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Some by now “classical” results

Let us consider in Rn the heat equation (ut(x) = u(t , x))

∂tut = ∆ut

Classically it can be viewed as the gradient flow of the energy

Dir(u) :=
1
2

∫
Rn
|∇u|2 dx (+∞ if u /∈ H1(Rn))

in the Hilbert space H = L2(Rn).

Formally, t 7→ ut solves the ODE u′ = −∇Dir(u) in H because

Dir “differentiable” at u ⇐⇒ −∆u ∈ L2, ∇Dir(u) = −∆u
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In 1998, Jordan-Kinderlehrer-Otto proved that the same equation
arises as gradient flow of the entropy functional

Ent(ρL n) :=

∫
Rn

ρ log ρ dx (+∞ if µ is not a.c. w.r.t. L n)

in the space P2(Rn) of probability measures with finite quadratic
moments, with respect to Wasserstein distance W2.

W 2
2 (µ, ν) := min

{∫
Rn×Rn

|x − y |2 dγ(x , y) : (π1)]γ = µ, (π2)]γ = ν

}
.

Push forward notation. f : X → Y Borel induces a map
f# : P(X ) → P(Y ):

f#µ(B) := µ
(
f−1(B)

)
∀B ∈ B(X ).
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Proofs of this equivalence

1. By the so-called Otto calculus (formal);

2. Prove that the implicit time discretization scheme (Euler scheme),
traditionally used for the approximation of gradient flows, when done
with energy Ent(µ) and distance W2, does converge to the heat
equation.

3. Give a meaning to what “gradient flow of Ent w.r.t. W2 means”,
and check that solutions of this gradient flow are solutions to the heat
equation. Then, apply uniqueness for ∂tut = ∆ut .

The last strategy is more abstract, but still uses the differentiable
structure of Rn. The question is to understand deeper reasons for this
equivalence, in particular on which structural properties of the space
it depends (Riemannian manifolds, Finsler spaces, Wiener spaces,
sub-Riemannian spaces, etc.)
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Metric measure spaces
Let us consider a metric measure space (X , d , m), with m ∈ P(X ).
In this framework it is still possible to define a “Dirichlet energy”, that
we call Cheeger functional:

Ch(f ) := inf
{

lim inf
n→∞

∫
X
|∇fn|2 dm : fn ∈ Lip(X ),

∫
X
|fn − f |2 dm → 0

}
,

where
|∇g|(x) := lim sup

y→x

|g(y)− g(x)|
d(y , x)

is the slope (also called local Lipschitz constant).
Also, one can consider the so-called relative entropy functional
Entm : P(X ) → [0,+∞]

Entm(ρm) :=

∫
X

ρ log ρ dm (+∞ if µ is not a.c. w.r.t. m).
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The basic result is that the equivalence between L2-gradient flow of
Ch and W2-gradient flow of Entm always holds, if the latter is properly
understood. But, without additional assumptions on the space, both
objects can be trivial.
Example. Let X = [0, 1], d the Euclidean distance, m =

∑
n≥1 2−nδqn ,

where {qn}n≥1 is an enumeration of [0, 1] ∩Q. If An ⊃ Q ∩ X are open
sets with L 1(An) → 0 and

χn(t) :=

∫ t

0

(
1− χAn(s)

)
ds t ∈ [0, 1].

Then f ◦ χn → f in L2(X , m) for all f ∈ Lip(X ) and f ◦ χn is locally
constant in Q ∩ X hence

Ch(f ) = 0 ∀f ∈ Lip(X ).

It follows that Ch ≡ 0 in L2(X , m).
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Identification of weak gradients

A closely related question, relevant in particular for the second paper,
is the identification of weak gradients. The first one, that we call relaxed
gradient |∇f |∗, is the object that provides integral representation to Ch:

Ch(f ) =
1
2

∫
X
|∇f |2∗ dm ∀f ∈ D(Ch).

It has all the natural properties (locality, chain rules, etc.) a weak
gradient should have.

This gradient is useful when doing “vertical” variations ε 7→ f + εg (i.e.
in the dependent variable).
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Identification of weak gradients

But, when computing variations of the entropy, the “horizontal”
variations ε → f (γ(ε)) (i.e. in the independent variable) are necessary.
These are related to another weak gradient |∇f |w , defined as follows.
We require the so-called upper gradient property

|f (γ1)− f (γ0)| ≤
∫

γ
G

along “almost all” curves γ in AC2([0, 1]; X ) and then we define |∇f |w
as the element with smallest L2(X , m) norm.
The remarkable fact is that these two gradients always coincide (and,
of course, maybe both trivial without extra assumptions). The proof of
this identification uses ideas from optimal transportation, as lifting of
solutions to the heat flow to probability measures in AC2([0, 1]; X

)
and

the energy dissipation rate of Entm.
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Why gradients are not trivial in Lott-Sturm-Villani
spaces
In these spaces one imposed convexity of W2 geodesics of Entm (the
so-called CD(0,∞) condition) or of functionals

ρm 7→ −
∫

X
ρ1−1/N dm

(the CD(0, N) condition).
In this case the gradient flow of Entm is not trivial, and since it coincides
with the heat flow, also this is not trivial.
The energy dissipation rate is

d
dt

∫
X

ρt log ρt dm =

∫
X

log ρt∆ρt dm = −
∫
{ρt>0}

|∇ρt |2

ρt
dm

= −4
∫

X
|∇√ρt |2 dm.
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with the heat flow, also this is not trivial.
The energy dissipation rate is

d
dt

∫
X

ρt log ρt dm =

∫
X

log ρt∆ρt dm = −
∫
{ρt>0}

|∇ρt |2

ρt
dm

= −4
∫

X
|∇√ρt |2 dm.
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Standing assumptions (for the lectures).

(X , d) compact metric space, m ∈ P(X )

Prerequisites.

Basic facts of Optimal Transportation and Measure Theory
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