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Goal

Let ε > 0 be a small parameter related to transaction costs and let
v ε(s, x , y) be the maximum utility starting with initial bond position
x and stock position y and the stock price s. Then, it is clear that

lim
ε↓0

v ε(s, x , y) = vmerton(s, z), z = x + y ,

where vmerton is the value of the classical Merton problem. To
understand this convergence we look for an expansion of the form

v ε(s, x , y) = vmerton(s, z)− ε2u(s, z) + ◦(ε2).

Shreve & Janecek (one stock or future) and Bichuch & Shreve
(two futures) analyzed the power utility case.
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Brief History

Magill & Constantinides (1976), Constantinides (1986)
initiates the problem ;

Taksar, Klass & Asaf (1988) rigorous study of the ergodic
problem within no consumption ;

Dumas & Luciano (1991) further studies the ergodic problem ;

Davis & Norman (1990) puts into the modern framework ;

Shreve & Soner (1994) introduces viscosity theory ;

Cvitanic & Karatzas (1996) duality and martingale approach ;

Oksendal & Sulem (2002) problem with fixed costs ;
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Previous results on asymptotics

Constantinides (1986) numerically considers the problem ;

Shreve (1994) is the first rigorous result ;

Janecek & Shreve (2004, 2010) one dimensional problem ;

Bichuch & Shreve (preprint) first two dimensional result ;

Gerhold, Muhle-Karbe, Schachermayer (2011) and also with
Guassoni (2011) consider the simpler Dumas-Luciano problem
but give more detailed explicit results.

Several formal results, Whaley & Willmont (1997) , Atkinson
& Mokkhavesa (2004),..., Goodman & Ostrov(2010).
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Why ?

No explicit result available and the small parameter makes the
numerical approach difficult and/or unstable. The asymptotic
approach provides us with

Explicit formulae in one dimensions ;

Substantial simplification for instance in the fixed costs ;

Usable portfolio rebalancing rules : Suppose one solves a
maximization problem with no transaction costs and would like
to understand the first order effect of transaction costs both
on the maximum value and also on the trading strategy.
However, since the zero-cost problem could be quite general, a
robust approach is desirable.
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Rebalancing

Suppose an optimization problem dictates that we want θ fraction
of our wealth in the stock(s). In a short time stock moves randomly
and bond account moves deterministically. Hence, the fraction
moves randomly and we need to rebalance. This is not desirable
because

not realistically feasible ;

transaction costs would be very high ;

Then, one would want to create a band around theta and wait until
we reach the boundary of this band and then rebalance. The
question is then, to determine this band.
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Our Approach

The main observation is to use the techniques from

formal matched asymptotics ;

homogenization and correctors ;

perturbed test function technique of Evans together with the
weak limits of Barles & Perthame.

Although there are similarities with the theory of homogenization,

homogenization has is a given fast variable, here there is none ;

here we do an inner expansion as it is done in
fast reaction – slow diffusion problems like
Ginzburg-Landau or super-conductivity.
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Expansion

Main Theorem. As ε tends to zero,

uε(x , y) :=
vmerton(x + y)− v ε(x , y)

ε2

→ u(s, z) := E
[∫ ∞

0
e−βta(Ẑ z

t )dt
]
,

locally uniformly, where a will be defined in the next slide and
{Ẑ s,z

t , t ≥ 0} is the optimal wealth process . Hence,

v ε(x , y) = vmerton(z)− ε2uε(x , y) = v(z)− ε2u(z) + ◦(ε2).
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Notation

We assume that v := vmerton is smooth and let

η(z) := − vz(z)

vzz(z)

be the corresponding risk tolerance. The solution of the Merton
problem also provides us an optimal feedback portfolio strategy
θ(z) and an optimal feedback consumption function c(z).
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An Ergodic Problem

a(z) := η(z)vz(z)ā(z),

and for every fixed z > 0,

ā(z) := inf
M

J(z ,M),

J(z ,M) := lim sup
T→∞

1
T
E
[∫ T

0

|σ(s)ξt |2

2
+ ‖M‖T

]
,

where M is a bounded variation process with variation ‖M‖, and
the controlled processξ satisfies (with a Brownian motion B),

dξt = [θ(z)(1− θz(z))]dBt + dMt .

This is an ergodic monotone follower problem.
Soner, ETH Zürich Transaction Costs
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Asymptotic Transaction Region

Let

I(z) := no transaction region of the ergodic problem.

Then, we expect and can prove under some additional assumptions
that the region

Cε := {(x , y) | y − θ(z) ∈ ε I(z) },

provides an ◦(ε2) optimal investment strategy.
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Comment on the general case

In the multi-dimensional case with non-constant coefficients, same
result holds but the functions

v(s, z), u(s, z), a(s, z), θ(s, z), c(s, z)

all depend on the initial stock value s as well.
Moreover, in the ergodic problem like z , s also appears but as a
parameter. Therefore, the expansion has the form,

v ε(s, x , y) = v(s, z)− ε2uε(s, x , y) = v(s, z)− ε2u(s, z) + ◦(ε2).
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Simplify

For this talk, I will take all coefficients to be constant and assume
that there is only one stock.

Also I take the proportional costs to be same in both directions.
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Market

We assume a financial market with constant interest rate r = 0 and
one stock with geometric Brownian motion dynamics,

dSt = St [µdt + σdWt ] ,

where W is a Brownian motion and µ > r , σ > 0 are the
coefficients of instantaneous mean return and volatility.
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Transaction costs

Suppose we decide to transfer ` > 0 dollars from stock to cash or
the other way around. Then, this incurs a transaction cost of

ε3`,

where ε > 0 is a small parameter.
We let kt to be the total dollar transfers between the cash and
stock positions. Due to the transaction costs, k needs to be a
function of bounded variation. Hence,

kt = k+
t − k−t ,

where k± are non decreasing with

k0− = 0.
Soner, ETH Zürich Transaction Costs
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Wealth Equations

As it is standard, let ct , be the rate of consumption, and let
kt = k+ − k− be the total amount of transfers and k+ from cash
to stock and k− in the other direction.

For any initial position (X0− ,Y0−) = (x , y) ∈ Kε, the portfolio
position of the investor are given by the following state equation,

dXt =
(
− ct

)
dt +

(
dk+

t − (1 + ε3)dk−t
)
,

dYt = Yt
dSt

St
+
(
dk−t − (1 + ε3)dk+

t

)
.
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Total wealth

Set Zt := Xt + Yt . Since

dXt =
(
rXt − ct

)
dt +

(
dk+

t − (1 + ε3)k−t
)
,

dYt = Yt
dSt

St
+
(
dk−t − (1 + ε3)dk+

t

)
.

we derive that

dZt = Ztπt(µdt + σdBt)− ct − ε3[dk+
t + dk−t ].
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Transaction costs

We define the solvency region Kε is defined as the set of all
portfolio positions which can be transferred into portfolio positions
with nonnegative entries through an appropriate portfolio
rebalancing.
(x , y) ∈ Kε if and only if there are k± ≥ 0 so that

x + k+ − (1 + ε3)k− ≥ 0, y + k− − (1 + ε3)k+ ≥ 0,

Then,

Kε = {(x , y) ∈ R2 : x + (1 + ε3)y ≥ 0, y + (1 + ε3)x ≥ 0}.
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Admissible strategies

The above solution depends on the initial condition (x , y) and on
the control ν = (c , k). Let (X ,Y )ν,x ,y be the solution of the above
equation. Then, a consumption-investment strategy ν is said to be
admissible for the initial position (x , y), and denoted by Θε(x , y) if

(X ,Y )ν,x ,yt ∈ Kε, ∀ t ≥ 0, P− a.s.
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Utility and the value

v ε(x , y) := sup
(c,L)∈Θε(x ,y)

E
[∫ ∞

0
e−βt U(ct)dt

]
,

where U : (0,∞) 7→ R is a utility function that is C 2, increasing,
strictly concave, and its convex conjugate is given by,

Ũ(c̃) := sup
c>0

{
U(c)− cc̃

}
, c̃ ∈ R.

Then Ũ is a C 2 convex function. It is well known that the value
function is a viscosity solution of the corresponding dynamic
programming equation.
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Concavity

The above is an optimal control problem with following properties

linear dynamics ;

concave reward ;

maximization.

Then, the resulting value function is a concave function of the
initial condition.
The proof is straightforward : Let νi ∈ Θε(xi , yi ). Set ν and (x , y)

be the mid points. Then, easy to check ν ∈ Θε(x , y). Moreover,

2U(ct) ≥ U((c1)t) + U((c2)t).
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Concavity - consequences

Any concave function is Lipschitz in its domain of definition, i.e, on
Kε. Some work proves that it is continuous all the way up to the
boundary.

Subdifferentials. For a concave function φ

∂φ(x) := {p : φ(x) + p · (y − x) ≥ φ(y), ∀ y}.

It is as good as differentiable !
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Gradient Constraint

Consider an initial data

X0− = x , Y0− = y .

We can immediately move our position to

X0 = x + m, Y0 = y − (1 + ε3)m,

for any m ≥ 0 and not to large. Hence,

v ε(x , y) ≥ v ε(x + m, y − (1 + ε3)m).

Differentiate formally to conclude

v εx(x , y)− (1 + ε3)v εy (x , y) ≤ 0.

This is formal and be made rigorous with sub differentials.
Soner, ETH Zürich Transaction Costs
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Gradient Constraint - rigorous

We know
v ε(x , y) ≥ v ε(x + m, y − (1 + ε3)m).

Change (x , y) to (x −m, y + (1 + ε3)), hence

v ε(x −m, y + (1 + ε3))

≥ v ε((x −m) + m, (y + (1 + ε3))− (1 + ε3)m)

= v ε(x , y).
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Gradient Constraint - rigorous, cont.

Let (px , py ) ∈ ∂v ε(x , y). Then, for any h,

v ε(x , y) + (px , py ) · (−1, 1 + ε3)h ≥ v ε(x − h, y + (1 + ε3)h).

Choose h = m and combine the two inequalities :

v ε(x , y) + (px , py ) · (−1, 1 + ε3)m ≥ v ε(x −m, y + (1 + ε3)m)

≥ v ε(x , y), ∀ m ≥ 0.

Hence, for all

(px , py ) · (−1, 1 + ε3) ≥ 0, ∀ (px , py ) ∈ ∂v ε(x , y).
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Other Gradient Constraint

We move money from can to bond. the result is,

(px , py ) · (1 + ε3,−1) ≥ 0, ∀ (px , py ) ∈ ∂v ε(x , y).

When differentiable,

v εy (x , y)− (1 + ε3)v εx(x , y) ≤ 0.
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Scaling

For any positive constant λ > 0, the linearity of the state equations
imply that

ν ∈ Θε(x , y) ⇔ λν ∈ Θε(λ(x , y)).

If
U(c) = c1−γ/(1− γ),

then,
v ε(λ(x , y)) = λ1−γv ε(x , y).
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Cones

Kε = {(x , y) ∈ R2 : y/z ∈ (−1/ε3, 1 + 1/ε3) }, z = x + y .

Lemma
There are

−1/ε3 ≤ aε < bε ≤ 1 + 1/ε3,

so that for any p ∈ ∂v ε(x , y),

(px , py ) · (1 + ε3,−1) = 0, ∀ y/z ∈ (−1/ε3, aε),

(py , px) · (1 + ε3,−1) = 0, ∀ y/z ∈ (bε, 1 + 1/ε3).
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Equation

The DPE with our simplifications is,

min{ I ε ; d ε+ ; d ε− } = 0, where

I ε = βv ε−µyv εy −
1
2
σ2y2v εyy − Ũ(v εx),

:= βv ε−Lyv ε − Ũ(v εx),

d ε+ = (1 + ε3)v εx − v εy ,

d ε− = (1 + ε3)v εy − v εx .
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Viscosity Property

Suppose v ε <∞, then it is the unique continuous viscosity solution
of

min{ I ε ; d ε+ ; d ε− } = 0.

The proof is now standard.

When is the value function finite ? Easy way is

v ε(x , y) < v(x + y),

and we know exactly when the Merton value is finite. But more
detailed analysis is carried out by Choi, Sirbu & Zitkovic recently.
They gave the complete characterization of the finiteness of the
value function.
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Optimal strategy

The structure is,
No transact and consume = {I ε = 0}.
Buy stock = {d ε+ = 0},
Buy bond = {d ε− = 0}.
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Optimal strategy

The structure is,
No transact and consume = {I ε = 0} = {y/z ∈ (aε, bε)}.
Buy stock = {d ε+ = 0} = {y/z ∈ (−1/ε3, aε)},
Buy bond = {d ε− = 0} = {y/z ∈ (bε, 1 + 1/ε3)}.
The optimal strategy is at time zero to move into the no
transaction region and then stay there by local time at the
boundaries. Consumption is given as a feedback strategy.
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ε = 0

Then, the value function is a function of z alone, v(z), and the
DPE is

βv(z)− sup
π∈R
{ Lπzv(z)} − Ũ(vz(z)) = 0,

where or recall that

Lyφ(z) = µyφz(z) +
1
2
σ2y2φzz .

Ũ(p) = sup
c>0
{U(c)− cp} =

γ

1− γ
p(γ−1)/γ .
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ε = 0, cont.

Then,

βv(z)− Lyv(z)− Ũ(vz(z))

= βv(z)− sup
π∈R
{ Lπzv(z)} − Ũ(vz(z))

+ sup
π∈R
{ Lπzv(z)} − Lyv(z)

=
1
2

(−vzz(z)) (y − θ(z))2

where θ(z) = π∗(z)z is the maximizer. In the power case,

π∗ = µ/γσ2.
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Form of the Expansion

We postulate the following expansion,

v ε(x , y) = v(z)− ε2u(z)− ε4w(z , ξ) + ◦(ε2),

where (z , ξ) = is a transformation of (x , y) ∈ Kε given by

z = x + y , ξ := ξε(x , y) =
y − θ(z)

ε
,

where θ(z) is the Merton optimal investment strategy. In our
postulate, we have also introduced two functions

u : R+ 7→ R, and w : R+ × Rd 7→ R.

The main goal is to derive equations for these two functions.
Soner, ETH Zürich Transaction Costs



Logo

Overview
Derivation

Proof

Corrector
Power Case

Why the corrector w ?

v ε(x , y) = v(z)− ε2u(z)− ε4w(z , ξ) + ◦(ε2),

Notice that the above expansion is assumed to hold up to ε2, i.e.
the ◦(ε2) term. Therefore, the reason for having an higher term like
ε4w(z , ξ) explicitly in the expansion may not be clear.

However, this term contains the fast variable ξ and its second
derivative is of order ε2. And the introduction of w in the expansion
is crucial ; without the formal calculations do not match.

This is also the case in the pioneering work of Lions, Papanicolaou
and Varadhan in the theory of homogenization.
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Equation

We now substitute the above postulated form into the dynamic
programming equation (DPE) and derive the equations for u and
w . We assume that ξ = (y − θ(z))/ε is order one.
The DPE with our simplifications is,

0 = min{ I ε ; d ε+ ; d ε− },

I ε = βv ε − µyv εy −
1
2
σ2y2v εyy − Ũ(v εx),

:= βv ε − Lyv ε − Ũ(v εx),

d ε+ = (1 + ε3)v εx − v εy ,

d ε− = (1 + ε3)v εy − v εx .
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Calculation – d ’s

Recall that ξ = (y − θ(z))/ε and

v ε(x , y) = v(z)− ε2u(z)− ε4w(z , ξ), z = x + y .

Hence, we directly calculate that

(wx(z , ξ),wy (z , ξ)) = (wz ,wz) +
1
ε

(−θz , (1− θz))wξ,

d ε+ = (1 + ε3)v εx − v εy = ε3 [vz(z) + wξ] + 0(ε5).
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d ’s continued

Similarly

d ε− = (1 + ε3)v εy − v εx = ε3 [vz(z)− wξ] + 0(ε5).

Hence, the DPE can be approximately rewritten as

0 = min{ I ε ; d ε+ ; d ε− }

≈ min{ I ε ; vz(z) + wξ ; vz(z)− wξ }.
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Calculation – I

We use the Merton equation satisfied by v :

I ε := βv ε − Lyv ε − Ũ(v εx)

= βv − Lyv − Ũ(vz)

+
(
Ũ(vz)− Ũ

(
vz − ε2uz + O(ε3)

))
− ε2

(
βu − Lθ(z)u

)
+
ε4

2
[σ2y2wyy ] + O(ε3),

= ε2
[
−1
2
σ2ξ2vzz(z) +

1
2
α(z)2wξξ(z , ξ)−Au(z)

]
+ O(ε3),

where
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I Calculation continued

α(z) = θ(z)(1− θz(z)),

and A is the infinitesimal generator of the Merton optimal wealth
process, i.e.,

Au(z) = [θ(z)µ− c(z)] uz(z) +
1
2
σ2θ(z)2uzz(z).

We used the fact that

Ũ ′(vz(z)) = c(z).
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Corrector Equations

We calculated that

0 = −min{ I ε ; d ε+ ; d ε− }

≈ −min{ I ε ; vz(z) + wξ ; vz(z)− wξ }

≈ max{ 1
2
σ2ξ2vzz(z)− 1

2
α(z)2wξξ(z , ξ) +Au(z)

; −vz(z) + wξ ; −vz(z)− wξ }.

Note that the above is an equation for w alone. Hence in the above
equation z is just a parameter. We solve the above equation with
boundary condition w(z , 0) = 0.
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equation z is just a parameter. We solve the above equation with
boundary condition w(z , 0) = 0.
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Corrector
Power Case

Solving the Corrector

Set
Au(z) = a(z),

and solve for the pair (w(z , ·), a(z)) solving the following equation
with z as a parameter and ξ as the independent variable,

0 = max{ 1
2
σ2ξ2vzz(z)− 1

2
α(z)2wξξ(z , ξ) + a(z)

; −vz(z) + wξ ; −vz(z)− wξ }.

together with w(z , 0) = 0.
a is exactly the value function of the ergodic problem described
earlier and w is its potential function.
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Corrector
Power Case

Solving the Corrector - continued

The solution is obtained in two steps ;

1 Fix z (and s if the problem depends on it). Solve for the pair
(w(z , ·), a(z)). In fact, we rescale the equation consistent with
the power utility case and solve that equation. This form is
reported earlier.

2 Once we have a(z), we then solve the equation

Au(z) = a(z).

Since A is related to the infinitesimal generator of the optimal
wealth process, the solution is simply an expectation.
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Corrector
Power Case

Solution of the Corrector

in one dimension corrector equation is solved by using smooth
fit. The solution is an explicit function of the Merton value
function and its derivatives.

In the case a power utility, the equation has the same
homothety and is solved explicitly in one space dimension.

In higher dimensions we only know its existence and compute
it numerically.

Soner, ETH Zürich Transaction Costs



Logo

Overview
Derivation

Proof

Corrector
Power Case

Comments

In addition to the first correction u, the corrector equation also
provides the asymptotic shape of the no-transaction region.

But the function w is not then used.

In the theory of homogenization, a similar corrector equation is
always needed. This equation is always related to an ergodic
control problem

Soner, ETH Zürich Transaction Costs



Logo

Overview
Derivation

Proof

Corrector
Power Case

Explicit Solutions

Explicit solutions exist only in power case in one dimension or
independent Brownian motions.

We could also derive explicit expansions in the case of fixed
transaction costs as well.
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Corrector
Power Case

Homothety of a, u and w

U(c) = c1−γ/(1− γ) for some γ > 0 with constant coefficients.

a(z) = constant z1−γ ,

u(z) = constant z1−γ ,

w(z , ξ) = z1−γ W
(

(y/z)− πmerton

ε

)
,

C(z) = z C(1).

In one dimensions one can compute all the constants explicitly. And
they agree with the formulae computed in Shreve & Janecek.
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Set
uε(x , y) :=

v(z)− v ε(x , y)

ε2
.

Steps of the proof are

Show that uε is locally uniformly bounded. Since uε ≥ 0, we
need a uniform upper bound.

Use the Barles & Perthame methodology to define weak limits
lim inf uε =: u∗(z) ≤ u∗(z) := lim sup uε.

use the Evans technology from homogenization to show that

Au∗ ≤ a ≤ Au∗.

We then conclude by comparison.
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Comments

The power case is substantially easier.

Ergodic problem has a solution but may not be as regular as
we like. The free boundary in particular.

Uniform lower bound is the only intersection with the
technique of Shreve & Janecek. But in this case, we only need
any lower bound of the right order of ε (i.e. in ε2). Their
approach however, requires the coefficient to be sharp as well,
i.e. need a subsolution of the form v(z)− ε2u(z) + ◦(ε2).
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Homogenization and asymptotics for small transaction costs,
H. Mete Soner, Nizar Touzi

arXiv :1202.6131.

Large liquidity expansion of super-hedging costs
Dylan Possamai, H. Mete Soner, Nizar Touzi. (2011)

Aysmptotic Analysis, forthcoming.
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