: c_add, c_mult

TYPE(complex_number) :: z1, z2

!

PRINT *, "Please supply two complex numbers as two pairs &

&of real numbers"

PRINT *, "Each pair represents the real and imaginary parts &

&of a complex number"

READ *, z1, z2

!

! Calculate and print sum and product

PRINT *, "The sum of the two numbers is ", c_add(z1, z2)

PRINT *, "The product of the two numbers is ", c_mult(z1, z2)

!

END PROGRAM complex_example

30

FUNCTION c_add(z1, z2)

USE complex_data

IMPLICIT NONE

!

TYPE(complex_number) :: c_add

TYPE(complex_number), INTENT(IN) :: z1, z2

!

c_add%real_part = z1%real_part + z2%real_part

c_add%imag_part = z1%imag_part + z2%imag_part

!

END FUNCTION c_add

FUNCTION c_mult(z1, z2)

USE complex_data

IMPLICIT NONE

!

TYPE(complex_number) :: c_mult

TYPE(complex_number), INTENT(IN) :: z1, z2

!

c_mult%real_part = z1%real_part * z2%real_part - &

z1%imag_part * z2%imag_part

c_mult%imag_part = z1%real_part * z2%imag_part + &

z1%imag_part * z2%real_part

!

END FUNCTION c_mult

31

CHAPTER 5. CONTROLLING THE FLOW
OF YOUR PROGRAM

OVERVIEW

Up to now, our programs have started at the beginning and proceeded to the end without
interruption. However, in practice, most problems require us to choose between alternative
courses of action, depending upon circumstances which are not determined until the
program is executed. The ability of a program to specify how these decisions are to be
made is one of the most important aspects of programming.

This chapter introduces the concept of comparison between two numbers or two
character strings, and explains how such comparisons can be used to determine which one
of two, or more, alternative sections of code are obeyed.

An alternative form of choice, which was not available in earlier versions of Fortran,
uses a list of possible values of some variable or expression to determine which of the
several alternative blocks of code is actually executed.

SUMMARY

• The ability of a computer program to choose which one of two or more alternative
sequences of statements to obey is a major factor in making computers such powerful
tools.

• Fortran 90 has a very smiliar construction to that used in the English language to
provide alternatives:

IF (criterion 1) THEN
action 1

ELSE IF (criterion 2) THEN
action 2

ELSE IF (criterion 3) THEN
action 3

ELSE
action 4

END IF

• The criteria on which the decisions will be based consist of a new type of expression
– a logical expression. A logical expression can take one of the logical values,
true or false.

• A relational expression is the simplest form of logical expression in which re-
lational operators are used to derive logical values from a comparison of two
numeric expressions.

a < b is true if a is less than b
a <= b is true if a is less than or equal to b
a > b is true if a is greater than b
a >= b is true if a is greater than or equal b
a == b is true if a is equal b
a / = b is true if a is not equal to b

32

• All arithmetic operations have a higher priority than any relational operators and
the arithmetic expression, or expressions, are therefore evaluated before any com-
parisons take place.

• Example: The following relational expressions are identical in their effects:

b**2 >= 4*a*c

b**2 - 4*a*c >= 0

• A relational operator may also be used to compare two character expressions by
using: (i) the Fortran collating sequence; (ii) the ASCII collating sequence, with the
help of special intrinsic functions. (. . .)

• Logical variables are declared as

LOGICAL :: var 1, var 2, ...

• Logical variables take one of two values: .TRUE. or .FALSE.

• We are also allowed to write functions which deliver a logical value:

LOGICAL FUNCTION logical fun(arg 1, arg 2, . . .)
...

or

FUNCTION logical fun(arg 1, arg 2, . . .)
LOGICAL :: logical fun
...

• Logical operators, .OR., .AND., .EQV., .NEQV., are used to combine two logical
expressions or values, and thus to allow more complex comparisons:

L1 L2 L1.OR.L2 L1.AND.L2 L1.EQV.L2 L1.NEQV.L2
true true true true true false
true false true false false true
false true true false false true
false false false false true false

• The logical operator .NOT. is a unary operator, and has a single operand: it inverts
the value of the following logical expression.

• The logical operators table of priorities is the following:

Operator Priority
.NOT. highest
.AND. medium
.OR. medium
.EQV. and .NEQV. lowest

• Any arithmetic operators or relational operators (in that order) have a higher pri-
ority than any logical operators.

• Example:

(a < b) .OR. (c < d)

(x <= y) .AND. (y <= z)

33

• The block IF construct has the following structure:

IF (logical expression) THEN
block of Fortran statements

ELSE IF (logical expression) THEN
block of Fortran statements
...

ELSE
block of Fortran statements

END IF

◦ There may be any number of ELSE IF statements, each followed by a block of
statements, or there may be none.

◦ There may be one ELSE statement, followed by a block of statements, or there
may be none. If there is one, then it, and its succeeding block of statements,
must follow all ELSE IF blocks.

◦ The block of statements following the IF statement will be executed if the
associated logical expression is true.

◦ The block of statements following an ELSE IF statement will be executed if the
associated logical expression is true, and if the logical expressions in the initial
IF statement and in any preceding ELSE IF statements are false.

◦ The block of statements following the ELSE statement will be executed only if
the logical expressions in all preceeding IF and ELSE IF statements are false.

• The Logical IF statement has the structure:

IF (logical expression) Fortran statement

It is exactly equivalent (a ”shorthand version”) to a minimal block IF construct with
a single statement block:

IF (logical expression) THEN
Fortran statement

END IF

Because it is more compact, it can be used in a number of situations without any
loss of clarity or efficiency. There are restrictions on the Fortran statement that can
be used.

• The CASE construct has the following structure:

SELECT CASE (case expression)
CASE (case selector)

block of Fortran statements
...

CASE DEFAULT
block of Fortran statements

END SELECT

◦ case expression is either an integer expression, a character expression or a log-
ical expression; real expressions are prohibited for this purpose.

34

◦ The case selector determines which, if any, of the blocks of statements will be
obeyed. The case selector can take one of four forms:

case value
low value :
: high value
low value : high value

or it may be a list of any combination of these. Only the first form is permitted
for logical values (since it would be meaningless to list more than one of the
possible two values). The meaning of these four alternatives is as follows:

(1) If the case selector takes the form case value then the following block
of code is executed if and only if case expression = case value, where
case expression is an integer expression or a character expression, and if
and only if case expression .EQV. case value, where it is a logical expres-
sion.

(2) If the case selector takes the form low value: then the following block
of code is executed if and only if low value <= case expression.

(3) If the case selector takes the form :high value then the following block
of code is executed if and only if case expression <= high value.

(4) If the case selector takes the form low value:high value then the following
block of code is executed if and only if low value <= case expression .AND.
case expression <= high value.

◦ If none of the specified values or value ranges matches the value of the case ex-
pression then the block of code following the CASE DEFAULT statement, if any,
is executed; if there is no CASE DEFAULT statement then an exit is made from
the CASE construct without any code being executed.

◦ The order in which the various CASE statements, and their following blocks
of statements are written, does not matter, since the rules governing CASE
constructs require that there is no overlap. However, we recommend that,
for clarity, any CASE DEFAULT statement be placed either as the first CASE
statement, or as the last.

• Both the block IF construct and the CASE construct provide the means for a program
to select one from a set of blocks of statements and executing that block, or of
executing none of them if none of the decision criteria is satisfied.

• One difference between the two constructs is that in the CASE construct the decision
criteria must not overlap.

• The other major difference is that the expression which determines the selection
must be a logical expression in a block IF construct, but may be an integer expres-
sion, a character expression or a logical expression, in a CASE construct (but not a
real expression).

35

Fortran 90 syntax introduced in Chapter 5

Variable declaration LOGICAL :: list of variable names

Block IF construct IF (logical expression) THEN
block of code

ELSE IF (logical expression) THEN
block of code

...
ELSE

block of code
END IF

CASE construct SELECT CASE (case expression)
CASE (case selector)

block of code
...
CASE DEFAULT

block of code
END SELECT

Logical IF statement IF (logical expression) Fortran statement

Relational operators >, >=, <=, <, ==, / =
.GT., .GE., .LE., .LT., .EQ., .NE.

Logical operators .AND., .OR., .EQV., .NEQV., .NOT.

36

Example 5.6

Problem (5.6)

Write a program to read the coefficients of a quadratic equation and print the roots.

Analysis (5.6)

The program will use the formula

x =
−b±

√
b2 − 4ac

2a

where
ax2 + bx + c = 0 and a 6= 0.

There are three possible cases:

(1) b2 − 4ac ≥ ε Equation has two real roots
(2) |b2 − 4ac| < ε Equation has one real root
(3) b2 − 4ac ≤ −ε Equation has no real roots

ε is a very small positive number

Structure plan (solution using a block IF construct):

1 Read the three coefficients a, b and c
2 Calculate d = b2 − 4ac
3 If d ≥ epsilon then

3.1 Calculate and print two roots
but if d > -epsilon then
3.2 Calculate and print a single root
otherwise
3.3 Print a message to the effect that there are no roots

Structure plan (solution using a CASE construct):

1 Read the three coefficients a, b and c
2 Calculate d = b2 − 4ac
3 Calculate selector (d/epsilon)
4 Select case on selector

4.1 selector > 0
Calculate and print two roots

4.2 selector = 0
Calculate and print a single root

4.3 selector < 0
Print a message to the effect that there are no roots

37

Solution (5.6a)

PROGRAM quadratic_by_block_IF

IMPLICIT NONE

!

! A program to solve a quadratic equation using a block IF

! statement to distinguish between the three cases

!

! Constant declarations

REAL, PARAMETER :: epsilon = 1.0E-6

!

! Variable declarations

REAL :: a, b, c, d, sqrt_d, x1, x2

!

! Read coefficients

PRINT *, "Please type the three coefficients a, b and c"

READ *, a, b, c

!

! Calculate b**2-4*a*c

d = b**2 - 4.0 * a * c

!

! Calculate and print roots, if any

IF (d >= epsilon) THEN

! Two roots

sqrt_d = SQRT(d)

x1 = (-b + sqrt_d)/(a+a)

x2 = (-b - sqrt_d)/(a+a)

PRINT *, "The equation has two roots: ", x1, " and ", x2

ELSE IF (d > -epsilon) THEN

! One root

x1 = -b/(a+a)

PRINT *, "The equation has one root: ", x1

ELSE

! No roots

PRINT *, "The equation has no real roots"

END IF

!

END PROGRAM quadratic_by_block_IF

38

Solution (5.6b)

PROGRAM quadratic_by_case

IMPLICIT NONE

!

! A program to solve a quadratic equation using a CASE

! statement to distinguish between the three cases

!

! Constant declarations

REAL, PARAMETER :: epsilon = 1.0E-6

!

! Variable declarations

REAL :: a, b, c, d, sqrt_d, x1, x2

INTEGER :: selector

!

! Read coefficients

PRINT *, "Please type the three coefficients a, b and c"

READ *, a, b, c

!

! Calculate b**2-4*a*c and resulting case selector

d = b**2 - 4.0 * a * c

selector = d/epsilon

!

! Calculate and print roots, if any

SELECT CASE (selector)

CASE (1:)

! Two roots

sqrt_d = SQRT(d)

x1 = (-b + sqrt_d)/(a+a)

x2 = (-b - sqrt_d)/(a+a)

PRINT *, "The equation has two roots: ", x1, " and ", x2

CASE (0)

! One root

x1 = -b/(a+a)

PRINT *, "The equation has one root: ", x1

CASE (:-1)

! No roots

PRINT *, "The equation has no real roots"

END SELECT

!

END PROGRAM quadratic_by_case

39

CHAPTER 6. REPEATING PARTS OF YOUR
PROGRAM

OVERVIEW

A very large proportion of mathematical techniques rely on some form of iterative process,
while the processing of most types of data requires the same, or similar, actions to be
carried out repeatedly for each set of data. One of the most important of all program-
ming concepts, therefore, is the ability to repeat some sequences of statements either a
predetermined number of times or until some condition is satisfied.

Fortran has a very powerful, yet simple to use, facility for controlling the repetition
of blocks of code, and this chapter explains how this facility can be used to control iterative
processes as well as more simple repetitive tasks.

The use of repetitive techniques, however, often leads to situations in which it is
required to end the repetition earlier than had been anticipated, and Fortran contains a
number of statements to assist in these exceptional cases. By their nature, however, such
statements interrupt the normal flow of the program and must be used with care if they
are not to lead to other problems.

SUMMARY

• A sequence of statements which are repeated is called a loop.

• The DO construct provides the means for controlling the repetition of statements
within a loop. It takes the form:

DO count = initial, final, inc
...
block of statements
...

END DO

• A loop created by use of a DO construct is called a DO loop.

• The first statement of a DO loop is called a DO statement. It can have the following
alternative forms:

DO count = initial, final, inc
DO count = initial, final
DO

• The first two alternatives define a count-controlled DO loop, in which an integer
variable, count, known as the DO variable, is used to determine how many times
the block of statements which appear between the DO statement and the END DO
statement is to be executed. initial, final and inc must be integer expressions. If
inc is absent then its value is taken as 1.

• Informally this process means that the loop is executed for count taking the value
initial the first time that the loop is executed, initial +inc the next time, and so on,
with the value of count being incremented by inc for each subsequent pass; the final
pass through the loop will be the one which would result in the next pass having a
value of count greater than final.

40

• The formal definition of this process is that when the DO statement is executed an
iteration count is first calculated using the formula

MAX((final-initial+inc)/inc, 0)

and the loop is executed that many times. On the first pass the value of count
is initial, and on each subsequent pass its value is increased by inc. On normal
completion of a count-controlled DO loop the DO variable will have the value that
it would have had on the next pass through the loop, had there been one.

• Example:

DO statement Iteration count DO variable values
DO i = 1, 10 10 1,2,3,4,5,6,7,8,9,10
DO j = 20, 50, 5 7 20,25,30,35,40,45,50
DO p = 7, 19, 4 4 7,11,15,19
DO q = 4, 5, 6 1 4
DO r = 6, 5, 4 0 6
DO x = -20, 20, 6 7 -20,-14,-8,-2,4,10,16
DO n = 25, 0, -5 6 25,20,15,10,5,0
DO m = 20, -20, -6 7 20,14,8,2,-4,-10,-16

• It is not permitted for the program to alter the value of the DO variable between
the initial DO statement and the corresponding END DO statement by any means
other than the automatic incrementation which is part of the DO loop processing.

• There are no restrictions on the types of statements that may appear in the block
of statements which constitute the range of the DO loop. In particular, DO loops
may be nested within a DO loop, although the whole of the nested loop must, of
course, lie within the outer loop.

• In the situations in which it is not possible to determine the number of times that
the loop is executed in advance, one can use the third form of the DO statement,
together with a new statement EXIT, which causes a transfer of control to the
statement immediately following the END DO statement.

• Example:

DO

...

IF(term < epsilon) EXIT

...

END DO

! After obeying the EXIT statement execution continues

! from the next statement

...

• This non-counting form of the DO statement should only be used when the pro-
grammer can be absolutely certain that there is no possible situation in which the
terminating condition will not occur and the loop will become what is known as an
infinite loop. Since such a 100% certainty is rare, it is recommended that such
loops should normally contain a fail-safe mechanism in which a DO variable is
used to limit the number of repetitions to a predefined maximum.

• Example:

41

DO count=1, max_iterations

...

IF(term < epsilon) EXIT

...

END DO

! After obeying the EXIT statement, or after obeying the loop

! max_iteration times, execution continues from the next

! statement

...

• The statement CYCLE is similar to the EXIT statement, except that instead of
transferring control to the statement after the END DO statement it transfers control
back to the start of the DO loop in exactly the same way as if it, in fact transferred
control to the END DO statement.

• It is possible to give a name to a block DO construct, by preceding the DO state-
ment by a name which is separated from the DO by a collon, and by following the
corresponding END DO by the same name:

block name: DO
...
END DO block name

• The CYCLE and EXIT statements may also be followed by the name of an enclosing
DO construct, in which case control is transferred to, or after, respectively, the END
DO statement having the same name.

• A similar naming facility also exists for the block IF and CASE constructs, but in
these cases the names are purely for clarity in the case of complex structures.

• The STOP statement causes an immediate termination of the execution of the pro-
gram.

• The RETURN statement causes an immediate termination of the current procedure.

• A GOTO statement, or GO TO statement, transfers execution to the statement in
the same procedure having a specified label.

• A statement label may be used to identify a statement. A statement label consists
of from one to five consecutive digits, representing a number in the range 1 to 99999,
and which precedes the statement being labelled, with at least one space between
the two. Every statement label in a program unit must be unique.

42

Fortran 90 syntax introduced in Chapter 6

Block DO construct DO do var = initial, final, inc
...
END DO

DO do var = initial, final
...
END DO

DO
...
END DO

Loop control statements EXIT
CYCLE

Named block construct do block name: DO do var = initial, final, inc
statements do block name: DO do var = initial, final

do block name: DO

EXIT do block name
CYCLE do block name
END DO do block name

if block name: IF (logical expression) THEN

ELSE IF (logical expression) THEN if block name
ELSE if block name
END IF if block name

case block name: SELECT CASE (case expression)

CASE (case selector) case block name
CASE DEFAULT case block name
END SELECT case block name

STOP statement STOP

RETURN statement RETURN

GOTO statement GOTO label
GO TO label

43

Example 6.1

Problem (6.1)

Write a program which first reads the number of people sitting an exame. It should then
read their marks (or scores) and print the highest and lowest marks, followed by the
average mark for the class.

Analysis (6.1)

This is a straightforward problem which will use a DO loop to repeatedly read a mark
and use it to update the sum of the marks, the maximum mark so far, and the minimum
mark so far.

Structure plan:

1 Initialize sum to zero, maximum to a large negative value,
minimum to a large positive value

2 Read number of examinees (number)
3 Repeat number times

3.1 Read a mark
3.2 Add it to cumulative sum
3.3 If it is larger than maximum mark so far set maximum to this mark
3.4 If it is smaller than minimum mark so far set minimum to this mark

4 Calculate average
5 Print maximum, minimum and average marks

44

Solution (6.1)

PROGRAM examination_marks

IMPLICIT NONE

!

! This program prints statistics about a set of exam results

!

! Variable declarations

INTEGER :: i, number, mark, &

sum = 0, maximum = -HUGE(1), minimum = HUGE(1)

REAL :: average

!

! Read number of marks, and then the marks

PRINT *, "How many marks are there? "

READ *, number

PRINT *, "Please type ", number, " marks: "

!

! Loop to read and process marks

DO i = 1, number

READ *, mark

!

SELECT CASE(mark)

CASE (0:100)

! On each pass, update sum, maximum and minimum

sum = sum + mark

IF (mark > maximum) maximum = mark

IF (mark < minimum) minimum = mark

CASE DEFAULT

PRINT *, "Invalid mark - Please re-enter data"

CYCLE

END SELECT

!

END DO

!

! Calculate average mark and output results

average = REAL(sum)/number

PRINT *, "Highest mark is ", maximum

PRINT *, "Lowest mark is ", minimum

PRINT *, "Average mark is ", average

!

END PROGRAM examination_marks

45

Example 6.2x

Problem (6.2x)

Write a program to generate the Fibonacci sequence of numbers,

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, etc.

until the absolute value of the difference between the ratio of two consecutive numbers
xn+1

xn

and the Golden Ratio

√
5 + 1

2
is less than some arbitrary small value ε.

Analysis (6.2x)

The Fibonacci sequence is generated by the formula

xn+1 = xn + xn−1, n = 1, 2, . . .

The exit criterion will be: ∣∣∣∣∣xn+1

xn

−
√

5 + 1

2

∣∣∣∣∣ < ε

Structure plan:

1 Initialize x1 and x2 to 1
2 Read epsilon and max iterations
3 Repeat max iterations times:

3.1 Calculate next term x =x1+x2 in the sequence
3.2 Calculate ratio and error
3.3 If error <= epsilon then exit
3.4 Otherwise, set x1=x2 and x2=x

4 Print results with indication of ERROR if the loop was executed
max iterations times without the exit condition being verified

46

Solution (6.2x)

PROGRAM Fibonacci_sequence

IMPLICIT NONE

!

! This program illustrates that the ratio of two consecutive

! numbers of the Fibonacci sequence converges to the

! Golden-Ratio

!

! Constant and variable declarations

INTEGER :: max_iterations, count, x, x1=1, x2=1

REAL :: epsilon, ratio, error, golden_ratio

!

golden_ratio = (1.0+SQRT(5.0))/2.0

!

! Read epsilon and max_iterations

PRINT*, "epsilon=?, max_iterations=?"

READ*, epsilon, max_iterations

!

! Loop to obtain sequence and error

DO count=1, max_iterations

x=x1+x2

ratio=REAL(x)/REAL(x2)

error=ABS(ratio-golden_ratio)

IF(error <= epsilon) EXIT

x1=x2

x2=x

END DO

!

! Output results

IF(count == max_iterations+1) THEN

PRINT*, count, x1, x2, x, error, " ERROR"

ELSE

PRINT*, count, x1, x2, x, error

END IF

!

END PROGRAM Fibonacci_Sequence

47

CHAPTER 7. AN INTRODUCTION TO ARRAYS

OVERVIEW

In scientific and engineering computing it is commonly necessary to manipulate ordered
sets of values, such as vectors and matrices. There is also a common requirement in many
applications to repeat the same sequence of operations on successive sets of data.

In order to handle both of these requirements, Fortran provides extensive facilities
for grouping a set of items of the same type as an array which can be operated on either
as an object in its own right, or by reference to each of its individual elements.

This chapter explains the principles of Fortran 90’s array processing features. These
are considerably more powerful than those of any other programming language, and in-
clude the construction of array-valued constants, the input and output of arrays, the use
of arrays as arguments to procedures, and the returning of an array as the result of a
function. For ease of comprehension, the description in this chapter is restricted to arrays
having one subscript only; arrays having more than one subscript will be discussed in
Chapter 13.

SUMMARY

• An array is an ordered set of related variables which have the same name and type.

• The individual items within an array are called array elements.

• Array elements are identified by following the name of the array by an integer
subscript expression, enclosed in parentheses.

array name(integer expression)

Function references are allowed as part of the subscript expression, as are array
elements (including elements of the same array).

• Example: x, y, z are arrays; i, j, k are integer variables

x(10)

y(i+4)

z(3*i + MAX(i,j,k))

x(INT(y(i)*z(j)+x(k)))

• The subscript of an array may take values between a lower bound and an upper
bound.

• The size or extent of an array is the number of the elements in the array (it is
equal to the difference between the upper and lower bounds plus one). These terms
will have different meanings for arrays having more than one subscript.

• The shape of an array is determined by its extent; it can be stored in an array of
size one whose only element is the extent of the array.

• The declaration of an array can be done using a dimension attribute or an array
specification and must specify the bounds for the subscript values.

type, DIMENSION(extent) :: list of names
type, DIMENSION(lower bnd : upper bnd) :: list of names
type :: name 1(extent 1), name 2(extent 2), . . .
type :: name 1(l bnd 1 : u bnd 1), name 2(l bnd 2 : u bnd 2), . . .

48

• Example:

REAL, DIMENSION(50) :: a, b, c

REAL, DIMENSION(11:60) :: d, e, f

! are equivalent to

REAL :: a(50), b(50), c(50)

REAL :: d(11:60), e(11:60), f(11:60)

• An array-valued constant is specified by an array constructor, which may include
one or more implied DO elements. The list of values in an array constructor must
contain exactly the same number of values as the size of the array to which it is
being assigned in either an assignement statement or in an initial value assignement
in the array declaration statement.

array name = (/ list of values /)
array name = (/ (value list, implied do control) /)

where the implied do control takes exactly the same structure as the DO variable
control specification in a DO statement.

• Example:

INTEGER, DIMENSION(10) :: array_1=(/ 1,2,3,4,5,6,7,8,9,10 /)

INTEGER, DIMENSION(10) :: array_1=(/ (i, i=1,10) /)

INTEGER, DIMENSION(50) :: array_2=(/ (0, i=1,50) /)

INTEGER, DIMENSION(100) :: array_3= &

(/ ((0, i=1,9), 10*j, j=1,10) /)

• Input and output of arrays may be specified element-by-element, by whole arrays,
or by use of an implied DO.

READ *, array element, array name
PRINT *, (array element list, implied do control)

• An array element can be used anywhere that a scalar variable can be used.

• Fortran 90 enables an array to be treated as a single object in its own right, in much
the same way a scalar object.

• The rules for working with whole arrays are:

◦ Two arrays are conformable if they have the same shape; a scalar, including
a constant, is conformable with any array.

◦ All intrinsic operations are defined between two conformable objects.

◦ Intrinsic operations on arrays take place element-by-element.

• Example:

...

REAL :: a(1:20), b(1:20), c(1:20), d(1:20)

...

a = c * d

...

DO i=1,20

b(i) = c(i) * d(i) ! b(i) = a(i)

49

END DO

...

...

REAL :: a(1:20), b(0:19), c(10:29), d(-9:10)

...

a = c * d

...

DO i=1,20

b(i-1) = c(i+9) * d(i-10) ! b(i) = a(i)

END DO

...

• An elemental intrinsic procedure may use an array as an argument in just the
same way as it uses a scalar, delivering array-valued results.

• Example:

...

array_2=SIN(array_1)

...

DO i=1,size

array_3(i) = SIN(array_1(i)) ! array_3(i) = array_2(i)

END DO

...

• An explicit-shape array is an array whose bounds are specified explicitly.

• An assumed-shape array is a dummy argument array whose bounds are not
specified in the declaration of the array, but which assumes the same shape as the
corresponding actual array argument. The array specification for such an array
takes one of the forms:

type, DIMENSION(lower bnd :) :: list of names
type, DIMENSION (:) :: list of names

The second form is equivalent to the first with a lower bound equal to 1. In both
cases the upper bound will only be established on entry to the procedure, and will
be whatever value is necessary to ensure that the extent of the dummy array is the
same of the actual array argument.

• Example:

...

REAL, DIMENSION(10:30) :: a, b

...

CALL array_example(a,b)

...

SUBROUTINE array_example(dum_arr_1, dum_arr_2)

IMPLICIT NONE

REAL, DIMENSION(:) :: dum_arr_1, dum_arr_2

50

...

END SUBROUTINE array_example

• A call or reference to a procedure which has an assumed-shape dummy argument is
one of the situations in which the calling program unit must have full details about
the interface of the called procedure, in other words, the procedure must have an
explicit interface available at the point of the call. This can be achieved by placing
the procedure in a module.

• The intrinsic procedures

SIZE(array name)
LBOUND(array name,1)
UBOUND(array name,1)

return the size, the suffix lower bound and the suffix upper bound of the array
array name.

• An automatic array is an explicit-shape array in a procedure, which is not a
dummy argument array, which has non-constant bounds, and which obtains the
information required to calculate its bounds from outside the procedure at the time
of entering the procedure.

• There are only three situations in which an explicit-shape array may have non-
constant bounds:

◦ if the array is a dummy argument to a procedure;

◦ if the array is an automatic array in a procedure;

◦ if the array is the result of a function.

• An array valued function must have the bounds of the array-valued result variable
declared in a type declaration statement within the body of the function subpro-
gram.

FUNCTION name(...)
IMPLICIT NONE
REAL, DIMENSION(dim) :: name

For example:

FUNCTION name(arr, ...)
IMPLICIT NONE
REAL, DIMENSION(:) :: arr
REAL, DIMENSION(SIZE(arr)) :: name

• Derived type definitions may have arrays as components, provided that they are
explicit-shape arrays having constant bounds.

51

Fortran 90 syntax introduced in Chapter 7

Array declaration type, DIMENSION(extent) :: list of names
type, DIMENSION(lower bnd : upper bnd) :: list of names
type, DIMENSION(lower bnd :) :: list of names
type, DIMENSION(:) :: list of names

Array element array name(integer expression)

Array constructor (/ list of values /)
(/ (value list, int var = initial, final, inc) /)

Array input/output READ *, array element, array name
PRINT *, (array element list, int var = initial, final, inc)
...

Whole array operations a=b*c
etc., where a, b and c are conformable arrays

52

Example 7.1x

Problem (7.1x)

Write a program to calculate: (1) the dot product of two three-dimensional vectors; (2)
the vector product of two three-dimensional vectors; (3) the scalar triple product of three
three-dimensional vectors.

Analysis (7.1x)

Consider the two three-dimensional vectors

a = (a1, a2, a3), b = (b1, b2, b3).

The dot product of the two vectors a and b is the scalar a · b defined by:

a · b = a1 b1 + a2 b2 + a3 b3

The vector product of the two vectors a and b is the vector c = a × b defined by:

c = (a2 b3 − a3 b2, a3 b1 − a1 b3, a1 b2 − a2 b1)

The scalar triple product of the three vectors a, b and c is the scalar [abc] defined by:

[abc] = a · (b× c)

Structure plan:

1 Read selector to choose the product required
2 Read two vectors in cases (1) and (2) and three vectors in case (3)
3 Calculate required product
4 Print result

53

Solution (7.1x)

MODULE products

IMPLICIT NONE

SAVE

!

CONTAINS

!

!

FUNCTION dot_product(a, b)

IMPLICIT NONE

REAL, DIMENSION(3), INTENT(IN) :: a, b

REAL :: dot_product

!

dot_product = a(1)*b(1) + a(2)*b(2) + a(3)*b(3)

END FUNCTION dot_product

!

FUNCTION vector_product(a, b)

IMPLICIT NONE

REAL, DIMENSION(3), INTENT(IN) :: a, b

REAL, DIMENSION(3) :: vector_product

!

vector_product(1) = a(2)*b(3) - a(3)*b(2)

vector_product(2) = a(3)*b(1) - a(1)*b(3)

vector_product(3) = a(1)*b(2) - a(2)*b(1)

END FUNCTION vector_product

!

END MODULE products

54

PROGRAM test_products

USE products

IMPLICIT NONE

REAL, DIMENSION(3) :: a, b, c, vp

REAL :: dp, stp

INTEGER :: selector

!

PRINT*, "selector = ? (1(dp), 2(vp), 3(stp))"

READ*, selector

!

CASE SELECT (selector)

CASE (1)

PRINT*, "a = ?"

READ*, a(1), a(2), a(3)

PRINT*, "b = ?"

READ*, b(1), b(2), b(3)

dp = dot_product(a, b)

PRINT*, "a . b = ", dp

CASE (2)

PRINT*, "a = ?"

READ*, a(1), a(2), a(3)

PRINT*, "b = ?"

READ*, b(1), b(2), b(3)

vp = vector_product(a, b)

PRINT*, "a x b = ", vp

CASE (3)

PRINT*, "a = ?"

READ*, a(1), a(2), a(3)

PRINT*, "b = ?"

READ*, b(1), b(2), b(3)

PRINT*, "c = ?"

READ*, c(1), c(2), c(3)

vp = vector_product(b, c)

stp = dot_product(a, vp)

PRINT*, "a . b x c = ", stp

END SELECT

!

END PROGRAM test_products

55

CHAPTER 8. MORE CONTROL OVER INPUT
AND OUTPUT

OVERVIEW

The input and output facilities of any programming language are extremely important,
because it is through these features of the language that communication between the user
and the program is carried out. However, this frequently leads to a conflict between ease
of use and complexity and Fortran 90, therefore, provides facilities for input and output
at two quite different levels.

The list-directed input and output statements that we have been using up to now
provide the capability for straightforward input from the keyboard and output to the
printer. These statements, however, allow the user very little control over the source or
the layout of the input data, or over the destination or layout of the printed results.

This chapter introduces the more general input/output features of Fortran 90, by
means of which the programmer may specify exactly how the data will be presented and
interpreted, from which of the available input units it is to be read, exactly how the
results are to be displayed, and to which of the available output units the results are to be
sent. Because of the interaction with the world outside the computer, input and output
has the potential for more execution-time errors than most other parts of a program, and
Fortran’s approach to the detection of such errors is also briefly discussed.

SUMMARY

• The data for a list-directed READ statement is a sequence of alternating values and
value separators, each of which may be a comma, a slash (/), a blank, or the
end of the record (that is, of the line), preceded and/or followed by any number of
consecutive blanks.

• If there is no value between two consecutive value separators then a null value is
read, leaving the corresponding variable in the input list unchanged.

• Character data read by a list-directed READ statement must be delimited by match-
ing apostrophes or quotation marks unless it is contained on a single line, does
not contain any blanks, commas or slashes, does not begin with an apostrophe or
quotation mark, and does not begin with a sequence of digits followed by an asterisk.

• For a great many purposes list-directed input is perfectly satisfactory.

• The programmer has virtually no control over the layout of the results printed by a
list-directed PRINT statement.

• The READ and PRINT statements actually have three forms:

READ ch var, input lis
READ label, input lis
READ *, input lis

PRINT ch var, output lis
PRINT label, output lis
PRINT *, output lis

56

• The item following the keyword (READ or PRINT) is a format specifier which
provides a link to the information necessary for the required editing to be carried
out as part of the input or output process. This information is called a format and
consists of a list of edit descriptors enclosed in parenthesis:

(edit descriptor list)

• The first variation, in which the format specifier ch var is a character expression
(a character constant, a character variable, a character array, a character array
element) is called an embedded format because the format itself appears as part
of the READ or PRINT statement.

READ ’(edit descriptor list)’, input list

or

READ ”(edit descriptor list)”, input list

• In the second variation the statement label is the label of a new type of statement
called a FORMAT statement which contains the appropriate format.

• In the third variation, the asterisk indicates that the format to be used is a list-
directed format which will be created by the processor to meet the perceived needs
of the particular input or output list – hence its name.

• The edit descriptors that are used for input in conjunction with a READ statement
are shown below. They fall into two categories: those concerned with the editing of
actual data (the first six), and those concerned with altering the order in which the
characters in the input record are edited (the last four).

Descriptor Meaning

Iw Read the next w characters as an integer
Fw.d Read the next w characters as a real number with d digits
Ew.d after the decimal place if no decimal point is present
Aw Read the next w characters as characters
A Read sufficient characters to fill the input list item,

stored as characters
Lw Read the next w characters as the representation of a

logical value
nX Ignore the next n characters
Tc Next character to be read is at position c
TLn Next character to be read is n charaters before (TL) or
TRn after (TR) the current position

• If the data is typed with a decimal point then the value of d is irrelevant (although
it must be included in the format).

• As a character variable has a defined length any string which is to be stored in it
must be made to have the same length. If we assume that length of the input list
item is len then the following rules apply:

◦ If w is less than len then extra blank characters will be added at the end so as
to extend the length of the input character string to len. This is similar to the
situation with assignement.

57

◦ If w is greater than len, however, the rightmost len characters of the input
character string will be stored in the input list item. This is opposite of what
happens with assignement!

• An A edit descriptor without any field width w is treated as though the field width
was identical to the length of the corresponding input list item.

• The edit descriptor Lw processes the next w characters to derive either a true value,
a false value, or an error. There are exactly two ways of representing true and false
in the data, namely as a string of characters in one of the following forms, optionally
preceded by one or more spaces:

Tcc...c or .Tcc...c
Fcc...c or .Fcc...c

where c represents any character. The lower case letters t and f are treated as being
equivalent to the upper case letters T and F in a logical input field.

• Example: List of input data: 123456789

READ ’(I9)’, n

! n=123456789

READ ’(I3,I3,I3)’, n1, n2, n3

! n1=123; n2=456; n3=789

READ ’(4X,I5)’, num

! num=56789

READ ’(I2,3X,I3)’, i, j

! i=12; j=678

READ (T4,I2,T8,I2,T2,I4)’, x, y, z

! x=45; y=89; z=2345

READ ’(F3.1,F2.2,F3.0,TL6,F4.2)’, r1, r2, r3, r4

! r1=12.3; r2=0.45; r3=678.0; r4=34.56

• A FORMAT statement is a special, labelled, non-executable statement which takes
the form

label FORMAT (edit descriptor list)

It may appear anywhere in the program unit after the initial statement and any USE
statements and before the END statement; it must also come before any internal
procedures.

• The FORMAT statements in a program unit should be kept together for ease of
reference, either before or after the executable statements in the program unit.

• The main edit descriptors that are available for output are shown below:

58

Descriptor Meaning

Iw Output an integer in the next w character positions
Fw.d Output a real number in the next w character positions

with d decimal places
Ew.d Output a real number in the next w character positions

using an exponential format with d decimal places
in the mantissa and four characters for the exponent

Aw Output a character string in the next w character positions
A Output a character string, starting at the next character

position, with no leading or trailing blanks
Lw Output w - 1 blanks, followed by T or F

to represent a logical value
nX Ignore the next n character positions
Tc Output the next item starting at character position c
TLn Output the next item starting n character positions
TRn before (TL) or after (TR) the current position
”c1c2 . . . cn” Output the string of characters c1c2 . . . cn

’c1c2 . . . cn’ starting at the next character position

• A real constant may be written followed by an exponent and a similar format is
allowed for numbers being input by a READ statement. In this case the exponent
may take one of three forms:

� a signed integer constant;

� E followed by an optionally signed constant;

� D followed by an optionally signed constant.

In the latter two cases the letter (D or E) may be followed by one or more spaces.

• If the exponent is greater than 99, or less than -99, then the exponent will be
output as a plus or minus sign, followed by a three digit exponent. Some Fortran
90 processors may choose to use this form of representation for all values of the
exponent.

• For all numeric edit descriptors, if the number does not require the full field width
w it will be preceded by one or mores spaces.

• Example: Consider the real number x = 0.0000361764

PRINT ’(F10.4)’, x ! will print ####0.0000

PRINT ’(F12.6)’, x ! ####0.000036

PRINT ’(F14.8)’, x ! ####0.00003618

PRINT ’(E10.4)’, x ! 0.3618E-04

PRINT ’(E12.6)’, x ! 0.361764E-04

PRINT ’(E14.8)’, x ! 0.36176400E-04

• Considering the Aw edit descriptor, we need to establish exactly what happens if the
length of the output list item is not exactly w. The rules that apply here are similar
to those that we had for input, where len is the length of the character variable or
constant being output:

59

◦ If w is greater than len then the character string will be right-justified within
the output field, and will be preceded by one or more blanks. This is similar
to what happens with the I, F and E edit descriptors.

◦ If w is less than len then the leftmost w characters will be output.

• A number, called a repeat count, may be placed before the I, F, E, A or L edit
descriptors to indicate how many times they are to be repeated.

• Example:

(I5,I5,I5,F6.2,F6.2,F6.2,F6.2)

! is the same as

(3I5, 4F6.2)

• A format may also include a character constant edit descriptor, which takes
the form of a character constant, and is output at the next character position.

• Example:

PRINT ’("The result is ",I5)’, result

! is the same as

PRINT "(’The result is ’,I5)", result

• READ and WRITE statements with control information lists are used to provide
greater flexibility than is possible with the simple READ and PRINT statements
which always use the default input and output units:

READ (cilist) input list
WRITE (cilist) output list

• The control information list cilist consists of one or more items, known as spec-
ifiers, separated by commas. They all take the same basic form:

keyword = value

• There must always be a unit specifier in the control information list which is used
to specify the input or output unit to be used for a READ or WRITE statement. It
takes the form

UNIT = unit

where unit is the input device from which input is to be taken. It either takes the
form of an integer expression whose value is zero or positive, or it may be an asterisk
to indicate that the default input or output unit is to be used.

• The choice of numbers for the default input and output units is dependent upon the
particular implementation. In this book we shall assume that the default input unit
is 5 and that the default output unit is 6, and therefore that:

READ (UNIT = 5) a ! is equivalent to

READ (UNIT = *) a

! and

WRITE (UNIT = 6) a ! is equivalent to

WRITE (UNIT = *) a

60

• A format specifier is used to specify the format to be used with a READ or WRITE
statement. It takes one of the forms

FMT = ch var
FMT = label
FMT = *

• The IOSTAT specifier is concerned with monitoring the outcome of the reading
process, and takes the form

IOSTAT = io status

where io status is an integer variable. At the conclusion of the execution of the READ
statement io status will be set to a value which the program can use to determine
whether any errors occurred during the input process. There are four possibilities:

◦ the variable is set to zero to indicate that no errors occurred;

◦ the variable is set to a processor-dependent positive value to indicate that an
error has occurred;

◦ the variable is set to a processor-dependent negative value to indicate that a
condition known as end-of-file condition has occurred;

◦ the variable is set to a processor-dependent negative value to indicate that a
condition known as end-of-record condition has occurred.

• The first character of each output record being sent to the unit designated by the
processor as a printer is removed before printing takes place and used to control
vertical printer movements; it is called the printer control character.

Character Vertical spacing before printing
(space) one line
0 (zero) two lines
1 (one) first line of next page
+ (plus) no paper advance (overprint)

Because the first character is removed and not printed it is important that we insert
an extra (control) character at the start of each record that is to be output to the
printer.

• Formats, or parts of formats, are repeated as many times as required until the input
or output list has been exhausted. (. . .)

• The slash (/) edit descriptor indicates the end of the current record. It can be used
to define a format which processes two or more separate lines, or (more accurately)
records. On input, a / causes the rest of the current record to be ignored and the
next input item to be the first item of the next record. On output, a / terminates
the current record and starts a new one. The / edit descriptor can, but need not
be, separated from any preceding or succeeding descriptor by a comma. Multiple
consecutive / descriptors cause input records to be skipped or null (blank) records
to be output.

• Example:

READ ’(3F8.2/3I6)’, a, b, c, p, q, r

will read three real numbers from the first record and three integers from the second.

61

• Example:

WRITE (UNIT=6, FMT=201) a, b, a+b, a*b

201 FORMAT("1", T10, "Multi-record example"/ &

"0", "The sum of", F6.2, " and", F6.2, " is", F7.2/ &

1X, "Their product is", F10.3)

will cause the following output:

--- (new page}

Multi-record example

The sum of 12.25 and 23.50 is 35.75

Their product is 287.875

• Example:

READ ’(3F8.2//3I6)’, a, b, c, p, q, r

will read three real numbers from the first record and three integers from the third.

• Example:

WRITE (UNIT=6, FMT=202) a, b, a+b, a*b

202 FORMAT("1" / T10, "Multi-record example"// &

"0", "The sum of", F6.2, " and", F6.2, " is", F7.2// &

1X, "Their product is", F10.3)

will cause the following output:

--- (new page}

Multi-record example

The sum of 12.25 and 23.50 is 35.75

Their product is 287.875

62

Fortran 90 syntax introduced in Chapter 8

Input/output statements READ (cilist) input list
WRITE (cilist) output list

Format specifier (list of edit descriptors)

FORMAT statement label FORMAT(list of edit descriptors)

Edit descriptors Iw, Fw.d, Ew.d, Aw, A, Lw
nX, Tc, TLn, TRn, /

Control information UNIT = unit
list specifiers UNIT = *

FMT = label
FMT = ’format specifier’
FMT = *
IOSTAT = int var

63

CHAPTER 9. USING FILES TO PRESERVE DATA

OVERVIEW

One of the most important aspects of computing is the ability for a program to save the
data that it has been using for subsequent use either by itself or by another program.
This involves the output of the data to a file, usually on some form of magnetic or optical
medium, for input at some later time. Files may be written and read sequentially or,
on some types of media, the information in a file may be written and read in a random
order. In either case the file may be stored permanently within the computer system, for
example on a magnetic or magneto-optical disk which is an integral part of the computer,
or it may be stored on some medium, such as disk or tape, which may be removed from
the computer either for safe-keeping of for physical transport to another computer.

This chapter shows how the READ and WRITE statements discussed in Chapter 8
can be used to read data from a file and write data to a file, in a sequential manner,
and introduces several additional statements which are required when dealing with files.
More sophisticated uses of files, including random access to information stored in a file,
is discussed later, in Chapter 15.

SUMMARY

• Information that is to be preserved after the execution of a program is ended is
stored in a file.

• A file consists of a sequence of records.

• The records in a file may be accessed in a sequential manner, or in a random
access manner.

• A file may consist of formatted records and, optionally, one endfile record, or
it may consist of unformatted records, and optionally, one endfile record.

• A formatted record consists of a sequence of characters selected from those which
can be represented by the processor being used.

• A formatted record is written by a formatted WRITE statement, or by some means
external to Fortran; it is read by a formatted READ statement.

• Example:

WRITE (UNIT = 7, FMT = 200) var_1, var_2, var_3

WRITE (UNIT = *) var_1, var_2, var_3

• An unformatted record consists of a sequence of values (in a processor-dependent
form) and is, essentially, a copy of some part, or parts, of the memory of the com-
puter.

• An unformatted record is written by an unformatted WRITE statement, and it is
read by an unformatted READ statement. These are the same as the corresponding
formatted statements but without any format specifier.

• Example:

64

WRITE (UNIT=9) var_1, var_2, var_3

WRITE (UNIT=3, IOSTAT=ios) x, y, x

READ (UNIT=9) var_4, var_5, var_6

READ (UNIT=3, IOSTAT=io_status) a, b, c

• One important difference between the input/output of formatted and unformatted
records is that whereas a formatted input or output statement may read or write
more than one record by use of a suitable format, for example

WRITE (UNIT=3, FMT=’(2I8/(4F12.4))’) int_1, int_2, arr

an unformatted input or output statement will always read or write exactly one
record. The number of items in the input list of an unformatted READ statement
must therefore be the same as the number in the output list of the unformatted
WRITE statement that wrote it, or fewer (in which case the last few items in the
record are ignored).

• An endfile record is a special type of record which can only occur as the last record
of a file and as is written by a special statement of one of the forms

ENDFILE unit

or

ENDFILE (auxlist)

In the first case unit is the output unit to which an endfile record is to be written,
while in the second case auxlist consists of a UNIT specifier and, optionally, an
IOSTAT specifier, where these specifiers are the same as those already introduced
for use with a WRITE statement.

• An ENDFILE statement writes a special endfile record to the specified file and leaves
the file positioned after that record. Any information which physically exists after an
endfile record becomes inaccessible thereafter, and may be considered to have been
deleted. It is not subsequently possible to write to, or read from, that file without
first repositioning it by using either a REWIND or a BACKSPACE statement.

• If an endfile record is read by an input statement it will cause an end-of-file con-
dition which can be detected by an IOSTAT specifier in a READ statement. If it is
not specifically detected in this way an error will occur and the program will fail.

• It is a good practice to place an endfile record at the end of all sequential files in
order that a program which subsequently reads the file can easily detect the end of
the information in the file without the need for any other special records or counts.
It also acts as a safeguard against an error which might cause the program not to
detect the end of the information in the file.

• For any information to be transferred between a file and a program the file must be
connected to a unit; in other words, a logical connection, or relationship, must be
established between the file and the unit number that will be used in any READ or
WRITE statements which are to use that file. This connection is initiated by means
of an OPEN statement, which takes the form

OPEN (open specifier list)

where open specifier list is a list of specifiers, some of which are shown below:

65

UNIT = unit number
FILE = file name
STATUS = file status
FORM = format mode
ACTION = allowed actions
POSITION = file position
IOSTAT = ios

• The UNIT specifier must be present, and takes the same form as in the READ, WRITE
and ENDFILE statements. All the remaining specifiers are optional and enable use
to specify various requirements regarding the file that is to opened and to monitor
the opening process itself.

• The FILE specifier is used to specify the name by which a file is known to the
computer system. The character expression file name takes the form of a filename
for the particular computer system, after the removal of any trailing blanks.

• The STATUS specifier is used to define certain restrictions on our use of the file. The
character expression file status must take one of the values OLD, NEW, REPLACE,
SCRATCH or UNKNOWN, after the removal of any trailing blanks.

• The FORM specifier is used to specify if the records in the file must either all be
formatted or all be unformatted. The character expression format mode must take
one of the values FORMATTED or UNFORMATTED, after the removal of any trailing
blanks.

• Example:

OPEN (UNIT=7, FILE="datafile", STATUS="OLD", FORM="FORMATTED")

• The ACTION specifier is used to specify what type of input/output actions are
allowed with the file. The character expression allowed actions must take one of
the three values READ, WRITE or READWRITE, after the removal of any trailing
blanks.

• The POSITION specifier allows the programmer to instruct the OPEN statement to
cause the file to be positioned at some point other than the beginning. The character
expression file position must take one of the three values REWIND, APPEND or
ASSIS, after the removal of any trailing blanks.

• The specifier IOSTAT is concerned with recognizing when an error occurs during
the connection process and operates in the same way as has already benn discussed
in connection with the READ, WRITE and ENDFILE statements. In the event of an
error during the opening of a file the execution of the program will be terminated
unless it is detected by the program.

• Fortran provides two additional file-positioning statements to alter the position
in a file without reading or writing any records.

• The first of these file-positioning statements

BACKSPACE unit number

or

BACKSPACE (auxlist)

66

causes the file to be positioned just before the preceding record (that is, it enables
the program to read the immediately previously read record again).

• The other file-positioning statement

REWIND unit number

or

REWIND (auxlist)

causes the file to be positioned just before the first record so that a subsequent input
statement will start reading or writing from the beginning.

• Writing a record to a sequential file destroys all information in the file after that
record.

Fortran 90 syntax introduced in Chapter 9

File connection statement OPEN (open specifier list)

Unformatted input/ READ (control information list) input list
output statements WRITE (control information list) input list

where the control information list
does not include a format specifier

ENDFILE statement ENDFILE unit
ENDFILE (auxlist)

File positioning BACKSPACE unit
statements BACKSPACE (auxlist)

REWIND unit
REWIND (auxlist)

Control information FILE = file name
list specifiers STATUS = file status

where file status is one of
“OLD”, “NEW”, “REPLACE”,
“SCRATCH” or “UNKNOWN”

FORM = format mode
where format mode is either

“FORMATTED” or “UNFORMATTED”
ACTION = allowed actions

where allowed actions is one of
“READ”, “WRITE” or “READWRITE”

POSITION = file position
where file position is one of

“REWIND”, “APPEND” or “ASIS”

67

Example 9.1x

Problem (9.1x)

Write a program which will read a file containing book references, will select those that
contain a character string specified by the user and will print the selected references to
another file.

Analysis (9.1x)

Structure plan:

1 Read unit numbers in unit and out unit
2 Read file names in file and out file
3 Read string
4 Use intrinsic function LEN TRIM to obtain the length

of string, without counting any trailing blank characters.
5 Call subroutine read write to perform the required selection.

The subroutine read write will depend on the form of the file in file that contains the book
references. In the example shown it is supposed that each book reference is composed by
a variable number of 80 character lines, the last line terminated by the character string
”//”. Book references are separated by a blank line. Only the first line of each book
reference is searched for the string string.

68

Solution (9.1x)

PROGRAM books

!--------------------

! FJR / 2.NOV.1994 / 22.OUT.2003

!--------------------

IMPLICIT NONE

CHARACTER (LEN=15) :: in_file, out_file

CHARACTER (LEN=10) :: string

INTEGER :: in_unit, out_unit, len_string

!--------------------

PRINT *, "input unit, output unit = ?"

READ *, in_unit, out_unit

!--------------------

PRINT *, "input file, output file = ?"

READ *, in_file, out_file

!--------------------

OPEN (UNIT=in_unit, FILE=in_file , STATUS="OLD")

OPEN (UNIT=out_unit, FILE=out_file, STATUS="NEW")

!--------------------

PRINT *, "string = ? (1 <= LEN(string) <= 10"

READ *, string

!--------------------

len_string=LEN_TRIM(string)

CALL read_write(string, len_string, in_unit, out_unit)

!--------------------

END PROGRAM books

69

SUBROUTINE read_write(string, len, in, out)

IMPLICIT NONE

CHARACTER (LEN=80) :: c1, c2

CHARACTER (LEN=len) :: string

CHARACTER (LEN=2), PARAMETER :: cs="//"

INTEGER :: in, out, len, ix, iy

!-------------------------

DO

READ (UNIT=in, FMT=100) c1

IF (c1(1:7) == "ENDFILE") RETURN

ix=INDEX(c1,string)

IF (ix == 0) CYCLE

WRITE (UNIT=out, FMT=100) TRIM(c1)

!--------------------

DO

READ (UNIT=in, FMT=100) c2

WRITE (UNIT=out, FMT=100) TRIM(c2)

iy = INDEX(c2,cs)

!---------------

IF (iy > 0) THEN

READ (UNIT=in, FMT=100) c2

WRITE (UNIT=out, FMT=100) TRIM(c2)

EXIT

END IF

!---------------

END DO

!--------------------

END DO

!-------------------------

100 FORMAT(A)

END SUBROUTINE read_write

70

CHAPTER 10.
AN INTRODUCTION TO NUMERICAL
METHODS IN FORTRAN 90 PROGRAMS

OVERVIEW

The main area of application for Fortran programs is, and always has been, the solution
of scientific and technological problems – a process which usually involves the solution of
mathematical problems by numerical, as opposed to analytical, means.

This chapter introduces some of the major limitations that are imposed on numerical
problem solving by the physical characteristics of computers, as well as by the nature of
the problems being solved, and the means that are provided in Fortran 90 to ensure that
the effects of these constraints are both predictable and controllable. Two of the most
common numerical problems, the fitting of a straight line through a set of experimental or
empirical data and the solution of non-linear equations, are then discussed, and examples
given of how these problems may be solved in Fortran.

For those particularly interested in this aspect of programming, Chapter 18 will
return to the subject in rather more detail, with examples of several other commonly
required numerical methods.

SUMMARY

• REAL numbers are stored in a computer as floating-point approximations to their
true mathematical values. The accuracy of this approximation is determined by the
form of the floating point number which is allocated a fixed number of bits for the
mantissa (thus defining the precision) and a fixed number for the exponent (thus
defining the range of the numbers).

• All REAL calculations are subject to round-off errors, and the programmer must
take care to perform complicated calculations in such a way as to minimize these
effects.

• Overflow will occur if a calculation would result in an exponent for a real number
being larger than the maximum possible exponent allowed. Overflow results in an
error condition.

• Underflow will occur if a calculation would result in an exponent for a real number
being smaller than the minimum possible exponent allowed. The result of underflow
is that the result of the calculation is treated as zero; it is not treated as an error
by many processors.

• To permit more precise control over the precision and exponent range of floating
point numbers REAL variables are parameterized. That is, they have a parameter
associated with them that specifies minimum precision and exponent range require-
ments. This is called the kind type parameter. When this parameter is not
specified explicitly, the type of the floating-point number is said to be default-real.
The kind type parameter value assigned to a default real is processor-dependent.

• Example:

REAL :: a, b, c, d ! default-real

71

REAL, DIMENSION(10) :: x, y ! default-real

REAL :: p(20), q(40), r(60) ! default-real

REAL(KIND=4) :: e, f

REAL(KIND=1) :: g, h

REAL(KIND=4), DIMENSION(10) :: u, v

REAL(KIND=2) :: s(8), t(5)

• For any variable or constant that is an intrinsic type, the value of its kind type can
be found by using the intrinsic function KIND.

• Example:

REAL(KIND=3) :: x

REAL :: y

INTEGER :: i, j

i = KIND(x) ! i = 3

j = KIND(y) ! j = value for the kind type of

! a default real number

• The SELECTED REAL KIND intrinsic function may be used to determine the kind
type parameter of the real number representation on the current processor which
meets, at least, a specified degree of precision and exponent range.

• This intrinsic function has two optional arguments P and R: P is a scalar integer
argument specifying the minimal number of decimal digits required; R is a scalar in-
teger argument specifying the minimal decimal exponent range required. The result
of the function is the kind type that meets, or minimally exceeds, the requirements
specified by P and R. If more than one kind type parameter meets the requirements,
the value returned is the one with the smallest decimal precision. If the precision is
not available the result is -1, if the range is not available is -2, if neither is available
is -3.

• Example:

REAL(KIND=SELECTED_REAL_KIND(P=8, R=30)) :: m

REAL(KIND=SELECTED_REAL_KIND(P=6, R=30)) :: n

• The important point to notice here is that, regardless of the computer on which the
above code is compiled and executed, it will not have to be changed in any way to
meet the specified precision and range requirements. The values returned by the
SELECTED REAL KIND function may change, but that is of no consequence to the
program as far as portability is concerned. In fact, because of the lack of portability
of the kind type parameter values, we recommend that they only be used via the
SELECTED REAL KIND function. The easiest way to do this is to define a constant
for use in subsequent variable declarations.

• Example:

INTEGER, PARAMETER :: real_8_30 = SELECTED_REAL_KIND(P=8, R=30)

...

REAL (KIND=real_8_30) :: x, y, z

72

• It is permissible to not specify a value for R in a reference to SELECTED REAL KIND,
in which case the range provided will be the default range for the precision specified.

• Example:

INTEGER, PARAMETER :: real_8 = SELECTED_REAL_KIND(P=8)

• Real constants also have a kind type parameter and, as with variables, if none is
specified then the constant is of type default real. The kind type parameter is
explicitly specified by following the constant’s value by an underscore and the kind
parameter.

• Example:

-103.4_7 ! Real of kind type 7

3.14_high ! Real of kind type high

4.0E7_2 ! Real of kind type 2

2.7 ! Default real (processor-dependent kind type)

• The use of parameterized REAL variables and constants, in conjunction with the
SELECTED REAL KIND intrinsic function, provides a portable means of specifying
the precision and exponent range for numerical algorithms.

• A well-conditioned problem is one which is relatively insensitive to changes in the
values of its parameters, so that small changes in these parameters only produce
small changes in the output. An ill-conditioned problem is one which is highly
sensitive to changes in its parameters, and where small changes in these parameters
produce large changes in the output.

• A numerical process (algorithm) is said to be stable if the answer it gives is the
mathematically exact answer to a problem that is only slightly different from the
problem given. It is said to be unstable if the answer it provides is to a problem
substantially different from the one given.

• The two principal causes of unstable algorithms are round-off error and trunca-
tion error.

Fortran 90 syntax introduced in Chapter 10

Variable declarations REAL(KIND=kind type) . . . :: list of variable names

Literal constant numerical literal kind type
definition

73

Example 10.2

Problem (10.2)

Write a program to find the root of the equation f(x) = 0 which lies in a specified interval.
The program should use an external function to define the equation, and the user should
input the details of the interval in which the root lies and the accuracy required.

Analysis (10.2)

We have already discussed the mathematics underlying the method, and so can proceed
directly to the design of our program.

Structure plan:

1 Read range (left and right), tolerance and maximum iterations
2 Call subroutine bisect to find a root in the interval (left, right)
3 If root found then

3.1 Print root
otherwise
3.2 Print error message

Subroutine bisect
Real dummy arguments: xl start, xr start, tolerance, zero, delta
Integer dummy arguments: max iterations, num bisecs, error

[Note that zero is the root, delta is the uncertainty in the
root (it will not exceed tolerance), num bisecs is the number
of interval bisections taken and error is a status indicator]

1 If xl start and xr start do not bracket a root then
1.1 Set error = - 1 and return

2 Set x left=xl start, x right=xr start
3 Repeat max iterations times

3.1 Calculate mid-point (x mid) of interval
3.2 If (x mid - x left) ≤ tolerance then exit with

zero = x mid, delta = x mid - x left,
and error = 0 to indicate success

3.3 Otherwise, determine which half interval the root lies in
and set x left and x right appropriately

4 No root found so set error = -2 to indicate failure to converge
quickly enough

3.3.1 If f(x left) × f(x mid) < 0 then
3.3.1.1 set x right to x mid
otherwise
3.3.1.1 set x left to x mid

74

Solution (10.2)

MODULE constants

IMPLICIT NONE

!

! Define a kind type q to have at least 6 decimal digits

! and an exponent range form 10**30 to 10**(-30)

INTEGER, PARAMETER :: q = SELECTED_REAL_KIND(P=6, R=30)

END MODULE constants

PROGRAM zero_find

USE constants

IMPLICIT NONE

!

! This program finds a root of the equation f(x)=0 in a

! specified interval to within a specified tolerance of

! the true root, by using the bisection method

!

! Input variables

REAL(KIND=q), EXTERNAL :: f

REAL(KIND=q) :: left, right, tolerance

INTEGER :: maximum_iterations

!

! Other variables

REAL(KIND=q) :: zero, delta

INTEGER :: number_of_bisections, err

!

! Get range and tolerance information

PRINT *, "Give the bounding interval (two values)"

READ *, left, right

!

PRINT *, "Give the tolerance"

READ *, tolerance

!

PRINT *, "Give the maximum number of iterations allowed"

READ *, maximum_iterations

!

! Calculate root by the bisection method

CALL bisect(f, left, right, tolerance, maximum_iterations, &

zero, delta, number_of_bisections, err)

!

! Determine type of result

SELECT CASE (err)

CASE (0)

PRINT *, "The zero is ", zero, "+- ", delta

PRINT *, "obtained after ", number_of_bisections, &

" bisections"

75

CASE (-1)

PRINT *, "The input is bad"

CASE (-2)

PRINT *, "The maximum number of iterations has been exceeded"

PRINT *, "The x value being considered was ", zero

END SELECT

END PROGRAM zero_find

SUBROUTINE bisect(f, xl_start, xr_start, tolerance, max_iterations,&

zero, delta, num_bisecs, error)

USE constants

IMPLICIT NONE

!

! This subroutine attempts to find a root in the interval

! xl_start to xr_start using the bisection method

!

! Dummy arguments

REAL(KIND=q), INTENT(IN) :: xl_start, xr_start, tolerance

INTEGER, INTENT(IN) :: max_iterations

REAL(KIND=q), INTENT(OUT) :: zero, delta

INTEGER, INTENT(OUT) :: num_bisecs, error

!

! Function used to define equation whose roots are required

REAL(KIND=q), EXTERNAL :: f

!

! Local variables

REAL(KIND=q) :: x_left, x_mid, x_right, v_left, v_mid, v_right

!

! Initialize the zero-bounding interval and the function

! values at the end points

IF (xl_start < xr_start) THEN

x_left = xl_start

x_right = xr_start

ELSE

x_left = xr_start

x_right = xl_start

END IF

!

v_left = f(x_left)

v_right = f(x_right)

!

! Validity check

IF (v_left * v_right >= 0.0 .OR. tolerance <= 0.0 .OR. &

max_iterations < 1) THEN

error = -1

RETURN

END IF

76

!

DO num_bisecs = 0, max_iterations

delta = 0.5 * (x_right-x_left)

x_mid = x_left + delta

IF (delta < tolerance) THEN

! Convergence criteria satisfied

error = 0

zero = x_mid

RETURN

END IF

!

v_mid = f(x_mid)

! ***

! Remove the following print statement when the program

! has been thoroughly tested

PRINT ’("Iteration", I3, 4X, 3F12.6, " (", F10.6, ")")’, &

num_bisecs, x_left, x_mid, x_right, v_mid

! ***

IF (v_left * v_mid < 0.0) THEN

! A root lies in the left half of the interval

! Contract the bounding interval to the left half

x_right = x_mid

v_right = v_mid

ELSE

! A root lies in the right half of the interval

! Contract the bounding interval to the right half

x_left = x_mid

v_left = v_mid

END IF

END DO

!

! The maximum number of iterations has been exceeded

error = -2

zero = x_mid

END SUBROUTINE bisect

FUNCTION f(x)

USE constants

IMPLICIT NONE

! Function type

REAL(KIND=q) :: f

! Dummy argument

REAL(KIND=q), INTENT(IN) :: x

f = x + EXP(x)

END FUNCTION f

77

CHAPTER 13. ARRAY PROCESSING AND
MATRIX MANIPULATION

OVERVIEW

In Chapter 7 we discussed the basic principles of Fortran’s array facilities in the context of
rank-one arrays. In mathematical terms such arrays are suitable for representing vectors,
but in order to represent matrices, or more complex rectangular structures, more than
one subscript is required. The same general principles apply to rank-n arrays as were
described earlier in the context of rank-one arrays, although the order of the array elements
is occasionally important.

As well as extending the basic array concepts to rank-n arrays, however, Fortran
contains several other powerful array features which are the subject of the major part
of this chapter. These include dynamic arrays, whose shape is not determined until
execution time, and sub-arrays, which are created from either a regular or an irregular
set of elements of another array. Finally, the facilities for whole array processing are re-
examined in the light of these new, more flexible, types of arrays, and additional concepts
are introduced to add still further to the power of Fortran’s array processing capability.

SUMMARY

• In Fortran, an array is formally defined as a compound entity that contains an
ordered set of scalar entities, each one of the same type, arranged in a rectangular
pattern.

• An array may have from one to seven dimensions. The rank of an array is defined
as the number of its dimensions. A vector is a rank-one array; a matrix is a rank-two
array.

• For each dimension there are two bounds which define the range of index values
that are permitted for that dimension, the lower and the upper index bounds.

• The extent of a dimension is the number of permissible index values for that di-
mension. It is given by

MAX(upper index bound - lower index bound +1, 0)

• An array may have any non-negative extent, including zero, for any of its dimensions.

• The size of an array is the total number of elements it contains and is equal to the
product of its extents.

• The shape of an array is determined by the number of its dimensions and the extent
along each dimension; it is representable as a rank-one array whose elements are the
extents.

• There are four different classes of arrays: explicit-shape arrays, assumed-shape ar-
rays, automatic arrays and deferred-shape arrays.

• Explicit-shape arrays are arrays whose index bounds for each dimension are
specified when the array is declared in a type-declaration statement. In this context,
specified does not necessarily mean fixed. It means that the index bounds can be
calculated from information available when the arrays are declared.

78

• The rank and extent of each dimension of an explicit-shape array are specified by
using the dimension attribute in a type declaration statement. Instead of the extent
of one or more dimensions one may specify the lower and upper index bounds for
the dimension.

type, DIMENSION(list of explicit-shape specifiers) :: list of names

The rank of the array is the number of explicit-shape specifiers given. Each of these
specifies the lower and upper index bounds for one dimension and takes the form

lower bound : upper bound

or

upper bound

where lower bound and upper bound are specification expressions. If the lower-
bound is omitted it is taken to be 1.

• In the case of a rank-two array, that is, a matrix, the number of rows is specified
first and the number of columns second.

• Example:

REAL, DIMENSION(8) :: a

INTEGER, DIMENSION(3, 10, 2) :: b

TYPE(point), DIMENSION(4, 2, 100, 8) :: c

REAL, DIMENSION(11:18) :: a

INTEGER, DIMENSION(5:7, -10:-1, 2) :: b

TYPE(point), DIMENSION(5:8, 0:1, 100, -3:4) :: c

• Explicit-shape arrays with constant index bounds can be specified in type declara-
tion statements in either main programs or procedures. In a procedure, a dummy
argument may be an explicit-shape array whose bounds are integer expressions, the
values of which can be determined at the time of entry to the procedure.

• Example:

REAL, DIMENSION(15, 50) :: p

REAL, DIMENSION(15, 15, 2) :: q

...

CALL explicit(p, q, 15, 7)

...

SUBROUTINE explicit(a, b, m, n)

IMPLICIT NONE

INTEGER, INTENT(IN) :: m, n

REAL, DIMENSION(m, n*n+1), INTENT(INOUT) :: a

REAL, DIMENSION(-n:n, m, INT(m/n)), INTENT(OUT) :: b

...

END SUBROUTINE explicit

79

• The elements of an array form a sequence known as the array element order. It
can ve visualized as all the elements of an array, of whatever rank, being arranged
in a sequence in such a way that the first index of the element specification is
varying most rapidly, the next index of the element specification is varying the
second most rapidly, and continuing in this manner until the last index of the
element specification is varying the least rapidly.

• An array constructor is a means of specifying a literal rank-one array-valued
constant. It takes the form

(/ value list /)

where each item in value list is either a single value or a list in parentheses controlled
by an implied DO.

• The RESHAPE intrinsic function constructs an array of rank greater than one and
of a specified shape from the elements of a given rank-one array. This function has
two arguments, both of which are rank-one arrays: the first is the source array and
the second specifies the required shape. The elements of the source array are used
in array element order.

• Example: The statement

RESHAPE ((/ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 /), (/ 2, 3 /))

produces the matrix[
1.0 3.0 5.0
2.0 4.0 6.0

]
• Input and output of arrays, or parts of arrays, can be handled in three ways:

◦ as a list of individual array elements;

◦ as a list of array elements under the control of an implied DO;

◦ as the complete array, by including the unsubscripted array name in the input
or output list; in this case the array elements will be transferred in array
element order.

• In general it is advisable to use an implied DO when reading or writing whole arrays
as it makes abolutely clear in which order the data is to be presented or the results
are to be printed.

• Example:

REAL, DIMENSION(50,6) :: x

PRINT ’(6F8.2)’, x ! will print out the data as

x(1,1) x(2,1) x(3,1) x(4,1) x(5,1) x(6,1)

x(7,1) x(8,1) x(9,1) x(10,1) x(11,1) x(12,1)

...

x(49,1) x(50,1) x(1,2) x(2,2) x(3,2) x(4,2)

x(5,2) x(6,2) x(7,2) x(8,2) x(9,2) x(10,2)

...

80

PRINT ’(6F8.2)’, ((x(i,j), j=1,6), i=1,50)

! will print out the data as

x(1,1) x(1,2) x(1,3) x(1,4) x(1,5) x(1,6)

x(2,1) x(2,2) x(2,3) x(2,4) x(2,5) x(2,6)

...

• Assumed-shape arrays may only be dummy arguments of a procedure that has
an explicit interface; they cannot occur in a main program. They take their shape
from association with actual arguments when a procedure is referenced, hence the
name assumed-shape. The actual argument must be of the same type and have the
same rank as the dummy argument.

• The dimension attribute for an assumed-shape array takes the form

DIMENSION (list of assumed-shape specifiers)

The rank of the array is the number of assumed-shape specifiers given. Each
assumed-shape specifiers specifies the lower and upper index bounds for one di-
mension of the array and takes the form

lower bound :

or

:

If the lower bound is omitted it is taken to be 1.

• Example:

REAL FUNCTION assumed_shape(a, b)

IMPLICIT NONE

INTEGER, DIMENSION(: , :) :: a

REAL, DIMENSION(5: , : , :) :: b

...

END REAL FUNCTION assumed_shape

• The intrinsic functions SIZE, LBOUND and UBOUND have two arguments. The
first is the name of the array. The second is optional; if present, it specifies the
dimension; it must therefore be an integer, DIM, which lies in the range 1 ≤ DIM ≤
rank.

◦ If DIM is present, SIZE returns the extent of the specified dimension; if DIM is
not present, SIZE returns the size of the whole array.

◦ If DIM is present, then LBOUND returns the lower index bound of the specified
dimension; if DIM is not present, the result of the function reference is a rank-
one array containing all the lower index bounds

◦ If DIM is present, then UBOUND returns the upper index bound of the specified
dimension; if DIM is not present, the result of the function reference is a rank-
one array containing all the upper index bounds.

81

• An automatic array is a special type of explicit-shape array which can only be
declared in a procedure, which is not a dummy argument, and which has at least
one index bound that is not constant. The space for the elements of an automatic
array is created dynamically when the procedure is entered and is removed upon
exit from the procedure. In between entry and exit, an automatic array may be
used in the same manner as any other array – including passing it or its elements
as actual arguments to other procedures.

Example:

SUBROUTINE abc(x, y, n)

IMPLICIT NONE

!

! Dummy arguments

INTEGER, INTENT(IN) :: n

REAL, DIMENSION(n), INTENT(INOUT) :: x ! Explicit-shape

REAL, DIMENSION(:), INTENT(INOUT) :: y ! Assumed-shape

!

! Local variables

REAL, DIMENSION(SIZE(y,1)) :: e ! Automatic

REAL, DIMENSION(n, n) :: f ! Automatic

REAL, DIMENSION(10) :: g ! Explicit-shape

...

END SUBROUTINE abc

• Automatic arrays are convenient when array space (of variable shape) is needed on
a temporary basis inside a procedure, and such arrays are, therefore, often called
work arrays.

• An allocatable array is an array whose rank is declared initially, but none of
its extents, and which is subsequently allocated with bounds specified dynamically
during execution. The space required for an allocatable array may be released at
any time during execution by deallocating the array. Allocatable arrays cannot be
dummy arguments, function results or components of a derived type. (. . .)

• In whole array processing two conformable arrays can appear as operands in an
expression or an assignement, and the operation or assignement is carried out on an
element-by-element basis. The following rules apply:

◦ Two arrays are conformable if they have the same shape.

◦ A scalar, including a constant, is conformable with any array.

◦ All intrinsic operations are defined between conformable arrays.

• Example: If three rank-four arrays are declared as follows

REAL, DIMENSION(10, 10, 21, 21) :: x

REAL, DIMENSION(0:9, 0:9, -10:10, -10:10) :: y

REAL, DIMENSION(11:20, -9:0, 0:20, -20:0) :: z

then the statement

x = y + z

82

has exactly the same effect as the following nest of DO loops

DO i = 1, 10

DO j = 1, 10

DO k = 1, 21

DO l = 1, 21

x(i,j,k,l) = y(i-1, j-1, k-11, l-11) + &

z(i+10, j-10, k-1, l-21)

END DO

END DO

END DO

END DO

• The concept of function can be extended to array-valued functions. The following
rules apply:

◦ An array-valued-function must have an explicit interface.

◦ The type of the function, and an appropriate dimension attribute, must appear
within the body of the function, not as part of the FUNCTION statement.

◦ The array that is the function result must be an explicit-shape array, although
it may have variable extents in any of its dimensions.

• Many of Fortran’s intrinsic procedures may be used in an elemental manner in
whole-array expressions; in other words, they will accept arrays as actual arguments,
and will return as their result an array of the same shape as the actual argument in
which the procedure has been applied to every element of the array.

• Fortran provides three intrinsic functions specifically designed for vector and matrix
operations, where it is assumed that matrices are stored in rank-two arrays and
vectors are stored in rank-one arrays: MATMUL, DOT PRODUCT and TRANSPOSE.

• Fortran 90 contains a large number of other intrinsic functions which operate on
arrays of any dimension. Four of these, MAXVAL, MINVAL, PRODUCT and SUM,
are also particularly useful for work with vectors and matrices.

Name Result

MATMUL Matrix product of two matrices, or a matrix and a vector
DOT PRODUCT Scalar (dot) product of two vectors
TRANSPOSE Transpose of a matrix
MAXVAL Maximum value of all the elements of an array, or of all

the elements along a specified dimension of an array
MINVAL Minimum value of all the elements of an array, or of all

the elements along a specified dimension of an array
PRODUCT Product of all the elements of an array, or of all

the elements along a specified dimension of an array
SUM Sum of all the elements of an array, or of all

the elements along a specified dimension of an array

• Masked array assignement is a generalization of whole array assignement. It
allows a finer degree of control over the assignement of one array to another, by
use of a mask which determines whether the assignement of a particular element

83

should take place or, alternatively, which of two alternate values should be assigned
to each element. It comes in two forms.

• The first, simpler, form is known as a WHERE statement, and takes the general
form

WHERE (mask expression) array assignement statement

where mask expression is a logical expression of the same shape as the array variable
being defined in the array assignement statement The effect is that the assignement
statement is only executed for those elements where the elements in the correspond-
ing positions of the mask expression are true.

• Example:

REAL, DIMENSION(100) :: array

...

WHERE (array < 0.0) array = -array

will change the sign of all the elements of array having negative values, and leave
those having positive values unchanged.

• The second form of the masked array assignement is the WHERE construct, which
takes the form

WHERE (mask expression)
array assignement statement

ELSEWHERE
array assignement statement

END WHERE

or

WHERE (mask expression)
array assignement statement

END WHERE

The effect of the WHERE construct is that the set of array assignement statements
following the WHERE are only executed for those elements where the elements in
the corresponding positions in the mask expression are true. Conversely, the set
of array assignement statements immediately following the ELSEWHERE are only
executed for those elements where the elements in the corresponding positions in
the mask expression are false. Note that all the arrays being assigned values must
be conformable with each other, and with the mask array.

• Example:

REAL, DIMENSION(100) :: arr

...

WHERE (array /= 0.0)

array = 1.0/array

ELSEWHERE

array = 1.0

END WHERE

will replace every non-zero element of array by its reciprocal, and every zero element
by 1.0.

84

• Array sections can be extracted from a parent array in a rectangular grid (that is,
with regular spacing) using subscript triplet notation, or, in a completely general
manner using vector subscript notation. In either case the resulting array section
is itself an array, and can be used in the same way as an array.

• An array element has already been defined as

array name (i1, . . . , ik)

where array name is the name of the array, k is the rank of array name, and the
ij are subscripts. If any of the ij are replaced by what are called subscript triplets
or vector subscripts, then, instead of defining an array element, we have defined an
array section. The rank of the array section so defined is the number of subscript
triplets and vector subscripts it contains. An array element has rank zero.

• A subscript triplet takes the following form:

subscript 1 : subscript 2 : stride

or one of the simpler forms

subscript 1 : subscript 2
subscript 1 :
subscript 1 : : stride
: subscript 2
: subscript 2 : stride
: : stride
:

◦ subscript 1, subscript 2 and stride are all scalar integer expressions.

◦ A subscript triplet is interpreted as defining an ordered set of subscripts that
start at subscript 1, that end on or before subscript 2, and have a separation
of stride between consecutive subscripts.

◦ The value of stride must not be zero.

◦ If subscript 1 is omitted, it defaults to the lower index bound for the dimension.

◦ If subscript 2 is omitted, it defaults to the upper index bound for the dimension.

◦ If stride is omitted it defaults to the value 1.

◦ The first colon must always be included, even if the first subscript is not spec-
ified.

• Example: If the array arr is declared as

REAL, DIMENSION (3, 4) :: arr

then

arr(2, :) is a rank-one real array whose elements are

arr(2, 1), arr(2, 2), arr(2, 3), arr(2, 4)

arr(:, 3) is a rank-one real array whose elements are

arr(1, 3), arr(2, 3), arr(3, 3)

arr(1:2, 3:4) is a rank-two real array whose elements are

arr(1, 3), arr(2, 3), arr(1, 4), arr(2, 4)

85

• A vector subscript is an integer array expression of rank 1, each of whose elements
has the value of a subscript in the array section being defined.

• Example: If arr is a rank-one array of arbitrary size and type and v = (/ 3, 7, 4,
5 /) is a rank-one array of size 4 then the array section arr(v) is a rank-one array of
size 4, whose elements are, in order, arr(3), arr(7), arr(4) and arr(5).

• Example: If the arrays p and u are declared as

LOGICAL, DIMENSION(3) :: p

INTEGER, DIMENSION(3) :: u = (/ 3, 2, 2, 3, 1 /)

then p(u) is a rank-one logical array of size 5, whose elements are, in order, p(3),
p(2), p(2), p(3) and p(1).

• Subscripts, subscript triplets and vector subscripts can be used together to define
an array section.

• Example: If the arrays string and vec are declared as

CHARACTER(LEN = 10), DIMENSION(3, 4, 9) :: string

INTEGER, DIMENSION(5) :: vec = (/ 7, 1, 3, 1, 4 /)

then string(vec, 3, 5:9:4) is a rank-two character array whose elements are

string(7, 3, 5) string(7, 3, 9)

string(1, 3, 5) string(1, 3, 9)

string(3, 3, 5) string(3, 3, 9)

string(1, 3, 5) string(1, 3, 9)

string(4, 3, 5) string(4, 3, 9)

86

Fortran 90 syntax introduced in Chapter 13

Array declaration type, DIMENSION(dim spec, . . .) :: list of names
where each dim spec (up to a maximum of 7)
takes one of the forms:

extent
lower bound : upper bound
lower bound :
: upper bound
:

Allocatable attribute ALLOCATABLE

Allocate and ALLOCATE (list of array specifications, STAT = stat var)
deallocate ALLOCATE (list of array specifications)
statements DEALLOCATE (list of allocated arrays, STAT = stat var)

DEALLOCATE (list of allocated arrays)

Masked array WHERE (conformable log expr) array name = expression
assignment WHERE (conformable log expr)

array assignement statements
END WHERE

WHERE (conformable log expr)
array assignement statements

ELSEWHERE
array assignement statements

END WHERE

Array section array name(subscript triplet)
array name(vector subscript)

where subscript triplet is one of
subscript 1 : subscript 2 : stride
subscript 1 : subscript 2
subscript 1 :
subscript 1 : : stride
: subscript 2
: subscript 2 : stride
: : stride
:

and vector subscript
is an integer array expression of rank-one

87

Example 13.1x

Problem (13.1x)

Write a program to illustrate the use of the intrinsic functions RESHAPE, TRANSPOSE
and MATMUL.

Solution (13.1x)

PROGRAM vectors_and_matrices

IMPLICIT NONE

INTEGER, DIMENSION(2, 3) :: matrix_a = &

RESHAPE((/ 1, 2, 2, 3, 3, 4 /), (/ 2, 3 /))

! matrix_a is the matrix [1 2 3]

! [2 3 4]

INTEGER, DIMENSION(3, 2) :: matrix_b

INTEGER, DIMENSION(2, 2) :: matrix_ab

INTEGER, DIMENSION(2) :: vector_c = (/ 1, 2 /)

INTEGER, DIMENSION(3) :: vector_bc

!

! Set matrix_b as the transpose of matrix_a

! matrix_b = TRANSPOSE(matrix_a)

! matrix_b is now the matrix [1 2]

! [2 3]

! [3 4]

! Calculate matrix products

matrix_ab = MATMUL(matrix_a, matrix_b)

! matrix_ab is now the matrix [14 20]

! [20 29]

vector_bc = MATMUL(matrix_b, vector_c)

! vector_bc is now the vector [5 8 11]

!

END PROGRAM vectors_and_matrices

