Álgebra Linear

Licenciaturas: Eng. Química, Química 1° Semestre — 13/12/2003

Nome: Número:			Curso:		
			Curso.	·	
Duração: 1H:30M Cotação das pergr NOTA: Deve resp não tenha espaço r identificadas com	untas de múltipla conder nos espaç neste enunciado j	ços em branco e pode entregar fo	e no verso da	s folhas. Caso	
A preencher per	lo docente:				
Correctas	Erradas	TEM	Regist	Registo:	
PD: 7.a)	7.b)	8. 10.	T:	Nota:	
$\square S \circ T$ é uma \square O espaço de	ansformações line transformação line chegada de $S \circ T$ nsformação linear	near. 'é \mathbb{R}^3 .			
2. Seja $T: M^{2\times 2}$ matrizes reais 2×2	2 por	formação linear o	7	paço linear das	
Diga qual das a	firmações seguin	tes é verdadeira:	- :		
			as matrizes re	ais 2×2 .	

[1.5]

[1.5]

- 3. Seja $T:V\to V$ uma transformação linear e B=(u,v,w) uma base ordenada para V, tal que T(u+v) = 2u, T(u-2v) = v e T(w) = u-v+w. Então a matriz que representa T em relação à base B no espaço de partida e de chegada é:
 - $\begin{bmatrix}
 \frac{4}{3} & \frac{2}{3} & 1 \\
 \frac{1}{3} & \frac{-1}{3} & -1 \\
 0 & 0 & 1
 \end{bmatrix}$

 $\Box \begin{bmatrix} \frac{-1}{3} & \frac{-1}{3} & -1 \\ \frac{4}{3} & \frac{2}{3} & 1 \\ 0 & 0 & 1 \end{bmatrix}$

 $\Box \left[\begin{array}{ccc} 2 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{array} \right]$

- $\begin{bmatrix}
 0 & 0 & -1 \\
 2 & 0 & 1 \\
 0 & 0 & 1
 \end{bmatrix}$
- **4.** Os valores próprios da transformação linear T(x, y, z) = (3x, -z, y) são:
 - \Box 3, 1 e -1.
- $\square 3, i \in -i.$
- $\Box 2, 1 e -1.$
- \square 0, $i \in -i$.
- 5. Sejam u, v e w vectores não nulos de \mathbb{R}^3 e A uma matriz 3×3 tal que Au = 2u, [1.5]Av = 0 e Aw = w. Diga qual das afirmações seguintes é verdadeira:
 - $\square B = (u, v, w)$ não é uma base de \mathbb{R}^3 .
 - \square A matriz A é invertível.
 - \square A matriz A é diagonalizável.
 - \square $\lambda=1$ não é um valor próprio de A.
- **6.** Considere o sistema de equações diferenciais y' = Ay, onde $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$ [1.5]e $y(t) = (y_1(t), y_2(t), y_3(t))$. Para as constantes arbitrárias C_1, C_2 e C_3 , a solução

geral do sistema é:

- \Box Um espaço linear de dimensão 1.
- $\Box y(t) = e^{t} \left(C_{1}, C_{1} + C_{2}t + C_{3} \frac{t^{2}}{2}, C_{3} \right)$ $\Box y(t) = e^{t} \left(C_{1}, C_{2}e^{t} + C_{3}te^{t}, C_{3}e^{t} \right)$
- \square Não existe solução já que a matriz A não é diagonalizável.

7. Seja $T: M^{2\times 2} \to M^{2\times 2}$ a transformação linear definida, no espaço linear das matrizes reais 2×2 , por $T\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x & y \\ z & w \end{bmatrix}$. Considere as bases ordenadas $B \in B'$ de $M^{2\times 2}$ dadas por

$$B = \left(\left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \right) = (A, B, C, D)$$

e

$$B' = (A - B, A + B, C, D - C).$$

- [1.5]a) Determine o núcleo e o contradomínio de T e use o resultado para dizer se T é ou não invertível.
- b) Determine a matriz M(T, B, B'), que representa T em relação à base B na [2.0]partida e à base B' na chegada.
- 8. Considere a seguinte equação diferencial:

$$y'' + y' - 2y = -(\sin t + 3\cos t). \tag{1}$$

Mostre que $y(t) = \cos t$ é uma solução da equação diferencial (1) e determine a [2.5]solução geral da equação diferencial dada.

- **9.** Considere \mathbb{R}^2 munido do produto interno $\langle x, y \rangle = x^T A y$ onde $A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ e $x, y \in \mathbb{R}^2$ são vectores coluna.
 - a) Diga qual das afirmações seguintes é verdadeira:

[1.5]

[1.5]

- \square Os vectores $(\frac{1}{4}, \frac{-1}{2})$ e (1,1) formam uma base ortonormal para \mathbb{R}^2 . \square Os vectores $(\frac{1}{4}, \frac{-1}{2})$ e (1,1) formam uma base ortogonal para \mathbb{R}^2 . \square Os vectores (-1,1) e (1,1) formam uma base ortogonal para \mathbb{R}^2 .
- \square Os vectores (-1,1) e (1,1) formam uma base ortonormal para \mathbb{R}^2 .
- b) Designe por proj $_vu$ a projecção ortogonal de u sobre v para o produto interno dado. Então
 - $\square \operatorname{proj}_{(1,1)}(1,-1) = \frac{1}{3}(1,1)$ $\square \operatorname{proj}_{(0,1)}(1,0) = (0,\frac{1}{2})$
 - $\square \operatorname{proj}_{(0,1)}(1,0) = (0,\frac{-1}{2})$ $\square \operatorname{proj}_{(1,1)}(1,-1) = \frac{1}{3}(1,-1)$
- ${\bf 10.}$ Considere \mathbb{R}^3 munido do produto interno usual e o subespaço linear

$$W = \{(x, y, z) \in \mathbb{R}^3 : x + 2y + z = 0\}.$$

Determine uma base ortonormal para W.

[2.0]