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Abstract/objective

The goal is to present, with examples, a particular point of view on
dynamic programming in stochastic control and finance. Starting
from the best scenario when the Hamilton-Jacobi-Bellman (HJB)
equation has a smooth solution, it leads to a modification of
Perron’s method that can substitute for such verification, in case
smoothness is not available.



What is the modification of Perron’s method?

New look at an old (set of) problem(s).

Disclaimer:

I not trying to ”reinvent the wheel” but provide a different view
(and a new tool)

Questions:

I why a new look?

I how/the tool we propose



Summary

I Brief overview of Dynamic Programming (DP) and the
possible uses and modifications of Perron’s method (preview
of the following parts).

I Examples of stochastic control problems (in finance) where
the HJB has a smooth solution: [4], [5]. Special emphasis on
verification (since the closed form solution is well known).

I The Dynamic Programming Principle (DPP) and viscosity
solutions. Examples of problems where the viscosity solution is
actually smooth: [7], [6].

I Perron’s method: a possible bypass of the (DPP) to obtain a
smooth solution (if such solution exists) Example: [3].

I Stochastic Perron’s method in linear and non-linear problems:
[2], [1].



Overview and Preview



Stochastic Control Problems

State equation{
dXt = b(t,Xt , αt)dt + σ(t,Xt , αt)dWt

Xs = x .

X ∈ Rn,W ∈ Rd

Cost functional J(s, x , α) = E[
∫ T
s R(t,Xt , αt)dt + g(XT )]

Value function
v(s, x) = sup

α
J(s, x , α).

Comments: all formal, no filtration, admissibility, etc. Also, we
have in mind other classes of control problems as well.



(My understanding of) Continuous-time DP and HJB’s

Two possible approaches

1. analytic (direct/constructive)

2. probabilistic (study the properties of the value function)



The Analytic approach

1. write down the DPE/HJB{
ut + supα

{
Lα

t u + R(t, x , α)
}

= 0
u(T , x) = g(x)

2. solve it i.e.
I prove existence of a smooth solution u
I (if lucky) find a closed form solution u

3. go over verification arguments
I proving existence of a solution to the closed-loop SDE
I use Itô’s lemma and uniform integrability, to conclude u = v

and the solution of the closed-loop eq. is optimal



Analytic approach cont’d

Conclusions: the existence of a smooth solution of the HJB (with
some properties) implies

1. u = v (uniqueness of the smooth solution)

2. (DPP)

v(s, x) = sup
α

E[

∫ τ

s
R(t,Xt , αt)dt + v(τ,Xτ )]

3. α(t, x) = arg max is the optimal feedback

Complete description: Fleming and Rishel

smooth sol of (DPE) → (DPP)+value fct is the unique sol



Probabilistic/Viscosity Approach

1. prove the (DPP)

2. show that (DPP) −→ v is a viscosity solution

3. IF viscosity comparison holds, then v is the unique viscosity
solution

(DPP)+visc. comparison → v is the unique visc sol(DPE)

Meta-Theorem If the value function is the unique viscosity
solution, then finite difference schemes approximate the value
function and the optimal feedback control (approximate backward
induction works).



Comments on probabilistic approach

1. quite hard (actually very hard compared to deterministic case)

1.1 by approx with discrete-time or smooth problems (Krylov)
1.2 work directly on the value function (El Karoui, Borkar,

Hausmann, Bouchard-Touzi for a weak version)

2. non-trivial, but easier than 1: Fleming-Soner, Bouchard-Touzi

3. has to be proved separately (analytically) anyway



Probabilistic/Viscosity Approach pushed further

Sometimes we are lucky:

I using the specific structure of the HJB can prove that a
viscosity solution of the DPE is actually smooth!

I if that works we can just come back to the Analytic approach
and go over step 3, i.e. we can perform verification using the
smooth solution v (the value function) to obtain

1. the (DPP)
2. Optimal feedback control α(t, x)

(DPP)→ v is visc. sol → v is smooth sol → (DPP) +opt. controls

Examples: Shreve and Soner, Pham (Part 3)



Viscosity solution is smooth, cont’d

I the first step is hardest to prove

I the program seems circular

Question: can we just avoid the first step, proving the (DPP)?
Answer: yes, we can use (Ishii’s version of) Perron’s method to
construct (quite easily) a viscosity solution.

Lucky case, revisited

Perron → visc. sol → smooth sol → unique+(DPP) +opt. controls

Example: Janeček, S.

Comments:

I old news for PDE

I the new approach is analytic/direct



Perron’s method

General Statement: sup over sub-solutions and inf over
super-solutions are solutions.

v− = sup
w∈U −

w , v+ = inf
w∈U +

w are solutions

Ishii’s version of Perron (1984): sup over viscosity
sub-solutions and inf over viscosity super-solutions are viscosity
solutions.

v− = sup
w∈U −,visc

w , v+ = inf
w∈U +,visc

w are viscosity solutions

Question: why not inf/sup over classical super/sub-solutions?
Answer: Because one cannot prove (in general/directly) the result
is a viscosity solution. The classical solutions are not enough (the
set of classical solutions is not stable under max or min).



Objective

Provide a method/tool to replace the first two steps in the
program

Perron → visc. sol → smooth sol → unique+(DPP) +opt. controls

in case one cannot prove viscosity solutions are smooth (”the
unlucky case”)

New method/tool → construct a visc. sol u → u = v +(DPP)

Why not try a version of Perron’s method?



Perron’s method, recall

(Ishii’s version) Provides viscosity solutions of the HJB

v− = sup
w∈U −,visc

w , v+ = inf
w∈U +,visc

w

Problem:

I w does NOT compare to the value function v UNLESS one
proves v is a viscosity solutions already AND the viscosity
comparison

I if we ask w to be classical semi-solutions, we cannot prove
that the inf/sup are viscosity solutions



Main Idea

Perform Perron’s Method over a class of semi-solutions which are

I weak enough to conclude (in general/directly) that v−, v+ are
viscosity solutions

I strong enough to compare with the value function without
studying the properties of the value function

We know that

classical sol → (DPP) → viscosity sol

Actually, we have

classical semi-sol → half-(DPP) → viscosity semi-sol

Translation
”half (DPP)= stochastic semi-solution”
Main property: stochastic sub and super-solutions DO compare
with the value function v !



Stochastic Perron Method, quick summary

General Statement:

I supremum over stochastic sub-solutions is a viscosity
(super)-solution

v∗ = sup
w∈U −,stoch

w ≤ v

I infimum over stochastic super-solutions is a viscosity
(sub)-solution

v∗ = inf
w∈U +,stoch

w ≥ v

Conclusion:
v∗ ≤ v ≤ v∗

IF we have a viscosity comparison result, then v is the unique
viscosity solution!

(SP)+visc comp → (DPP)+ v is the unique visc sol of (DPE)



Some comments

I the Stochastic Perron Method plus viscosity comparison
substitute for (large part of) verification (in the analytic
approach)

I this method represents a ”probabilistic version of the analytic
approach”

I loosely speaking, stochastic sub and super-solutions amount
to sub and super-martingales

I stochastic sub and super-solution have to be carefully defined
(depending on the control problem) as to obtain viscosity
solutions as sup/inf (and to retain the comparison build in)



An example of how to use the analytic approach:
the Merton problem



The Merton Problem

I money market paying constant interest r = 0

I stock
dSt

St
= µdt + σdWt

Investment strategies θ:

dXt = θt
dSt

St
, X0 = x > 0

Admissible strategies:
X > 0

Can think in terms of proportions:

θ ↔ π = θ/S .



The optimization problem

Fix X0 = x , find the optimal θ or π in

max
θ

E[U(XT )]

where

U(x) =
x1−p

1− p
, p > 0



The HJB

Look for u(t, x) solution of

ut + sup
π
{πµxux +

1

2
π2σ2x2uxx} = 0

u(x ,T ) = U(x)

Formally, the argmax

π̂(x) = − µxux

σ2x2uxx

is optimal feedback.



Closed form solution for power utility

Expect u(t, x) = a(t) x1−p

1−p , so we get

a′(t) + Ca(t) = 0, a(T ) = 1

for a constant C .
We therefore have the smooth solution of the HJB

u(t, x) = eC(T−t) × x1−p

1− p

and
π̂ =

µ

pσ2
.

The problem is completely solved, no?



No, we still need to go over verification

Recall, verification means

I proving existence of a solution to the closed-loop SDE

I use Itô’s lemma and uniform integrability, to conclude u = v
(v is the value function) and the solution of the closed-loop
eq. is optimal



The closed loop SDE

The ”candidate” optimal proportion π̂ is a constant, and the SDE
is {

dXt
Xt

= π̂(µdt + σdWt)

Xs = x .

This is actually a very particular case, when even the closed loop
eq has a closed form solution: the Geometric Brownian Motion
(with initial time s, if we really start at s)



Verification, cont’d

Since u(t, x) satisfies the HJB, and π̂ is the argmax, we have

I u(t,Xt) is a local super-martingale

I u(t, X̂t) is a local martingale

(between times s and T )
Full verification means showing the super/martingale property in
between times s (initial time) and T .

I u(s, x) ≥ E[u(T ,XT )] for each π

I u(s, x) = E[u(T , X̂T )]



Last part of verification

For this very particular example, u(t, X̂t) is actually a geometric
Brownian Motion (should double check!), so it is a true
martingale. In general, we need bounds on u to get

u(s, x) = (≤)E[u(T , X̂T )]



Last part of verification, cont’d

Left to prove

u(s, x) ≥ E[u(T ,XT )] (∀) π ↔ θ

Case 1: 0 < p < 1, we have a positive local martingale. Done!

Case 2: p > 1, don’t have a bound below. Small trick: add ε.

What do we gain? X + ε is an admissible wealth process (with the
same θ but different π) starting at x + ε. Now, we have u(t,X + ε)
is a local mart bounded below, so it is a supermartingale.

u(s, x + ε) ≥ E[U(T ,XT + ε)] ≥ E[U(T ,XT )].

Let ε ↘ 0, to obtain

u(s, x) ≥ E[U(T ,XT )].



Conclusion of verification

We get
u(s, x) = v(s, x) := sup

θ
E[U(X s,x ,θ

T )],

and π̂ is optimal.
Actually, we can go over identical verification arguments up to
time τ . We have

u(s, x) = sup
θ

E[u(τ,X s,x ,θ
τ )].

This is the DPP (since we just proved above that u = v).



An example of constructing a smooth viscosity
solution using Perron’s method:

Optimal investment with high-watermark
performance fee

(joint work with Karel Janeček)



Objective

I build and analyze a model of optimal investment and
consumption where the investment opportunity is represented
by a hedge-fund using the ”two-and-twenty rule”

I analyze the impact of the high-watermark fee on the investor



Previous work on hedge-funds and high-watermarks

All existing work analyzes the impact/incentive of the
high-watermark fees on fund managers

I extensive finance literature
I Goetzmann, Ingersoll and Ross, Journal of Finance 2003
I Panagea and Westerfield, Journal of Finance 2009
I Agarwal, Daniel and Naik Journal of Finance, forthcoming
I Aragon and Qian, preprint 2007

I recently studied in mathematical finance
I Guasoni and Obloj, preprint 2009



A model of profits from dynamically investing in a
hedge-fund

I the investor chooses to hold θt in the fund at time t
I the value of the fund Ft is given exogenously
I denote by Pt the accumulated profit/losses up to time t

Evolution of the profit
I without high-watemark fee

dPt = θt
dFt

Ft
, P0 = 0

I with high-watermark proportional fee λ > 0{
dPt = θt

dFt
Ft
− λdP∗

t , P0 = 0

P∗
t = max0≤s≤t Ps

High-watermark of the investor

P∗
t = max

0≤s≤t
Ps .

Observation: can be also interpreted as taxes on gains, paid right
when gains are realized (pointed out by Paolo Guasoni)



Path-wise solutions

(same as Guasoni and Obloj)
Denote by It the paper profits from investing in the fund

It =

∫ t

0
θu

dFu

Fu

Then

Pt = It −
λ

λ + 1
max

0≤s≤t
Is

The high-watermark of the investor is

P∗
t =

1

λ + 1
max

0≤s≤t
Is

Observations:

I the fee λ can exceed 100% and the investor can still make a
profit

I the high-watemark is measured before the fee is paid



Connection to the Skorohod map (Part of work in progress
with Gerard Brunick)

Denote by Y = P∗ − P the distance from paying fees. Then Y
satisfies the equation:{

dYt = −θt
dFt
Ft

+ (1 + λ)dP∗
t

Y0 = 0,

where Y ≥ 0 and∫ t

0
I{Ys 6=0}dP∗

s = 0, (∀) t ≥ 0.

Skorohod map

I· =

∫ ·

0
θu

dFu

Fu
→ (Y ,P∗) ≈ (P,P∗).

Remark: Y will be chosen as state in more general models.



The model of investment and consumption
An investor with initial capital x > 0 chooses to

I have θt in the fund at time t

I consume at a rate γt

I finance from borrowing/investing in the money market at zero
rate

Denote by Ct =
∫ t
0 γsds the accumulated consumption. Since the

money market pays zero interest, then

Xt = x + Pt − Ct ↔ Pt = (Xt + Ct)− x

Therefore, the fees (high-watermark) is computed tracking the
wealth and accumulated consumption

P∗
t = max

0≤s≤t

{
Xs +

∫ s

0
γudu

}
− x

Can think that the investor leaves all her wealth (including the
money market) with the investor manager.



Evolution equation for the wealth

The evolution of the wealth is{
dXt = θt

dFt
Ft
− γtdt − λdP∗

t , X0 = x

P∗
t = max0≤s≤t

{
Xs +

∫ s
0 γudu

}
− x

I consumption is a part of the running-max, as opposed to the
literature on draw-dawn constraints

I Grossman and Zhou
I Cvitanic and Karatzas
I Elie and Touzi
I Roche

I we still have a similar path-wise representation for the wealth
in terms of the ”paper profit” It and the accumulated
consumption



Optimal investment and consumption

Admissible strategies

A (x) = {(θ, γ) : X > 0}.

Can represent investment and consumption strategies in terms of
proportions

c = γ/X , π = θ.

Obervation:

I no closed form path-wise solutions for X in terms of (π, c)
(unless c = 0)



Optimal investment and consumption:cont’d

Maximize discounted utility from consumption on infinite horizon

A (x) 3 (θ, γ) → argmax E
[∫ ∞

0
e−βtU(γt)dt

]
.

Where U : (0,∞) → R is the CRRA utility

U(γ) =
γ1−p

1− p
, p > 0.

Finally, choose a geometric Brownian-Motion model for the fund
share price

dFt

Ft
= αdt + σdWt .



Dynamic programming: state processes

Fees are paid when P = P∗. This can be translated as
X + C = (X + C )∗ or as

X = (X + C )∗ − C .

Denote by
N , (X + C )∗ − C .

The (state) process (X ,N) is a two-dimensional controlled
diffusion 0 < X ≤ N with reflection on {X = N}.
The evolution of the state (X ,N) is given by{

dXt =
(
θtα− γt

)
dt + θtσdWt − λdP∗

t , X0 = x
dNt = −γtdt + dP∗

t , N0 = x .

Recall we have path-wise solutions in terms of (θ, γ).



Dynamic Programming: Objective

I we are interested to solve the problem using dynamic
programing. We are only interested in the initial condition
(x , n) for x = n but we actually solve the problem for all
0 < x ≤ n. This amounts to setting an initial high-watemark
of the investor which is larger than the initial wealth.

I expect to find the two-dimensional value function v(x , n) as a
solution of the HJB, and find the (feed-back) optimal controls.



Dynamic programming equation

Use Itô and write formally the HJB

sup
γ≥0,θ

{
−βv + U(γ) + (αθ − γ)vx +

1

2
σ2θ2vxx−γvn

}
= 0

for 0 < x < n and the boundary condition

−λvx(x , x) + vn(x , x) = 0.

(Formal) optimal controls

θ̂(x , n) = − α

σ2

vx(x , n)

vxx(x , n)

γ̂(x , n) = I (vx(x , n) + vn(x , n))



HJB cont’d

Denote by Ũ(y) = p
1−p y

p−1
p , y > 0 the dual function of the utility.

The HJB becomes

−βv + Ũ(vx + vn)−
1

2

α2

σ2

v2
x

vxx
= 0, 0 < x < n

plus the boundary condition

−λvx(x , x) + vn(x , x) = 0.

Observation:

I if there were no vn term in the HJB, we could solve it
closed-form as in Roche or Elie-Touzi using the (dual) change
of variable y = vx(x , n)

I no closed-from solutions in our case (even for power utility)



Reduction to one-dimension
Since we are using power utility

U(x) =
x1−p

1− p
, p > 0

we can reduce to one-dimension

v(x , n) = x1−pv(1,
n

x
)

and
v(x , n) = n1−pv(

x

n
, 1)

I first is nicer economically (since for λ = 0 we get a constant
function v(1, n

x ))

I the second gives a nicer ODE (works very well if there is a
closed form solution, see Roche)

There is no closed form solution, so we can choose either
one-dimensional reduction.



Reduction to one-dimension cont’d
We decide to denote z = n

x ≥ 1 and

v(x , n) = x1−pu(z).

Use

vn(x , n) = u′(z) · x−p,

vx(x , n) =
(
(1− p)u(z)− zu′(z)

)
· x−p,

vxx(x , n) =
(
−p(1− p)u(z) + 2pzu′(z) + z2u′′(z)

)
· x−1−p,

to get the reduced HJB

−βu+Ũ
(
(1−p)u−(z−1)u′)

)
−1

2

α2

σ2

(
(1− p)u − zu′

)2

−p(1− p)u + 2pzu′ + z2u′′
= 0

for z > 1 with boundary condition

−λ(1− p)u(1) + (1 + λ)u′(1) = 0



(Formal) optimal proportions

π̂(z) =
α

pσ2
· (1− p)u − zu′

(1− p)u − 2zu′ − 1
p z2u′′

,

ĉ(z) =
(vx + vn)

− 1
p

x
=

(
(1− p)u − (z−1)u′

)− 1
p

Optimal amounts (controls)

θ̂(x , n) = x π̂(z), γ̂(x , n) = xĉ(z)

Objective: solve the HJB analytically and then do verification



Solution of the HJB for λ = 0

This is the classical Merton problem. The optimal investment
proportion is given by

π0 ,
α

pσ2
,

while the value function equals

v0(x , n) =
1

1− p
c−p
0 x1−p, 0 < x ≤ n,

where

c0 ,
β

p
− 1

2

1− p

p2
· α2

σ2

is the optimal consumption proportion. It follows that the
one-dimensional value function is constant

u0(z) =
1

1− p
c−p
0 , z ≥ 1.



Solution of the HJB for λ > 0

If λ > 0 we expect that (additional boundary condition)

lim
z→∞

u(z) = u0.

(For very large high-watermark, the investor gets almost the
Merton expected utility)



Existence of a smooth solution

Theorem 1 The HJB has a smooth solution.

Idea of solving the HJB:

I find a viscosity solution using an adaptation of Perron’s
method. Consider infimum of concave supersolutions that
satisfy the boundary condition. Obtain as a result a concave
viscosity solution. The subsolution part is more delicate. Have
to treat carefully the boundary condition.



Proof of existence: cont’d

I show that the viscosity solution is C 2 (actually more).
Concavity, together with the subsolution property implies C 1

(no kinks). Go back into the ODE and formally rewrite it as

u′′ = f (z , u(z), u′(z)) , g(z).

Compare locally the viscosity solution u with the classical
solution of a similar equation

w ′′ = g(z)

with the same boundary conditions, whenever u, u′ are such
that g is continuous. The difficulty is to show that u, u′

always satisfy this requirement.

Avoid defining the value function and proving the Dynamic
Programming Principle.



Verification, Part I
Theorem 2 The closed loop equation{

dXt = θ̂(Xt ,Nt)
dFt
Ft
− γ̂(Xt ,Nt)dt − λ(dNt + γtdt), X0 = x

Nt = max0≤s≤t

{
Xs +

∫ s
0 γ̂(Xu,Nu)du

}
−

∫ t
0 γ̂(Xu,Nu)du

has a unique strong solution 0 < X̂ ≤ N̂.

Ideea of proof:

I use the path-wise representation

(Y , L) → (θ̂(Y , L), γ̂(Y , L)) → (X ,N)

together with the Itô-Picard theory to obtain a unique global
solution X ≤ N.

I use the fact that the optimal proportion π̂ and ĉ are bounded
to compare X̂ to an exponential martingale and conclude

X̂ > 0



Verification, Part II

Theorem 3 The controls θ̂(X̂t , N̂t) and γ̂(X̂t , N̂t) are optimal.

Idea of proof:

I use Itô together with the HJB to conclude that

e−βtV (Xt ,Nt) +

∫ t

0
e−βsU(γs)ds, 0 ≤ t < ∞,

is a local supermartingale in general and a local martingale for
the candidate optimal controls (the obvious part)

I uniform integrability. Has to be done separately for p < 1 and
p > 1 (the harder part, requires again the use of π̂ and ĉ
bounded, and comparison to an exponential martingale).



The impact of fees

Everything else being equal, the fees have the effect of

I reducing rate of return

I reducing initial wealth



Certainty equivalent return
We consider two investors having the same initial wealth,
risk-aversion, who invest in two funds with the same volatility

I one invests in a fund with return α, and pays fees λ > 0. The
initial high-watermark is n = xz ≥ x

I the other invests in a fund with return α̃ but pays no fees

Equate the expected utilities:

u0

(
α̃(z), ·

)
= uλ(α, z).

Can be solved as

α̃2(z) = 2σ2 p2

1− p

(
β

p
−

(
(1− p)uλ(z)

)− 1
p

)
, z ≥ 1.

The relative size of the certainty equivalent excess return is
therefore

α̃(z)

α
=

√
2σp

α

 β
p −

(
(1− p)uλ(z)

)− 1
p

1− p


1
2

, z ≥ 1.



Certainty equivalent initial wealth
We consider two investors having the same risk-aversion, who
invest in the same fund

I one has initial wealth x , initial high-watermark n = xz ≥ x
and pays fees λ > 0

I the other has initial wealth x̃ but pays no fees

Equate the expected utilities:

x̃(z)1−pu0(·) = v0(x̃(z), ·) = vλ(x , n) = x1−puλ(z)

all other parameters being equal. Can be solved as

x̃(z) = x ·
(

uλ(z)

u0

) 1
1−p

= x ·
(
(1− p)cp

0 uλ(z)
) 1

1−p , z ≥ 1.

The quantity

x̃(z)

x
=

(
uλ(z)

u0

) 1
1−p

=
(
(1− p)cp

0 uλ(z)
) 1

1−p , z ≥ 1,

is the relative certainty equivalent wealth.



Investment proportion relative to Merton proportion

X to N ratio
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Consumption proportion relative to Merton consumption

X to N ratio
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Conclusions

Point of view of Finance:

I model optimal investment with high-watermark fees from the
point of view of the investor

I analyze the impact of the fees

Point of Mathematics:

I an example of controlling a two-dimensional reflected diffusion

I solve the problem using direct dynamic programming: first
find a smooth solution of the HJB and then do verification

”Meta Conclusion”:

I whenever one can prove enough regularity for the viscosity
solution to do verification, the viscosity solution can/should
be constructed analytically, using Perron’s method, and
avoiding DPP altogether



Work in progress and future work

with Gerard Brunick and Karel Janeček

I presence of (multiple and correlated) traded stocks, interest
rates and hurdles: can still be modeled as a two-dimensional
diffusion problem using X and Y = P − P∗ as state processes
(reduced to one-dimension by scaling)

I analytic approximations when λ is small

I more than one fund: genuinely multi-dimensional problem
with reflection

I stochastic volatility, jumps, etc



Where does it all go?

Investor

I can either invest in a number of assets (S1, . . . ,Sn) with
transaction costs

I invest in the hedge-fund F paying profit fees.

The hedge-fund

I can invest in the assets with lower (even zero for mathematical
reasons) transaction costs, and produce the fund process F .

For certain choices of F (time-dependent combinations of the
stocks and money market), one can compare the utility of the
investor in the two situations: this should the existence of
hedge-funds (from the point of view of the investor).

Actually, the whole situation should be modeled as a game
between the investor and the hedge fund.



Stochastic Perron’s method

(joint work with Erhan Bayraktar)



Linear case

Want to compute v(s, x) = E[g(X s,x
T )], for{

dXt = b(t,Xt)dt + σ(t,Xt)dWt

Xs = x .

Assumption: continuous coefficients with linear growth
There exist (possibly non-unique) weak solutions of the SDE.(

(X s,x
t )s≤t≤T , (W s,x

t )s≤t≤T ,Ωs,x ,F s,x , Ps,x , (F s,x
t )s≤t≤T

)
,

where the W s,x is a d-dimensional Brownian motion on the
stochastic basis

(Ωs,x ,F s,x , Ps,x , (F s,x
t )s≤t≤T )

and the filtration (F s,x
t )s≤t≤T satisfies the usual conditions. We

denote by X s,x the non-empty set of such weak solutions.



Which selection of weak solutions to consider?

Just take sup/inf over all solutions.

v∗(s, x) := inf
X s,x∈X s,x

Es,x [g(X s,x
T )]

and
v∗(s, x) := sup

X s,x∈X s,x
Es,x [g(X s,x

T )].

The (linear) PDE associated{
−vt − Ltv = 0
v(T , x) = g(x),

(1)

Assumption: g is bounded (and measurable).



Stochastic sub and super-solutions

Definition
A stochastic sub-solution of (1) u : [0,T ]× Rd → R

1. lower semicontinuous (LSC) and bounded on [0,T ]× Rd . In
addition u(T , x) ≤ g(x) for all x ∈ Rd .

2. for each (s, x) ∈ [0,T ]× Rd , and each weak solution
X s,x ∈ X s,x , the process (u(t,X s,x

t ))s≤t≤T is a submartingale
on (Ωs,x , Ps,x) with respect to the filtration (F s,x

t )s≤t≤T .

Denote by U − the set of all stochastic sub-solutions.



Semi-solutions cont’d

Symmetric definition for stochastic super-solutions U +.

Definition
A stochastic super-solution u : [0,T ]× Rd → R

1. upper semicontinuous (USC) and bounded on [0,T ]× Rd . In
addition u(T , x) ≥ g(x) for all x ∈ Rd .

2. for each (s, x) ∈ [0,T ]× Rd , and each weak solution
X s,x ∈ X s,x , the process (u(t,X s,x

t ))s≤t≤T is a
supermartingale on (Ωs,x , Ps,x) with respect to the filtration
(F s,x

t )s≤t≤T .



About the semi-solutions
I if one choses a Markov selection of weak solutions of the SDE

(and the canonical filtration), super an sub solutions are the
time-space super/sub-harmonic functions with respect to the
Markov process X

I we use the name associated to Stroock–Varadhan. In Markov
framework, sub+ super-solution is a stochastic solution in the
definition of Stroock-Varadhan.

The definition of semi-solutions are strong enough to provide
comparison to the expectation(s).
For each u ∈ U − and each w ∈ U + we have

u ≤ v∗ ≤ v∗ ≤ w .

Define
v− := sup

u∈U −
u ≤ v∗ ≤ v∗ ≤ v+ := inf

w∈U +
w .

We have (need to be careful about point-wise inf)

v− ∈ U −, v+ ∈ U +.



Linear Stochastic Perron

Theorem
(Stochastic Perron’s Method) If g is bounded and LSC then v− is
a bounded and LSC viscosity supersolution of{

−vt − Ltv ≥ 0,
v(T , x) ≥ g(x).

(2)

If g is bounded and USC then v+ is a bounded and USC viscosity
subsolution of {

−vt − Ltv ≤ 0,
v(T , x) ≤ g(x).

(3)

Comment: new method to construct viscosity solutions (recall v−

and v+ are anyway stochastic sub and super-solutions).



Verification by viscosity comparison

Definition
Condition CP(T , g) is satisfied if, whenever we have a bounded
(USC) viscosity sub-solution u and a bounded LSC viscosity
super-solution w we have u ≤ w .

Theorem
Let g be bounded and continous. Assume CP(T , g). Then there
exists a unique bounded and continuous viscosity solution v to (1),
and

v∗ = v = v∗.

In addition, for each (s, x) ∈ [0,T ]× Rd , and each weak solution
X s,x ∈ X s,x , the process (v(t,X s,x))s≤t≤T is a martingale on
(Ωs,x , Ps,x) with respect to the filtration (F s,x

t )s≤t≤T .

Comments:

I v is a stochastic solution (in the Markov case)

I if comparison holds for all T and g , then the diffusion is
actually Markov (but we never use that explicitly)



Idea of proof

Similar to Ishii.
To show that v− is a super-solution

I touch v− from below with a smooth test function ϕ

I if the viscosity super-solution property is violated, then ϕ is
locally a smooth sub-solution

I push it to ϕε = ϕ + ε slightly above, to still keep it still a
smooth sub-solution (locally)

I Itô implies that ϕε is also (locally wrt stopping times) a
submartingale along X

I take max{v−, ϕε}, still a stochastic-subsolution (need to
”patch” sub-martingales along a sequence of stopping times)

Comments: why don’t we need Markov property? Because we only
use Itô, which does not require the diffusion to be Markov.



Obstacle problems and Dynkin games

First example of non-linear problem.

Same diffusion framework as for the linear case. Choose a selection
of weak solutions X s,x to save on notation.

g : Rd → R, l , u : [0,T ]× Rd → R bounded and measurable,
l ≤ u, l(T , ·) ≤ g ≤ u(T , ·).

Denote by T s,x the set of stopping times τ (with respect to the
filtration (F s,x

t )s≤t≤T ) which satisfy s ≤ τ ≤ T .

The first player (ρ) pays to the second player (τ) the amount

J(s, x , τ, ρ) :=

= Es,x
[
I{τ<ρ}l(τ,X

s,x
τ ) + I{ρ≤τ,ρ<T})u(ρ,X s,x

ρ ) + I{τ=ρ=T}g(X s,x
T )

]
.



Dynkin games, cont’d

Lower value of the Dynkin game

v∗(s, x) := sup
τ∈T s,x

inf
ρ∈T s,x

J(s, x , τ, ρ)

and the upper value of the game

v∗(s, x) := inf
ρ∈T s,x

sup
τ∈T s,x

J(s, x , τ, ρ).

v∗ ≤ v∗

Remark: we could appeal directly to what is known about Dynkin
games to conclude v∗ ≤ v∗, but this is exactly what we wish to
avoid.



DPE equation for Dynkin games

{
F (t, x , v , vt , vx , vxx) = 0, on [0,T )× Rd ,
u(T , ·) = g ,

(4)

where

F (t, x , v , vt , vx , vxx) :=

max{v − u,min{−vt − Ltv , v − l}}
= min{v − l ,max{−vt − Ltv , v − u}}.

(5)



Super and Subsolutions

Definition
U +, is the set of functions w : [0,T ]× Rd → R

1. are continuous (C) and bounded on [0,T ]× Rd . w ≥ l and
w(T , ·) ≥ g .

2. for each (s, x) ∈ [0,T ]× Rd , and any stopping time
τ1 ∈ T s,x , the function w along the solution of the SDE is a
super-martingale in between τ1 and the first (after τ1) hitting
time of the upper stopping region S +(w) := {w ≥ u}. More
precisely, for any τ1 ≤ τ2 ∈ T s,x , we have

w(τ1,X
s,x
τ1

) ≥ Es,x
[
w(τ2 ∧ ρ+,X s,x

τ2∧ρ+)|F s,x
τ1

]
− Ps,x a.s.

where the stopping time ρ+ is defined as

ρ+(v , s, x , τ1) = inf{t ∈ [τ1,T ] : X s,x
t ∈ S +(w)}.

Question: why the starting stopping time? No Markov property.



Stochastic Perron for obstacle problems

Define symmetrically sub-solutions U −. Now define, again

v− := sup
w∈U −

w ≤ v∗ ≤ v∗ ≤ v+ := inf
w∈U +

w .

Cannot show v− ∈ U − or v+ ∈ U +, but it is not really needed.
All is needed is stability with respect to max/min, not sup/inf (and
this is the reason why we can assume continuity).

Theorem

I v− is viscosity super-solution of the (DPE)

I v+ is viscosity sub-solution of the (DPE)



Verification by comparison for obstacle problems

Theorem

I if comparison holds, then there exists a unique and continuous
viscosity solution v, equal to v− = v∗ = v∗ = v+

I the first hitting times are optimal for both players

In the Markov case, Peskir showed (with different definitions for
sub, super-solutions, which actually involve the value function) that

v− = v+

by showing that v− = ”value function” = v+. Peskir generalizes
the characterization of value function in optimal stopping problems.



What about optimal stopping u = ∞?

Classic work of El Karoui, Shiryaev: in the Markov case, the value
function is the least excessive function. In our notation

v+ := inf
w∈U +

w = v .

Comment: the proof requires to actually show that v ∈ U +. We
avoid that, showing that

v− ≤ v ≤ v+,

and then using comparison.
We provide a short cut to conclude the value function is the
continuous viscosity solution of the free-boundary problem (study
of continuity in Bassan and Ceci)



Back to the original control problem

work in progress (blackboard details)

I can define the classes of stochastic super and sub-solutions
such that

I the Stochastic Perron’s method (existence part) works well
(at least away from T )

Left to do:

I study the possible boundary layer at T

I go over verification by comparison (easy once the first step is
done)



Conclusions

I new method to construct viscosity solutions as sup/inf of
stochastic sub/super-solutions

I compare directly with the value function

I if we have viscosity comparison, then the value fct is the
unique continuous solution of the (DPE) and the (DPP) holds



Conjecture

Any PDE that is associated to a stochastic optimization problem
can be approached by Stochastic Perron’s Method.

Even (zero sum) games should work, with Isaasc condition
(basically any problem with a single value function)



The general approach

I can choose stochastic semi-solutions continuous (learned from
the Dynkin games)

I choose definition of semi-solutions which is
I weak enough to have stability ( for v ∧ w and v ∨ w)
I strong enough to be able to follow the proof of Ishii pasting

martingales
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