Small transaction costs - Lecture 3s

H. Mete SONER,
Department of Mathematics ETH Zürich

Swiss Finance Institute

Outline

(1) Brief Summar

- Expansion
- Solution
- Homethetic case
(2) Proof
(3) A nearly optimal strategy

Problem

$$
v^{\epsilon}(x, y):=\sup _{(c, k) \in \Theta^{\epsilon}(x, y)} \mathbb{E}\left[\int_{0}^{\infty} e^{-\beta t} U\left(c_{t}\right) d t\right]
$$

where c_{t} is the rate of consumption, $k_{t}=k^{+}-k^{-}$is the total amount of transfers, and for any $\left(X_{0^{-}}, Y_{0^{-}}\right)=(x, y) \in K_{\epsilon}$, the state equations are,

$$
\begin{aligned}
& d X_{t}=\left(-c_{t}\right) d t+\left(d k_{t}^{+}-\left(1+\epsilon^{3}\right) d k_{t}^{-}\right) \\
& d Y_{t}=Y_{t} \frac{d S_{t}}{S_{t}}+\left(d k_{t}^{-}-\left(1+\epsilon^{3}\right) d k_{t}^{+}\right)
\end{aligned}
$$

Equation

The DPE with our simplifications is,

$$
\begin{aligned}
& \min \left\{I^{\epsilon} ; d_{+}^{\epsilon} ; d_{-}^{\epsilon}\right\}=0, \quad \text { where } \\
& I^{\epsilon}=\beta v^{\epsilon}-\mu y v_{y}^{\epsilon}-\frac{1}{2} \sigma^{2} y^{2} v_{y y}^{\epsilon}-\tilde{U}\left(v_{x}^{\epsilon}\right), \\
&:=\beta v^{\epsilon}-\mathcal{L}_{y} v^{\epsilon}-\tilde{U}\left(v_{x}^{\epsilon}\right) \\
& d_{+}^{\epsilon}=\left(1+\epsilon^{3}\right) v_{x}^{\epsilon}-v_{y}^{\epsilon}, \\
& d_{-}^{\epsilon}=\left(1+\epsilon^{3}\right) v_{y}^{\epsilon}-v_{x}^{\epsilon} .
\end{aligned}
$$

Form of the Expansion

We postulate the following expansion,

$$
v^{\epsilon}(x, y)=v(z)-\epsilon^{2} u(z)-\epsilon^{4} w(z, \xi)+\circ\left(\epsilon^{2}\right)
$$

where $(z, \xi)=$ is a transformation of $(x, y) \in K_{\epsilon}$ given by

$$
z=x+y, \quad \xi:=\xi_{\epsilon}(x, y)=\frac{y-\theta(z)}{\epsilon}
$$

where $\theta(z)$ is the Merton optimal investment strategy.
And we have substituted this form into the equation to derive equations for the unknowns u and w.

Cell Equation

Set

$$
\mathcal{A} u(z)=a(z)
$$

and solve for the pair $(w(z, \cdot), a(z))$ solving the following equation with z as a parameter and ξ as the independent variable,

$$
\begin{gathered}
0=\max \left\{\frac{1}{2} \sigma^{2} \xi^{2} v_{z z}(z)-\frac{1}{2} \alpha(z)^{2} w_{\xi \xi}(z, \xi)+a(z)\right. \\
\left.;-v_{z}(z)+w_{\xi} ;-v_{z}(z)-w_{\xi}\right\}
\end{gathered}
$$

together with $w(z, 0)=0$.
a is exactly the value function of the ergodic problem described earlier and w is its potential function.

Change of variables

$$
\bar{w}(z, \rho):=\frac{w(z, \eta(s, z) \rho)}{\eta(z) v_{z}(z)}, \quad \bar{a}(z):=\frac{a(z)}{\eta(z) v_{z}(z)}, \quad \bar{\alpha}(z):=\frac{\alpha(z)}{\eta(z)},
$$

where $\rho=\xi / \eta(z), \eta(z)=-v_{z} / v_{z z}$. Solve for

$$
(\bar{a}(z), \bar{w}(z, \cdot)) \in \mathbb{R} \times C^{2}(\mathbb{R}),
$$

$$
\begin{aligned}
& \max \left\{-\frac{|\sigma \rho|^{2}}{2}-\frac{1}{2} \bar{\alpha}^{2}(z) \bar{w}_{\rho \rho}(z, \rho)+\bar{a}(z),\right. \\
& \left.\quad-1+\bar{w}_{\rho}(z, \rho) ;-1-\bar{w}_{\rho}(z, \rho)\right\}=0, \quad \forall \rho \in \mathbb{R},
\end{aligned}
$$

together with the normalization $\bar{w}(z, 0)=0$. In the power case, the above equation is independent of z. We then use $\bar{a}(z)$ to solve for u,

$$
\mathcal{A} u(s, z)=a(s, z)=v_{z}(s, z) \eta(s, z) \bar{a}(s, z) .
$$

Solving the Cell Problem

In order to compute the solution explicitely in terms of η, we postulate a solution of the form

$$
\bar{w}(\rho)= \begin{cases}k_{4} \rho^{4}+k_{2} \rho^{2} ; & |\rho| \leq \rho_{0} \\ \bar{w}\left(-\rho_{0}\right)-\left(\rho+\rho_{0}\right) ; & \rho \leq-\rho_{0} \\ \bar{w}\left(\rho_{0}\right)+\left(\rho-\rho_{0}\right) ; & \rho \geq \rho_{0}\end{cases}
$$

We first determine k_{4} and k_{2} by imposing that the fourth order polynomial solves the second order equation in $\left(-\rho_{0}, \rho_{0}\right)$. A direct calculation yields,

$$
k_{4}=\frac{-\sigma^{2}}{12 \bar{\alpha}^{2}} \quad \text { and } \quad k_{2}=\frac{\bar{a}}{\bar{\alpha}^{2}}
$$

Cell Problem - cont.

We now impose the smooth pasting condition, namely assume that \bar{w} is C^{2} at the points $-\rho_{0}$ and ρ_{0}. Then, the continuity of the second derivatives yield,

$$
\rho_{0}^{2}=\frac{2 \bar{a}}{\sigma^{2}} \text { implying that } \bar{a} \geq 0 \text { and } \rho_{0}=\left(\frac{2 \bar{a}}{\sigma^{2}}\right)^{1 / 2} .
$$

The continuity of the first derivatives of \bar{w} yield,

$$
\begin{aligned}
4 k_{4}\left(-\rho_{0}\right)^{3}-2 k_{2} \rho_{0} & =-1 \\
4 k_{4}\left(\rho_{0}\right)^{3}+2 k_{2} \rho_{0} & =1
\end{aligned}
$$

Cell Problem completed.

$$
4 k_{4}\left(\rho_{0}\right)^{3}+2 k_{2} \rho_{0}=1,
$$

and

$$
k_{4}=\frac{-\sigma^{2}}{12 \bar{\alpha}^{2}}, \quad k_{2}=\frac{\bar{a}}{\bar{\alpha}^{2}}, \quad \bar{a}=\frac{\sigma^{2}}{2} \rho_{0}^{2} .
$$

Hence,

$$
\rho_{0}=\left(\frac{3 \bar{\alpha}^{2}}{2 \sigma^{2}}\right)^{1 / 3} .
$$

All coefficients of our candidate are now uniquely determined. Moreover, we verify that the gradient constraint

$$
\left|\bar{w}_{\rho}\right| \leq 1, \quad \forall \rho .
$$

Homethetic case

$$
U(c):=\frac{c^{1-\gamma}}{1-\gamma}, \quad c>0
$$

for some $\gamma>0$ with $\gamma=1$ corresponding to the logarithmic utility. Then,

$$
v(z)=\frac{1}{(1-\gamma)} \frac{z^{1-\gamma}}{v_{M}^{\gamma}},
$$

with the Merton constant

$$
v_{M}=\frac{\beta-r(1-\gamma)}{\gamma}-\frac{1}{2} \frac{(\mu-r)^{2}}{\gamma^{2} \sigma^{2}}(1-\gamma) .
$$

Hence the risk tolerance function and the optimal strategies are given by

$$
\eta(z)=\frac{z}{\gamma}, \quad \theta(z)=\frac{\mu-r}{\gamma \sigma^{2}} z:=\pi_{M} z, \quad \mathbf{c}(z)=v_{M} z .
$$

Homethetic case

Since the diffusion coefficient $\alpha(z)=\sigma \theta(z)\left(1-\theta_{z}\right)$,

$$
\bar{\alpha}=\frac{\alpha(z)}{\eta(z)}=\gamma \sigma \pi_{M}\left(1-\pi_{M}\right)
$$

The constants in the solution of the corrector equation are given by,

$$
\begin{gathered}
\rho_{0}=\left(\frac{3 \bar{\alpha}^{2}}{2 \sigma^{2}}\right)^{1 / 3} \\
a(z)=\eta(z) v^{\prime}(z) \bar{a}=\frac{\sigma^{2}(1-\gamma)}{2 \gamma} \rho_{0}^{2} v(z) .
\end{gathered}
$$

Homethetic case

Since

$$
\mathcal{A} v(z)=U(c(z))=\frac{1}{1-\gamma}\left(v_{M} z\right)^{1-\gamma}=v_{M} v(z)
$$

the unique solution $u(z)$ of the second corrector equation

$$
\mathcal{A} u(z)=a(z)=\frac{\sigma^{2}(1-\gamma)}{2 \gamma} \rho_{0}^{2} v(z)
$$

is given by

$$
u(z)=\frac{\sigma^{2}(1-\gamma)}{2 \gamma} \rho_{0}^{2} v_{M}^{-1} v(z)=u_{0} z^{1-\gamma}
$$

where

$$
u_{0}:=\left(\pi_{M}\left(1-\pi_{M}\right)\right)^{4 / 3} v_{M}^{-(1+\gamma)}
$$

Homethetic case

Finally, we summarize the expansion result in the following.

Lemma

For a power utility function U,

$$
v^{\epsilon}(x, y)=v(z)-\epsilon^{2} u_{0} z^{1-\gamma}+O\left(\epsilon^{3}\right)
$$

The width of the transaction region for the first correction equation $2 \xi_{0}=2 \eta(z) \rho_{0}$ is given by

$$
\xi_{0}=\left(\frac{3}{2 \gamma}\right)^{1 / 3}\left(\pi_{M}\left(1-\pi_{M}\right)\right)^{2 / 3}
$$

The above formulae are exactly as the one computed by Janecek \& Shreve.

Outline

(1) Brief Summar

- Expansion
- Solution
- Homethetic case
(2) Proof
(3) A nearly optimal strategy

Outline of the Proof

Set

$$
u^{\epsilon}(x, y):=\frac{v(z)-v^{\epsilon}(x, y)}{\epsilon^{2}} .
$$

Steps of the proof are

- Show that u^{ϵ} is locally uniformly bounded. Since $u^{\epsilon} \geq 0$, we need a uniform upper bound.
- Use the Barles \& Perthame methodology to define weak limits $\lim \inf u^{\epsilon}=: u_{*}(z) \leq u^{*}(z):=\lim \sup u^{\epsilon}$.
- use the Evans technology from homogenization to show that

$$
\mathcal{A} u^{*} \leq a \leq \mathcal{A} u_{*} .
$$

- We then conclude by comparison.

Comments

- The power case is substantially easier.
- Ergodic problem has a solution but may not be as regular as we like. The free boundary in particular.
- Uniform lower bound is the only intersection with the technique of Janecek \& Shreve. But in this case, we only need any lower bound of the right order of ϵ (i.e. in ϵ^{2}). Their approach however, requires the coefficient to be sharp as well, i.e. need a subsolution of the form $v(z)-\epsilon^{2} u(z)+\circ\left(\epsilon^{2}\right)$.
- When the corrector is smooth, the lower bound can be obtained via probabilistic techniques.

Outline

(1) Brief Summar

- Expansion
- Solution
- Homethetic case
(2) Proof
(3) A nearly optimal strategy

Multidimesions

We assume now that

- there are d stocks,
- we can transfer between any any stocks and cash,
- $L_{t}^{i, j}$ total transfers from i to $j,(i=0$ is cash,
- power utility,
- proportional cost is $\epsilon^{3} \lambda^{i, j}$,
- the normalized cell equation is

$$
\begin{aligned}
\max _{0 \leq i, j \leq d} & \max \left\{-\frac{\left|\sigma^{\mathrm{T}} \rho\right|^{2}}{2}-\frac{1}{2} \operatorname{Tr}\left[\bar{\alpha} \bar{\alpha}^{\mathrm{T}} D^{2} \bar{w}(\rho)\right]+\bar{a}\right. \\
& \left.-\lambda^{i, j}+\left(e_{i}-e_{j}\right) \cdot \hat{D} \bar{w}(\rho)\right\}=0, \quad \forall \rho \in \mathbb{R}^{d} .
\end{aligned}
$$

No Transaction Region

We assume that there is a smooth solution $\bar{w} \in C^{2}\left(\mathbb{R}^{2}\right)$. Set

$$
\mathcal{T}:=\left\{\rho \in \mathbb{R}^{d}:-\frac{\left|\sigma^{\mathrm{T}} \rho\right|^{2}}{2}-\frac{1}{2} \operatorname{Tr}\left[\bar{\alpha} \bar{\alpha}^{\mathrm{T}} D^{2} \bar{w}(\rho]\right)+\bar{a}=0\right\} .
$$

Formally, we expect that the no-transaction region of the ϵ-problem is asymptotically given by

$$
\begin{aligned}
\mathcal{C}^{\epsilon} & :=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}^{d}:\left(\frac{y}{z}-\pi_{M}\right) \gamma \in \epsilon \mathcal{T}\right\} \\
& =\left\{(x, y) \in \mathbb{R} \times \mathbb{R}^{d}: \rho \in \mathcal{T}\right\}
\end{aligned}
$$

where $\pi_{M} \in \mathbb{R}^{d}$ is the Merton proportion.

Strategy

We propose a strategy so that the resulting $\left(X_{t}^{\epsilon}, Y_{t}^{\epsilon}\right)$ are in \mathcal{C}^{ϵ}. Hence, L acts only at $\partial \mathcal{C}^{\epsilon}$. In fact, for $i, j=0, \ldots, d, L^{i, j}$ acts on the set $\left(\partial \mathcal{C}^{\epsilon}\right)^{i, j}$ which we now define,

$$
(\partial \mathcal{T})^{i, j}:=\left\{\rho \in \partial \mathcal{T}:-\lambda^{i, j}+\left(e_{i}-e_{j}\right) \cdot \hat{D} \bar{w}(\rho)=0\right\} .
$$

The boundary $\partial \mathcal{T}$ is covered by $(\partial \mathcal{T})^{i, j}$'s. We now define

$$
\begin{aligned}
\left(\partial \mathcal{C}^{\epsilon}\right)^{i, j} & :=\left\{(x, y) \in \partial \mathcal{C}^{\epsilon}:\left(\frac{y}{z}-\pi_{M}\right) \gamma \in \epsilon \mathcal{T}\right\} \\
& =\left\{(x, y) \in \mathbb{R} \times \mathbb{R}^{d}: \rho \in(\partial \mathcal{T})^{i, j}\right\}
\end{aligned}
$$

We once again record the following fact,

$$
\partial \mathcal{C}^{\epsilon}=\cup_{i, j=0}^{d}\left(\partial \mathcal{C}^{\epsilon}\right)^{i, j}
$$

Strategy

We use the Merton consumption, i.e., $c_{t}^{\epsilon}=v_{M} Z_{t}^{\epsilon}$. This proposed investment-consumption strategy yields a portfolio process $\left(X_{t}^{\epsilon}, Y_{t}^{\epsilon}\right) \in \mathcal{C}^{\epsilon}$ which is a solution of the Skorokhod problem,

$$
\left\{\begin{array}{l}
d X_{t}^{\epsilon}=\left(r X_{t}^{\epsilon}-v_{M} Z_{t}^{\epsilon}\right) d t+\sum_{j=1}^{d}\left[d L_{t}^{0, j}-\left(1+\lambda^{j, 0} \epsilon^{3}\right) d L_{t}^{j, 0}\right] \\
d Y_{t}^{i, \epsilon}=Y^{i, \epsilon}\left(\mu^{i} d t+\left(\sigma d W_{t}\right)^{i}\right)+\sum_{j=0}^{d}\left[d L_{t}^{i, j}-\left(1+\epsilon^{3} \lambda^{j, i}\right) d L_{t}^{j, i}\right] \\
\left(X_{t}^{\epsilon}, Y_{t}^{\epsilon}\right) \in \mathcal{C}^{\epsilon}, \quad \forall t>0, \\
L_{t}^{i, j}=\int_{0}^{t} \chi_{\left\{\left(X_{t}^{\epsilon}, Y_{t}^{\epsilon}\right) \in\left(\partial \mathcal{C}^{\epsilon}\right)^{i, j}\right\}} d L_{t}^{i, j}, \quad \forall t>0, \quad i, j=0, \ldots d,
\end{array}\right.
$$

where as usual

$$
Z^{\epsilon}:=X^{\epsilon}+\sum_{i=1}^{d} Y^{i, \epsilon}
$$

Assumption

Using the Skrokhod equation, we directly calculate that

$$
\begin{gathered}
d Z_{t}^{\epsilon}=Z_{t}^{\epsilon}\left[\left(r-v_{M}+\pi_{t}^{\epsilon} \cdot(\mu-\vec{r})\right) d t+\pi_{t}^{\epsilon} \cdot\left(\sigma d W_{t}\right)\right]-\epsilon^{3} d L_{t}^{\epsilon} \\
\pi_{t}^{\epsilon}:=\frac{Y_{t}^{\epsilon}}{Z_{t}^{\epsilon}}, \quad L_{t}^{\epsilon}:=\sum_{i, j=0}^{d} L_{t}^{i, j} .
\end{gathered}
$$

In view of the classical result of Lions \& Sznitman, existence of a solution to the above problem requires regularity of the boundary of \mathcal{C}^{ϵ}. We simply assume that
We assume that there exists a smooth solution $\bar{w} \in C^{2}\left(\mathbb{R}^{2}\right)$ and a solution $\left(X_{t}^{\epsilon}, Y_{t}^{\epsilon}\right) \in \mathcal{C}^{\epsilon} \subset \mathbb{R} \times \mathbb{R}^{d}$ of the Skorokhod problem.

Result

Let

$$
J^{\epsilon}:=\mathbb{E}\left[\int_{0}^{\infty} U_{\gamma}\left(c_{t}^{\epsilon}\right) d t\right] .
$$

Theorem

There is a constant $k^{*}>0$ so that

$$
\begin{equation*}
v(z)-\epsilon^{2} u(z)-\epsilon^{3} k^{*} v(z)-\epsilon^{4} w(z, \xi) \leq J^{\epsilon} \leq v^{\epsilon}(z) \tag{3.1}
\end{equation*}
$$

In view of the upper bound, the investment-consumption $\left(X_{t}^{\epsilon}, Y_{t}^{\epsilon}\right)$ is $\circ\left(\epsilon^{2}\right)$-optimal.

The $\circ\left(\epsilon^{2}\right)$ optimality of the strategy proposed by the cone \mathcal{C}^{ϵ} is interpreted as an asymptotic shape result.

Three lemmata

Let

$$
d Z_{t}^{*}=Z_{t}^{*}\left[\left(r-v_{M}+\pi_{M} \cdot\left(\mu-r \mathbf{1}_{d}\right)\right) d t+\pi_{M} \cdot\left(\sigma d W_{t}\right)\right]
$$

be the Merton optimal wealth. Then, Z^{ϵ} satisfies

$$
\mathbb{E}\left[\left(Z_{t}^{\epsilon}\right)^{1-\gamma}\right] \leq \mathbb{E}\left[\left(Z_{t}^{*}\right)^{1-\gamma}\right]
$$

Lemma 2

$$
\begin{aligned}
V^{\epsilon}(x, y) & :=v(z)-\epsilon^{2} u(z)-\epsilon^{4} w(z, \rho) \\
& =\left[\frac{U_{\gamma}\left(v_{M}\right)}{v_{M}}-\epsilon^{2} \frac{\bar{a}}{\gamma v_{M}}-\epsilon^{4} \frac{\bar{w}(\rho)}{\gamma}\right] z^{1-\gamma} .
\end{aligned}
$$

Set,

$$
I^{\epsilon}(x, y):=-\beta V^{\epsilon}(x, y)+\mathcal{L} V^{\epsilon}(x, y)
$$

where \mathcal{L} is the infinitesimal generator of the equations in the region \mathcal{C}^{ϵ}.

Lemma

There exists a constant $k^{*}>0$ such that for all $(x, y) \in \mathcal{C}^{\epsilon}$,

$$
I^{\epsilon}(x, y) \geq-\left[\epsilon^{3} k^{*}+U_{\gamma}\left(v_{M}\right)\right] z^{1-\gamma}
$$

Lemma 3

Set

$$
\Lambda_{i, j}^{\epsilon}=e_{i}-e_{j}+\epsilon^{3} \lambda^{i, j} e_{i} \in \mathbb{R}^{d+1}
$$

Lemma

There is $\epsilon_{0}>0$ so that for all $\epsilon \in\left(0, \epsilon_{0}\right]$,

$$
\Lambda_{i, j}^{\epsilon} \cdot D V^{\epsilon}(x, y) \leq 0, \quad \text { on }\left(\partial \mathcal{C}^{\epsilon}\right)^{i, j}
$$

for all $i, j=0, \ldots, d$.

Proof of Theorem

$$
\begin{aligned}
d[& \left.e^{-\beta t} V^{\epsilon}(\ldots)\right]=e^{-\beta t}\left[I^{\epsilon}(\ldots) d t+d[\text { local martingale }]\right] \\
& -e^{-\beta t} \sum_{i, j=0}^{d}\left[\Lambda_{i, j}^{\epsilon} \cdot D V^{\epsilon}(\ldots)\right] d L_{t}^{i, j} \\
\geq & -e^{-\beta t}\left(\left(\epsilon^{3} k^{*}+U_{\gamma}\left(V_{M}\right)\right)\left(Z_{t}^{\epsilon}\right)^{1-\gamma}+\text { local martingale }\right) \\
& -e^{-\beta t} \sum_{i, j=0}^{d}\left[\Lambda_{i, j}^{\epsilon} \cdot D V^{\epsilon}(\ldots)\right] \chi_{\left\{\left(X_{t}^{\epsilon}, Y_{t}^{i, \epsilon}\right) \in\left(\partial C^{\epsilon}\right)^{i, j}\right\}} d L_{t}^{i, j} \\
\geq & -e^{-\beta t}\left(\epsilon^{3} k^{*}\left(Z_{t}^{\epsilon}\right)^{1-\gamma} d t+U_{\gamma}\left(c_{t}^{\epsilon}\right) d t+d[\text { local martingale }] .\right.
\end{aligned}
$$

Proof of Theorem

Localize the local martingale with a stopping time τ. Also we use the fact that

$$
z^{1-\gamma}=k^{*} U\left(v_{M} z\right), \quad \Rightarrow \quad\left(Z_{t}^{\epsilon}\right)^{1-\gamma}=k^{*} U_{\gamma}\left(c_{t}^{\epsilon}\right)
$$

for some constant k^{*}. The result is,
$\mathbb{E}\left[e^{-\beta \tau} V^{\epsilon}\left(X_{\tau}^{\epsilon}, Y_{\tau}^{\epsilon}\right)\right] \geq V^{\epsilon}(x, y)-\left(1+\epsilon^{3} k^{*}\right) \mathbb{E}\left[\int_{0}^{\tau} e^{-\beta t} U_{\gamma}\left(c_{t}^{\epsilon}\right) d t\right]$

$$
\begin{aligned}
& \geq V^{\epsilon}(x, y)-\left(1+\epsilon^{3} k^{*}\right) \mathbb{E}\left[\int_{0}^{\infty} e^{-\beta t} U_{\gamma}\left(c_{t}^{\epsilon}\right) d t\right] \\
& =V^{\epsilon}(x, y)-\left(1+\epsilon^{3} k^{*}\right) J^{\epsilon}
\end{aligned}
$$

Hence

$$
V^{\epsilon}(x, y) \leq\left(1+\epsilon^{3} k^{*}\right) J^{\epsilon}+\mathbb{E}\left[e^{-\beta \tau} V^{\epsilon}\left(X_{\tau}^{\epsilon}, Y_{\tau}^{\epsilon}\right)\right]
$$

Proof of Theorem

We let τ to infinity (needs to be done properly),

$$
V^{\epsilon}(x, y) \leq\left(1+\epsilon^{3} k^{*}\right) J^{\epsilon} .
$$

This proves that

$$
\begin{aligned}
J^{\epsilon} & \geq V^{\epsilon}(x, y)-\epsilon^{3} k^{*} J^{\epsilon} \\
& \geq V^{\epsilon}(x, y)-\epsilon^{3} k^{*} v(z) \\
& =v(z)-\epsilon^{2} u(z)-\epsilon^{3} k^{*} v(z)-\epsilon^{4} w(z, \rho)
\end{aligned}
$$

Homogenization and asymptotics for small transaction costs, H. Mete Soner, Nizar Touzi arXiv :1202.6131.

Large liquidity expansion of super-hedging costs Dylan Possamai, H. Mete Soner, Nizar Touzi. (2011)

Aysmptotic Analysis, forthcoming.

THANK YOU FOR YOUR ATTENTION.

